Tag Archives: Listeria

Food Safety Consortium 2023
From the Editor’s Desk

Call For Abstracts: 2023 Food Safety Consortium

Food Safety Consortium 2023

Are you ready to share your knowledge, experience or research with fellow food safety and quality assurance professionals? Food Safety Tech is requesting abstracts for the 11th Annual Food Safety Consortium, which will take place October 16-18, 2023, at the Hilton in Parsippany, New Jersey.

We are accepting abstracts for educational presentations, panel discussions and Posters for a new Poster Session. All abstracts, which are due by March 31, will be judged based on the educational value.

Submit abstracts here.

Presented by Food Safety Tech, the Food Safety Consortium is a business-to-business conference that brings together food safety and quality assurance professionals for education, networking and discussion geared toward solving the key challenges facing the food safety industry today.

In addition to two full days of high-level panel discussions, this year’s program will include a second Food Safety Hazards track. These “Boots on the Ground” sessions build on the success of Food Safety Tech’s virtual Food Safety Hazards program by providing two days of education on the detection, mitigation, control and regulation of key pathogen, pest, chemical and physical food hazards.

Call for Abstracts Now Open

Also new this year is a strategic co-location with the Cannabis Quality Conference, as well as several pre-conference workshops to be held on October 16, including:

  • Advanced Listeria Workshop
  • Food Safety Recalls Workshop
  • Food Safety Auditor Re-certification Training
  • Infused Products Workshop

Registration Opening Soon!

“We are bringing two great conferences together under one roof,” says Rick Biros, president of Innovative Publishing and director of the Food Safety Consortium. “The Food Safety Consortium will continue its strategic meeting of the minds format, but we are complementing that with the practical, boots-on-the-ground Food Safety Hazards track. Co-location with the CQC allows attendees to take advantage of additional education on product testing and quality assurance in the burgeoning cannabis market, as well as preconference workshops delving into infused product safety and compliance that will appeal to both food safety and cannabis professionals.”

For sponsorship and exhibitor inquiries, contact RJ Palermo, Director of Sales. Stay tuned for registration and early bird specials.

 

 

OSU_CFI Logo
Food Safety Think Tank

It is Time for Industry to Embrace Whole Genome Sequencing

By Food Safety Tech Staff
No Comments
OSU_CFI Logo

Whole genome sequencing (WGS) has become a powerful tool to track the origins of foodborne illness, but if industry views WGS simply as a tool for regulators, it is missing out on a valuable instrument to improve food safety within its facilities. Join Fabien Robert, head of zone AMS for Nestlé Quality Assurance centres, and Food Safety Tech on April 3-5 at Ohio State University, as we take a closer look at:

Fabien Robert
Fabien Robert
  • How WGS can help industry mitigate food safety risks and enhance root cause analysis
  • How to use WGS in your operations to improve food safety

The Food Safety Tech’s Hazards Conference + CFI Think Tank brings together leading minds in industry and academia for two days of practical education on the detection, mitigation, control and regulation of key food hazards, followed by discussion geared toward identifying gaps for research and innovation.

In person and virtual registration options available

Additional speakers include:

Biofilm Prevention and Control Practices

Charles Giambrone, Food Safety Manager, Rochester Midland

Giambrone received his M.S. degree in Microbiology from Rutgers University in 1978, where his research focus was applied and environmental microbiology. In his current and previous roles as VP & Sr. Technical Support Manager for Rochester Midland Corp, he provides applied research and technical support in the whole area of food safety and sanitation including processing and preparation, membrane cleaning, and water treatment systems plus supervision of R & D projects. Giambrone has a broad and in-depth expertise in the areas of hygiene, disinfection, and biocides. This includes working with systems to remove or prevent biofilm formation in food processing and water system lines as well as other applications.

The USDA’s Proposed Approach to Salmonella Control in Poultry Products

Sandra Eskin, Deputy Under Secretary for Food Safety, Food Safety and Inspection Service, USDA

Sandra Eskin leads the Office of Food Safety at the USDA, overseeing the Food Safety and Inspection Service (FSIS), which has regulatory oversight for ensuring that meat, poultry and egg products are safe, wholesome and accurately labeled. Prior to joining USDA, Eskin was the Project Director for Food Safety at The Pew Charitable Trusts in Washington, D.C. She also served as the Deputy Director of the Produce Safety Project (PSP), a Pew-funded initiative at Georgetown University from 2008-2009.

RTE Meats and Ice Cream – Mitigating Listeria Risks & Responding to Contamination

Stacy Vernon, Food Safety Specialist & Project Manager, CIFT

Stacy Vernon is the Food Safety and Operations Program Manager at CIFT, where she works alongside food manufactures of all sizes to help them achieve their food safety goals and objectives. She delivers business solutions and technical expertise to her clients as they work towards achieving, maintaining and improving their regulatory and third party food safety certification compliance. Stacy has over 15 years of experience in the food and beverages industry as prior to joining CIFT in 2016, she worked in food safety and quality assurance management roles for Smithfield Foods, Inc. and Rudolph Foods Company.

View the full agenda

Listeria in the Retail Food Environment

Janet Buffer, Center for Foodborne Illness & Prevention, OSU

Janet Buffer’s expertise spans across multidisciplinary medical and clinical research centers, higher education institutions, extension agencies, and regulatory departments. Throughout her 28-year professional career, Janet has served in various capacities; relentlessly utilizing her unique skill sets and ability to connect with students and consumers, to thoroughly educate and actively train those around her. She has spearheaded food safety information accuracy efforts and prioritized food production and food safety regulatory compliance in the healthcare and business spheres above all else. All the while, advising and aiding in corporate administration and the improvement of food technologies.

Application of Ozone for Decontamination of Fresh Produce

Al Baroudi, Ph.D., Vice President of Quality Assurance & Food Safety, The Cheesecake Factory

In addition to his current role, Dr. Baroudi has conducted workshops, published White Papers and introduced the HACCP program to developing countries on behalf of the U.S. government. He is the recipient of Borden’s “President Award”, the Sani “Food Safety Champion Award”, and the “Outstanding Food Safety Program Innovation Award,” and the Southern California IFT “Distinguished Achievement Award.” In 2022, NR News named, Dr. Baroudi as one of the top 50 most influential restaurant executives in the country, and The NRA presented him their inaugural Lifetime Achievement Award for “Outstanding Leader in Food Safety.” He was instrumental in passing the Food Facilities Sanitization Bill “AB 1427” in the California State Assembly that cleared the way for the ozone to be approved in California Cal Code (2012).

Ahmed Yousef, Ph.D., Department of Food Science & Technology, Ohio State University

Dr. Yousef earned his Ph.D. in Food Science from University of Wisconsin-Madison. He worked as a postdoctoral researcher at the University of Wisconsin-Madison before joining Ohio State as an Assistant Professor in 1991. Since the late 1990s, Dr. Yousef and his research team have worked to develop methods to pasteurize shell eggs and to decontaminate fresh produce while maintaining products’ fresh qualities. His ozone research led to developing methods to decontaminate spinach, apples, and other fresh produce. As a result of this research, Dr. Yousef established the largest ozone research laboratory in the U.S. at Ohio State.

View the full agenda and register here.

 

Listeria
From the Editor’s Desk

Detection, Mitigation and Control of Listeria and Salmonella: What We Know and Where We’re Heading

By Food Safety Tech Staff
No Comments
Listeria

The detection and mitigation of foodborne illness-causing pathogens continue to be a challenge for all aspects of the food industry from farm to fork. Join Food Safety Tech and the Center for Foodborne Illness Research and Prevention at the Fawcett Center at The Ohio State University on April 3-5 in Columbus, Ohio, for three days of food safety hazards education.

The Food Safety Tech’s Hazards Conference + CFI Think Tank brings together leading minds in industry and academia for two days of practical education on the detection, mitigation, control and regulation of key food hazards, followed by discussion geared toward identifying gaps for research and innovation. The program includes:

The USDA’s Proposed Approach to Salmonella Control in Poultry Products

Sandra Eskin

Sandra Eskin, Deputy Under Secretary for Food Safety, Food Safety and Inspection Service, USDA

Sandra Eskin leads the Office of Food Safety at the USDA, overseeing the Food Safety and Inspection Service (FSIS), which has regulatory oversight for ensuring that meat, poultry and egg products are safe, wholesome and accurately labeled. Prior to joining USDA, Eskin was the Project Director for Food Safety at The Pew Charitable Trusts in Washington, D.C. She also served as the Deputy Director of the Produce Safety Project (PSP), a Pew-funded initiative at Georgetown University from 2008-2009.

Salmonella: What We’ve Learned and Remaining Gaps in Detection and Mitigation

Barbara Masters

Barbara Masters, Vice President, Regulatory Policy, Food & Agriculture, Tyson Foods

Dr. Masters is the Vice President of Regulatory Policy, Food and Agriculture at Tyson Foods, Inc., where she provides regulatory vision and support for food safety and quality policies and procedures. She serves on the Board of Directors for the Partnership for Food Safety Education and the Steering Committee for the Global Food Safety Initiative. Dr. Masters spent nine years as a Senior Policy Advisor at Olsson Frank Weeda, where she worked closely to advise with the meat and poultry industry to ensure regulatory compliance, and served as Administrator of the USDA FSIS.

The Legal and Financial Risks of Food Safety Hazards

Bill Marler

Bill Marler, Food Safety Attorney, Marler Clark, The Food Safety Law Firm

An accomplished attorney and national expert in food safety, William (Bill) Marler has become the most prominent foodborne illness lawyer in America and a major force in food policy in the U.S. and around the world. Marler Clark, The Food Safety Law Firm, has represented thousands of individuals in claims against food companies whose contaminated products have caused life altering injury and even death.

Shawn Stevens, attorney with the Food Industry Counsel, LLC

Shawn Stevens

Stevens is a nationally recognized food attorney and founding member of the Food Industry Counsel who has dedicated his firm to “Going All-In for Food and All-Out for Those Who Produce It.” He works closely throughout the U.S. and abroad with food industry clients (including the world’s largest growers, processors, restaurant chains, distributors and grocers) helping them protect their brand by complying with FDA and USDA food safety regulations, reducing food safety risk, managing recalls, and defending high-profile food safety cases.

 

Mitigating the Risks of Salmonella and Listeria in Your Facility & Products

Sanjay Gummalla

Sanjay Gummalla, Vice President, Regulatory & Technical Affairs, American Frozen Food Institute

Gummalla has broad industry experience in food science, food safety, and nutrition. He is in the forefront of coordinating Listeria monocytogenes prevention and control programs and policy efforts on behalf of the frozen food industry. Prior to joining the American Frozen Food Institute, Gummalla served as VP of product development at Zentis NA. He currently serves on key committees representing the industry, including advisor on the U.S. Agricultural Trade Advisory Committee for Processed Foods, a committee member on IAFP’s Journal of Food Protection, President of the Capital Area Food Protection Association, and chair of the International Food Science Certification Commission.

Rashmi Rani, Senior Manager of Food Safety and Quality Assurance, Schwan’s Home Delivery

Rashmi Rani

Rani has more than 18 years of experience in the food and beverage industry. In her current role she manages food safety programs, QMS, SQF of Florence facility, USDA and FDA compliance, and training. She works with cross functional teams on continuous improvement projects including reduction of nonconformance product cost and rework cost reduction. Prior to joining Schwan’s, Rani worked with AB-Inbev, BakeCo, McCormick Inc. and Wornick food (Baxter’s North America).

 

Registration is now open

Application of Ozone for Decontamination of Fresh Produce

Al Baroudi

Al Baroudi, Ph.D., Vice President of Quality Assurance & Food Safety, The Cheesecake Factory

In addition to his current role, Dr. Baroudi has conducted workshops, published White Papers and introduced the HACCP program to developing countries on behalf of the U.S. government. He is the recipient of Borden’s “President Award”, the Sani “Food Safety Champion Award”, and the “Outstanding Food Safety Program Innovation Award,” and the Southern California IFT “Distinguished Achievement Award.” In 2022, NR News named, Dr. Baroudi as one of the top 50 most influential restaurant executives in the country, and The NRA presented him their inaugural Lifetime Achievement Award for “Outstanding Leader in Food Safety.” He was instrumental in passing the Food Facilities Sanitization Bill “AB 1427” in the California State Assembly that cleared the way for the ozone to be approved in California Cal Code (2012).

Ahmed Yousef, Ph.D., Department of Food Science & Technology, Ohio State University

Ahmed Yousef

Dr. Yousef earned his Ph.D. in Food Science from University of Wisconsin-Madison. He worked as a postdoctoral researcher at the University of Wisconsin-Madison before joining Ohio State as an Assistant Professor in 1991. Since the late 1990s, Dr. Yousef and his research team have worked to develop methods to pasteurize shell eggs and to decontaminate fresh produce while maintaining products’ fresh qualities. His ozone research led to developing methods to decontaminate spinach, apples, and other fresh produce. As a result of this research, Dr. Yousef established the largest ozone research laboratory in the U.S. at Ohio State.

Biofilm Prevention and Control Practices

Charles Giambrone

Charles Giambrone, Food Safety Manager, Rochester Midland

Giambrone received his M.S. degree in Microbiology from Rutgers University in 1978, where his research focus was applied and environmental microbiology. In his current and previous roles as VP & Sr. Technical Support Manager for Rochester Midland Corp, he provides applied research and technical support in the whole area of food safety and sanitation including processing and preparation, membrane cleaning, and water treatment systems plus supervision of R & D projects. Giambrone has a broad and in-depth expertise in the areas of hygiene, disinfection, and biocides. This includes working with systems to remove or prevent biofilm formation in food processing and water system lines as well as other applications.

View the full agenda and register here.

OSU_CFI Logo
Food Safety Think Tank

Food Safety Tech Hazards + CFI Think Tank Coming to Ohio April 3-5

By Food Safety Tech Staff
No Comments
OSU_CFI Logo

The Food Safety Tech’s Hazards Conference Series + CFI Think Tank, “Industry & Academia Advancing Food Safety Practices, Technology and Research,” will take place April 3-5, 2023, at Ohio State University in Columbus, Ohio.

The program brings together leading minds in industry, academia, standards and regulation to provide in-depth education and discussion on the most significant pathogenic and chemical risks facing the food industry today.

Building on the popularity of the Food Safety Tech Hazards virtual series, the in-person event will offer practical guidance and cutting-edge research on the detection, mitigation, control and regulation of the most significant foodborne illness risks.

The CFI Food Safety Think Tank on April 5 will bring food safety experts together to take a deeper look at the hazards discussed during the first two days of the conference. Participants will brainstorm in small groups to develop a roadmap on research, innovation, policy, and prevention measures that need to be taken to make our food supply safer in the future.

“Food safety hazards continue to be a challenge for all aspects of the food industry from farm to fork.” said Rick Biros, publisher of Food Safety Tech and director of the Food Safety Consortium conference and Food Safety Tech Hazards series. “The detection, mitigation and control of food safety hazards issues must be discussed among peers and best practices must be shared, something you can’t do virtually. The human connection is so important for conference attendees. Whether it’s a random connection over lunch, a one-on-one question with a speaker after a presentation or a seat next to a new friend in a learning session—connecting with others is what makes events so valuable. We are excited to bring this program, designed to help facilitate this much needed critical thinking and sharing of best practices, to OSU.”

Learn more and register here.

For sponsorship and exhibit inquiries, contact RJ Palermo, Director of Sales.

About Food Safety Tech

Food Safety Tech is a digital media community for food industry professionals interested in food safety and quality. We inform, educate and connect food manufacturers and processors, retail & food service, food laboratories, growers, suppliers and vendors, and regulatory agencies with original, in-depth features and reports, curated industry news and user-contributed content, and live and virtual events that offer knowledge, perspectives, strategies and resources to facilitate an environment that fosters safer food for consumers.

About Food Safety Tech Hazards

Launched in 2020, the Food Safety Tech Hazards series brings together industry leaders, researchers and regulators to provide in-depth education and discussion on the detection, mitigation, control and regulations of the most significant pathogenic and chemical risks facing the food industry today.

Wendy White

Understanding the True Purpose of Environmental Monitoring Programs

By Wendy Wade White
No Comments
Wendy White

 Salmonella and Listeria are among the most prevalent foodborne pathogens, causing untold illnesses and a significant number of recalls each year. Experts have determined that the source of this contamination often comes from the manufacturing facility. Five years ago, the FDA published, Draft Guidance for Industry: Control of Listeria Monocytogenes in Ready-To-Eat Foods (we’ve also been promised a similar guidance document for Salmonella). The Food Safety Modernization Act’s Preventive Controls for Human Foods also contains provisions for evaluation of environmental pathogens in a ready-to-eat hazard analysis.

Employee in cheese plant
A product’s risk level varies based on the amount of pre-packaging exposure to the environment and direct handling by employees.

The challenge with these pathogens is that they are often found in the surrounding environment, and once they enter a facility and become entrenched, these residential pathogens can cause sporadic contamination that is very hard to pinpoint. The best way to prevent this type of contamination is to design and implement a robust Environmental Monitoring Program (EMP), and many manufacturers have added these surveillance programs to their food safety systems.

Unfortunately, many do not understand that the true purpose of EMPs is to seek and destroy residential microorganisms of concern that are living inside facilities before they have a chance to proliferate and contaminate products. This key control involves swabbing surfaces around the facility in the hopes of finding any of these residential pathogens or spoilage organisms. Having a robust, written EMP that includes clear action levels for unsatisfactory results and corresponding corrective actions will help manage pathogen positives and mitigate disaster.

Defining the EMP Scope and Balancing Resources

When designing an EMP, it’s easy to understand how expensive they can become. The question is, “How extensive does your EMP really need to be?” It’s best to start with a risk assessment to understand the program size and then estimate a realistic budget.

These programs are more necessary for ready-to-eat facilities, especially ones in which the post-processed product is exposed to the environment before being safely packaged. Risk is determined by how much pre-packaging exposure the product receives, the amount of direct handling by employees, and the condition of the equipment and surrounding facility. Use this risk analysis to determine how much sampling must be done to properly survey the facility. The scope of the program (and therefore the budget) must be balanced with the risk (severity and likelihood) of contamination.

It is then important to understand the microorganism(s) of concern for your products, facility, and processes. For example, should you stick to true pathogen testing or indicator organisms, such as Aerobic Plate Count (APC or TPC), Enterobacter, or Total Coliform tests? If you do test for pathogens, Listeria is more appropriate for wet processing environments and Salmonella better for dry processing; you might need to test for both. Sometimes its beneficial to evaluate spoilage organisms, such as yeast and mold testing, depending on the risk. For example, a ketchup facility may be less worried about residential pathogens than osmophilic yeast.

Subscribe to the Food Safety Tech weekly newsletter to stay up to date on the latest news and information on food safety and quality.

Next, one must determine the frequency and number of swabs that should be taken. Most facilities are large and contain thousands of potential hiding spots for microorganisms. For this reason, understanding your facility’s risk and available resources, and prioritizing the swabbing site selection can help maximize efforts. Will a dozen swabs every quarter be sufficient? What is your level of confidence that the sampling program is sufficient to find any hidden biological hazards? Being logical about the target microorganisms and swab frequency/number can help control the budget and allow for better use of resources to accomplish the true EMP goal, minimizing risk to your product.

Creating an Acceptable Site List

Just as important as defining the microbe of concern and the frequency/number of swabs is creating a good site list. An EMP expert once advised to, “think like Salmonella.” Where is our target pathogen/microbe of concern most likely to be hiding? Factors to consider are potential ingress points (roof leaks, employee shoes), opportunities for travel (water/air flow points like drains, foot or wheeled traffic routes), and likely niches (cracks and crevasses). Also important are areas that are often missed by the sanitation crew due to inaccessibility.

Organizing surfaces into zones is a good means of prioritizing swabbing. Zone 1 (food-contact surfaces) and Zone 2 (surfaces adjacent to food-contact surfaces) are cleaned often and not as likely to harbor hidden caches of microbes. It’s important to conduct routine verification testing of these equipment surfaces to evaluate the performance of sanitation, but this is somewhat different than the true purpose of EMP, which is to seek and destroy residential biological hazards. Zone 3 surfaces (those inside production areas but not immediately near food-contact surfaces) are the best focus for an EMP site list, and most of the surface swabbing should be concentrated in these areas.

Consider areas within the facility that could harbor microorganisms and allow biofilms to develop. Cracks, areas regularly exposed to water, and places that are very hard to reach/clean are all likely candidates. These include underneath equipment frames, inside motor casings and pumps, deep inside drains, underneath ramps and stairs and inside air vents/AC units. Cast a wide net, ensuring that all areas are rotated through the swabbing list, while prioritizing the high-risk locations.

The main stumbling block that managers face when designing EMP is challenging themselves to find problems, because once you find an issue, you must deal with the consequences.

Having a Game Plan for Unsatisfactory Results

The best way to mitigate the fear of success (finding a residential pathogen or microbial issue) is to be prepared with an action plan. This starts by defining what constitutes an unacceptable result. Pathogen results are easy (the presence of a pathogen is always unsatisfactory) but the quantitative results from indicator organisms can be tricky. How high do your Enterobacter or yeast/mold results need to be before they trigger action? What is that action?

Family in grocery store
Environmental monitoring programs are most needed in facilities that process and package ready to eat foods.

It’s all too common for unsatisfactory swabs to reemerge a few weeks after initial corrective actions because the true source of the contamination wasn’t found. Requirements for EMP corrective actions are often limited to 1) Reclean 2) Reswab and 3) Retrain. This is extremely limited and doesn’t really address the root cause. Vector swabbing is a great tool to identify root cause, as well as conduct an evaluation of variables that could spread contamination. For example, Listeria found in a drain might have originated by an unsealed wall/floor junction, a perfect microbial niche. When the crack is flooded, the biofilm periodically releases fresh contamination to spread across the floor and into the original identified drain.

Different results should trigger different responses. Certainly, reclean/retest/retrain is a smart approach, but finding the true source of the contamination and taking steps to eliminate it is vital. This might involve special cleaning, such as fogging or hiring a consultant. It might require a redesign of equipment or replace and repair of damaged or vulnerable areas. Ensure that all unsatisfactory results involve an investigation, graph results to identify trends, and communication of findings to all appropriate stakeholders.

EMP Review and Reevaluation

EMP doesn’t have to be a static program, and there’s no “one-size fits all” approach. It’s recommended to design your program based on risk and the above-mentioned variables, implement, and monitor the results. If you never find unsatisfactory results, you might need to increase your frequency/number of swabs or reevaluate your site list. Are you properly challenging yourself? Are you REALLY trying to find problems or just going through the motions to satisfy some requirement? You know your products, facility, and employees and should be able to make these determinations. Don’t be afraid to revise your EMP as a result of historical data and changing variables inside the facility. This might involve increasing your frequency/number of swabs, but the reverse might also be appropriate. Sometimes EMP can be scaled back, and those resources better used elsewhere.

The best approach to a well-written EMP is to understand the scope by considering the risk and applicable variables, employing thoughtful and risk-based logic to the design, and planning for potential unsatisfactory results with thorough corrective actions. Be mindful the true purpose of Environmental Monitoring Programs, which is to seek and destroy harmful microorganisms of concern inside your facility. A robust EMP, coupled with proper training, implementation, monitoring/trending, and communication, will go a long way towards peace of mind that your facility isn’t harboring a potential, biological hazard threat.

 

Listeria
From the Editor’s Desk

Food Safety Tech Hazards Series Expands to In-Person Events in 2023

By Food Safety Tech Staff
No Comments
Listeria

For the past two years, Food Safety Tech, creator of the annual Food Safety Consortium conference, has been supporting FSQA professionals through its virtual Food Safety Tech Hazards Series.

Focused on the four core areas of food safety: detection, mitigation, control and regulation of risk, the series has addressed pathogens, pest control, and physical and chemical hazards facing the food industry.

The virtual conferences, which have attracted thousands of attendees, provide information on ongoing and emerging risks for both new and seasoned FSQA professionals, featuring speakers from industry, regulatory agencies and standards bodies.

In 2023, we are building on the popularity and success of these virtual events by expanding the Food Safety Tech Hazards Series to include two in-person events coming this spring and fall.

In 2022, salmonella– and listeria-related cases represented 37.4% of food and beverage product recalls, an uptick from 33.3% in 2021. “Food safety hazards continue to be a challenge for all aspects of the food industry from farm to fork.” said Rick Biros, president of Innovative Publishing Company, publisher of Food Safety Tech and director of the Food Safety Consortium conference. “The detection, mitigation and control of food safety hazards issues must be discussed among peers and best practices must be shared, something you can’t do virtually. The human connection is so important for conference attendees. Whether it’s a random connection over lunch, a one-on-one question with a speaker after a presentation or a seat next to a new friend in a learning session—connecting with others is what makes events so valuable. This year’s in-person events are designed to help facilitate this much needed critical thinking and sharing of best practices.”

“We look forward to bringing the Food Safety Tech Hazards series to an in-person audience in 2023,” said Inga Hansen, editor of Food Safety Tech. “This format will complement our virtual series and allow for the live discussion and networking that can only be achieved in person.”

Stay tuned for upcoming dates and registration.

 

Tyler Williams
FST Soapbox

A Nugget of Welcome News: USDA Adds Salmonella as a Chicken Adulterant

By Tyler Williams
No Comments
Tyler Williams

Chicken producers and processors must always pay close attention to listeria and E. coli. Their regulated to-market protocols incorporate intense testing and cleaning standards that help ensure the people who buy chicken sandwiches at fast casual restaurants, chicken fingers at sporting arenas and trays of fresh chicken legs at supermarkets don’t get sick.

The companies stay on top of listeria and E. coli because the USDA Food Safety and Inspection Service (FSIS) has considered them “adulterants,” or substances that should not be found in meat products, for decades. The federal agency banned listeria in 1987, and in 1994 listed E. coli as an adulterant in the wake of an E. coli outbreak at Jack in the Box restaurants that sickened 700 people in four states, and led to 171 hospitalizations and four deaths.

All along, however, another prominent bacteria, Salmonella, remained unregulated, despite its proclivity for making people ill—more than a 1.3 million cases of salmonellosis appear in the U.S. every year, leading to about 26,500 hospitalizations and roughly 400 deaths. It is the No. 1 cause for foodborne illness in the U.S., and most cases stem from chicken products.

But earlier this year the USDA announced that it now plans to consider Salmonella an adulterant in some chicken products. The matter is out for public comment now; if the USDA doesn’t change its clear intention to regulate Salmonella, federal food inspectors soon will be testing for it in select chicken products.

The chicken industry opposes the measure. In a news release issued shortly after the FSIS’ August announcement, the National Chicken Council (NCC) pointed toward the 1957 Poultry Products Inspection Act, which did not include Salmonella as an adulterant, as a set of standards worth upholding today.

Subscribe to the Food Safety Tech weekly newsletter to stay up-to-date on the latest news and information on food safety.

Well, a lot has changed in industrial agriculture during the past 65 years, and that includes a dramatic expansion of chicken farming and consumption across the country. In the 1950s, the average American ate about 16 pounds of chicken a year, compared to 56 pounds of beef and 50 pounds of pork. But by this year, Americans were eating close to 112 pounds of chicken a year, along with 56 pounds of beef and 50 pounds of pork. In terms of meat consumption, chicken now rules the roost. Regulating it might not have been necessary back when Dwight D. Eisenhower was president. But today I believe it most definitely is.

As a professional in the food safety industry, I champion the FSIS’ decision. It’s about time the agency added Salmonella to its list of adulterants; the bacteria causes far too much illness and death in the U.S. every year. Many of those cases could have been prevented through regulatory oversight.

Addressing Poultry Industry Concerns

It is true, as opponents of the proposed regulation argue, that Salmonella doesn’t always emerge in the processing plant; humans can inadvertently introduce the bacteria in their own kitchens. Why, the industry asks, should it be penalized for conditions outside of its control? In addition, proper cooking methods will kill Salmonella. If people don’t follow cooking directions on the packages of chicken they buy, and get sick from Salmonella as a result, the chicken industry believes it should not be held accountable.

On the first issue, it is unlikely that cases revolving around individual consumers introducing Salmonella to their chicken products would ever lead to penalties. Federal regulators scrutinize public health data for clusters of outbreaks, which often point toward entire product lines being infected with bacteria; isolated one-off cases, many of which indeed could be the result of human error, do not concern them.

For the second point, yes, people should read labels and closely follow cooking directions. But in my opinion, that is irrelevant; dangerous levels of Salmonella simply should not dwell in foods, and it’s the job of regulators to make sure food is safe.

Toy manufacturers, for example, must eliminate choking hazards from products designed for kids under 3 years, thanks to federal regulations. It shouldn’t be up to parents to constantly monitor their toddlers while they play with toys, to ensure they don’t gag on something potentially dangerous found on the stuffed giraffe.

Should the rule become policy, the FSIS will focus on just one category: stuffed, breaded and raw chicken products. These products, including dishes like chicken Kiev and chicken cordon bleu, often are heat-treated to set the batter or breading, but are not fully cooked. They have been associated with 14 outbreaks and about 200 illnesses since 1998.

This represents a solid start. Next, I’d like to see the FSIS pursue regulating Salmonella in other chicken products. Even if the agency doesn’t, however, many processors will have to implement new practices and testing procedures for all of their products anyway, as in many cases it won’t make sense to just incorporate new protocols within a few discrete product lines. Among other things, I would anticipate boosted commitments among producers and processors to cleaning and sanitation processes, environmental monitoring (probably the most important pursuit) and overall facility food safety measures.

Will this action by the FSIS completely eliminate Salmonella from the targeted products? Absolutely not. The rule sets a maximum threshold for Salmonella in the food the agency tests; in many cases, chicken products that contain negligible amounts of the bacteria will still make it to market. It’s just products containing dangerous amounts of Salmonella that will be subject to penalties.

Food safety serves as one of the foundations of a healthy society. It also reinforces and bolsters public trust in the products consumers buy, which nurtures and strengthens the entire food industry. With this proposed Salmonella rule by the USDA, the U.S. takes another important step toward ensuring the health of its citizens, and further enhancing consumer trust in the chicken products they buy.

chicken, beef, dairy, lettuce

Foodborne Illness Report Highlights High-Risk Food Categories

By Food Safety Tech Staff
No Comments
chicken, beef, dairy, lettuce

This month, the Interagency Food Safety Analytics Collaboration’s (IFSAC) released it newest annual report , “Foodborne illness source attribution estimates for 2020 for SalmonellaEscherichia coli O157, and Listeria monocytogenes using multi-year outbreak surveillance data, United States.” IFSAC is a collaboration between the CDC, FDA and USDA Food Safety and Inspection Service (FSIS).

The report was developed to help shape the priorities of the FDA, inform the creation of targeted interventions to reduce foodborne illnesses caused by these pathogens, inform stakeholders and improve regulatory agency’s to assess whether prevention measures are working.

The report identified 3,749 outbreaks that occurred from 1998 through 2020 and were confirmed or suspected to be caused by Salmonella, E. coli O157, or Listeria, including 192 outbreaks that were confirmed or suspected to be caused by multiple pathogens or serotypes.

The IFSAC excluded 96 of these outbreaks according to its pathogen-exclusion criteria, leaving 3,653 outbreaks. The agency further excluded 1,524 outbreaks without a confirmed or suspected implicated food, 836 outbreaks for which the food vehicle could not be assigned to one of the 17 food categories, and six that occurred in a U.S. territory.

The resulting dataset for the report included 1,287 outbreaks in which the confirmed or suspected implicated food or foods could be assigned to a single food category. These included 960 caused or suspected to be caused by Salmonella, 272 by E. coli O157 and 55 by Listeria. Outbreaks from 2016 through 2020 provide 71% of model-estimated illnesses used to calculate attribution for Salmonella, 67% for E. coli O157 and 62% for Listeria.

Salmonella illnesses came from a wide variety of foods, with more than 75% of illnesses attributed to seven food categories: Chicken, Fruits, Pork, Seeded Vegetables (such as tomatoes), Other Produce (such as fungi, herbs, nuts, and root vegetables), Beef and Turkey.

More than 80% of E. coli O157 illnesses were linked to Vegetable Row Crops (such as leafy greens) and Beef.

More than 75% of Listeria monocytogenes illnesses were linked to Dairy products, Fruits and Vegetable Row Crops, though the IFSAC noted that “the rarity of Listeria monocytogenes outbreaks makes these estimates less reliable than those for other pathogens.”

Attribution estimates for Campylobacter outbreaks were not included in this year’s report, though they have been included in the past. IFSAC said that this was “due to continued concerns about the limitations of using outbreak data to attribute Campylobacter illnesses to sources … these concerns are largely due to the outsized influence of outbreaks in certain foods that pose a high individual risk for Campylobacter infection but do not represent the risk to the general population.” For example, 91% of reported Campylobacter outbreaks related to dairy products were associated with unpasteurized milk, while 57% majority of chicken-related outbreaks were due to chicken liver products, which are not widely consumed.

enokie mushrooms

Bulb Onions and Imported Mushrooms Focus of New FDA Food Safety Prevention Strategies

By Food Safety Tech Staff
No Comments
enokie mushrooms

The FDA has announced two new food safety prevention strategies. The first is for imported enoki and wood ear mushrooms. The second is focused on bulb onions. Both food groups were identified in foodborne illness outbreaks in 2020.

In 2020, a multistate outbreak of Listeria monocytogenes (L. monocytogenes) infections that sicked 26 people was linked to the consumption of imported enoki mushrooms. Testing conducted by the California Department of Public Health (CDPH) identified a matching strain of L. monocytogenes in enoki mushrooms from the Republic of Korea.

Also in 2020, CORE, in collaboration with the CDC and state and local partners, investigated a multistate outbreak of Salmonella Stanley infections linked to the consumption of imported wood ear mushrooms. A total of 55 salmonellosis illnesses were reported in 12 states. Testing conducted by CDPH identified a matching strain in a sample of imported wood ear mushrooms from China. These were the first outbreaks reported to FDA in 20 years related to these products.

As a result of the outbreak findings, the FDA will conduct research to better understand how L. monocytogenes contaminates enoki mushrooms and to better understand the survival of L. monocytogenes and Salmonella on enoki mushrooms and wood ear mushrooms.

The agency will also increase strategic and targeted FDA sampling of imported specialty mushrooms at U.S. ports of entry and at U.S.-based retail sites on the state level. When specific producers are linked to the contaminated shipment, FDA may also detain future shipments until the producer can assure the FDA that the conditions that gave rise to the appearance of the violation have been resolved.

The FDA will also be working with industry to ensure international specialty mushroom producers have access to training intended to help them meet requirements for ensuring the safe production of mushrooms for import into the U.S.

Bulb Onions

In 2020 and 2021, Salmonella outbreaks associated with the consumption of bulb onions produced in the U.S. and Mexico caused more than 2,100 confirmed cases of foodborne illness in the United States.

As a result of the outbreak investigation, the FDA will engage domestic and foreign industry and government partners to promote a broad understanding of the outbreak investigation findings, applicable Produce Safety Rule requirements and the importance of root cause analysis after outbreaks.

Additional actions under the new safety prevention strategy include:

  • Prioritizing inspections of bulb onion farms in the U.S. and Mexico that are covered by the FDA’s Produce Safety Rule.
  • Identifying and assessing practices and conditions associated with onion curing.
  • Supporting research efforts to better understand bulb onion production practices, including the impact of different soil conditions and curing practices on the safety of bulb onions.
  • Supporting industry-led efforts to develop and implement best practices for bulb onion production.
  • Prioritizing Foreign Supplier Verification Program inspections of bulb onion importers to ensure that onion importers are verifying that foreign suppliers follow processes and procedures that provide the same level of public health protection as U.S. food safety requirements.
  • Increasing strategic and targeted sample collection and testing of imported bulb onions from the State of Chihuahua, Mexico.
  • Continuing to collaborate with Mexican competent authorities through the established Food Safety Partnership to help ensure the safe production of bulb onions in the State of Chihuahua, Mexico.

 

Listeria

Thermo Scientific SureTect Listeria PCR Assays Granted AOAC Official Methods First Action

Listeria

A poster by Thermo Scientific presented ay the 2022 IAFP Conference in August showed validation methods of the company’s SureTect Listeria monocytogenes and Listeria species PCR Assays, which led to AOAC recognition for official method of first action.

For the unpaired collaborative study, Evangelos J Vandoros, et al, compared the SureTect Listeria PCR Assays Method to the method outlined in the FDA-Bam Chapter 10. The matrix used for the study was full-fat cottage cheese with a test portion of 25g.

The researchers validated both SureTect Listeria PCR Assays (Listeria species and Listeria monocytogenes) in this study, as they follow the same method protocol and are validated for the same matrices.

Outcomes showed consolidated dLPOD data from 12 collaborators for the SureTect Listeria PCR methods and the FDA-BAM Chapter 10 reference method. The data was within confidence intervals showing that there was no significant difference between the SureTect methods and the reference method. The time to result was less than 24 hours.

Based on these findings, the SureTect Listeria monocytogenes and Listeria species PCR Assays were both granted AOAC Official Methods First Action

The validated categories for the assays include milk and dairy, fresh produce, seafood, raw meat, ready to eat/reheat and environmental,