Tag Archives: accuracy

Megan Nichols
FST Soapbox

Four Influential Technologies Changing Food Manufacturing

By Megan Ray Nichols
No Comments
Megan Nichols

Some impressive technologies are not only impacting the food industry right now but will also have a huge impact in the future. As their use grows to be more prevalent, the industry will change to be smarter and more efficient, with continued improvements across the board.

1. AI and Advanced Robotics

While artificial intelligence and advanced robotics are two distinct technologies, they are frequently paired together. AI, and the data it digests, is used to command robots, allowing them to be more precise, more intelligent and more aware.

Most robots on their own are capable of completing only repetitive and clearly defined tasks. Throw something unique into the mix and they’ll either fumble or fail. However, when governed by data-based intelligence solutions like AI or machine learning, those robots become something incredibly advanced.

In the food industry, machinery and robots are leveraged to improve operations, further maintaining quality and efficiency, at affordable costs. They often work alongside human laborers to augment or enhance processes. They come with several unexpected benefits as well, such as much-improved safety for workers, faster and higher product output and consistent, reliable quality.

For example, JBS, one of the world’s largest meatpacking firms, deployed robotic butchers within its plants. The robots were used to slice more challenging meats, which reduced workplace injuries.

2. Automation

Automation stands alongside AI and advanced robotics, even incorporating those technologies to create a streamlined system. As of 2017, 73% of surveyed companies in the food and beverage manufacturing industry either had or were in the process of establishing automation within their facilities.

Many systems are designed to replace or enhance repetitive tasks, boosting their speed and accuracy, to significantly improve output, without incurring a loss in quality. It’s not just about hardware, like swapping a human laborer for a robot. It’s also achieved through software. Think supply chain management solutions that help plan for various events and experiences without human input.

When many of these technologies are used side-by-side, it strengthens their application and usability. As is true of advanced robotics, for example, AI can also be used to create more intelligent automation platforms. Instead of carrying out rote or simple tasks, they can be programmed to react and engage through any number of parameters. The system might slow production, for instance, based on a decrease in product demand. Or, it might swap to an alternate component or ingredient because of a shortage somewhere.

With the right controls and support, automation technologies are game-changing. With the global population growing and demands increasing more with each year, food manufacturers will look to streamline their operations and boost output in any way possible, and automation will be a go-to.

3. Digital Twins

Digital twins in food manufacturing are essentially simulated copies or a virtual representation of a physical system. That definition might seem confusing, but think of it as a clone that can be manipulated for testing and analytics.In other words, it is a twin of the actual system and information, in every sense of the word, albeit one that is more versatile and less vulnerable. It allows manufacturers and distributors to run simulations by feeding specific information into the system to identify patterns, recognize outcomes and much more.

As the systems and controls supporting the field become smarter and more digitized, digital twins in food manufacturing will find their way into product development, testing, post-production, distribution and nearly every other facet of the industry. It will become an integral component to not only understand what’s happening in the market but also for keeping up with the ebb and flow of supply and demand.

4. Blockchain

Even well before the pandemic, people had become much more conscious about the foods they consume. They want to know the origin of their goods and whether they’ve been sourced using safe, healthy and environmentally friendly methods. The problem with such demands is that, until recently, there haven’t been many solutions for increased visibility within the food supply chain.

Growing concerns for health are now a priority, and visibility is an absolute must. Blockchain technology is the answer, providing precisely the kind of visibility, efficiency, controls and collaboration that consumers want.

With this food manufacturing technology in place, someone could trace a head of lettuce back to its initial seeding. They can see who grew the plants and where, and which methods they used to mature the crop. Then, they can follow its journey to the store shelf.

How is such a thing possible? It all has to do with the technology. In its simplest form, Blockchain is a digital ledger or complete and digitized record of a particular data set. The data that goes in is added to something called a block, and as more is added, it is tacked on to the end of that block to create a long, linked record. Every bit of information is visible across the entire chain, hence the name blockchain.

Walmart is using the technology to track potential food contamination outbreaks. It empowers them to not just find the source but also find the many branches involved — like where goods might have been shipped and who may have purchased them.

Food Manufacturing Technology for the Future

While each food manufacturing technology discussed here is incredibly influential and will have a direct impact on the future of the industry, they are not the only solutions making waves. Some additional examples include:

  • Drones and automated delivery vehicles
  • 3-D printing for edible goods
  • Smart or precision agriculture
  • High-tech packaging
  • Smarter waste disposal and recycling

The takeaway is that technology is vastly improving the operational efficiency of the food supply chain, from farmers and manufacturers to the retail stores featuring goods on their shelves. There’s no right or wrong buy-in, as any one of these technologies can be used to streamline separate processes. The biggest challenge will be deciding what to upgrade first, especially when it comes to delivering high-quality, fresh goods in a prompt manner.

Are Traasdahl, Crisp
FST Soapbox

How a History of Slow Technology Adoption Across Food Supply Chains Nearly Broke Us

By Are Traasdahl
1 Comment
Are Traasdahl, Crisp

The COVID-19 crisis has exacerbated existing disconnects between food supply and demand. While some may be noticing these issues on a broader scale for the first time, the reality is that there have been challenges in our food supply chains for decades. A lack of accurate data and information sharing is the core of the problem and had greater impact due to the pandemic. Outdated technologies are preventing advancements and efficiencies, resulting in the paradox of mounting food insecurity and food waste.

To bridge this disconnect, the food industry needs to implement innovative AI and machine learning technologies to prevent shortages, overages and waste as COVID-19 subsides. Solutions that enable data sharing and collaboration are essential to build more resilient food supply chains for the future.

Data-sharing technologies that can help alleviate these problems have been under development for decades, but food supply chains have been slow to innovate compared to other industries. By reviewing the top four data-sharing technologies used in food industry and the year they were introduced to food supply chains, it’s evident that the pace of technology innovation and adoption needs to accelerate to advance the industry.

A History of Technology Adoption in the Food Industry

The Barcode – 19741
We’re all familiar with the barcode—that assemblage of lines translated into numbers and letters conveying information about a product. When a cashier scans a barcode, the correct price pops up on the POS, and the sale data is recorded for inventory management. Barcodes are inexpensive and easy to implement. However, they only provide basic information, such as a product’s name, type, and price. Also, while you can glean information from a barcode, you can’t change it or add information to it. In addition, barcodes only group products by category—as opposed to radio-frequency identification (RFID), which provides a different code for every single item.

EDI First Multi-Industry Standards – 19812
Electronic data interchange (EDI) is just what it sounds like—the concept of sharing information electronically instead of on paper. Since EDI standardizes documents and the way they’re transferred, communication between business partners along the supply chain is easier, more efficient, and human error is reduced. To share information via EDI, however, software is required. This software can be challenging for businesses to implement and requires IT expertise to handle updates and maintenance.

RFID in the Food Supply Chain – 20033
RFID and RFID tags are encoded with information that can be transmitted to a reader device via radio waves, allowing businesses to identify and track products and assets. The reader device translates the radio waves into usable data, which then lands in a database for tracking and analysis.

RFID tags hold a lot more data than barcodes—and data is accessible in remote locations and easily shared along the supply chain to boost transparency and trust. Unlike barcode scanners, which need a direct line of sight to a code, RFID readers can read multiple tags at once from any direction. Businesses can use RFID to track products from producer to supplier to retailer in real time.

In 2003, Walmart rolled out a pilot program requiring 100 of its suppliers to use RFID technology by 2005.3 However, the retail giant wasn’t able to scale up the program. While prices have dropped from 35–40 cents during Walmart’s pilot to just 5 cents each as of 2018, RFID tags are still more expensive than barcodes.4 They can also be harder to implement and configure. Since active tags have such a long reach, businesses also need to ensure that scammers can’t intercept sensitive data.

Blockchain – 20175
A blockchain is a digital ledger of blocks (records) used to record data across multiple transactions. Changes are recorded in real-time, making the history unfalsifiable and transparent. Along the food supply chain, users can tag food, materials, compliance certificates and more with a set of information that’s recorded on the blockchain. Partners can easily follow the item through the physical supply chain, and new information is recorded in real-time.

Blockchain is more secure and transparent, less vulnerable to fraud, and more scalable than technologies like RFID. When paired with embedded sensors and RFID tags, the tech offers easier record-keeping and better provenance tracking, so it can address and help solve traceability problems. Blockchain boosts trust by reducing food falsification and decreasing delays in the supply chain.6

On the negative side, the cost of transaction processing with blockchain is high. Not to mention, the technology is confusing to many, which hinders adoption. Finally, while more transparency is good news, there’s such a thing as too much transparency; there needs to be a balance, so competitors don’t have too much access to sensitive data.

Cloud-Based Demand Forecasting – 2019 to present7
Cloud-based demand forecasting uses machine learning and AI to predict demand for various products at different points in the food supply chain. This technology leverages other technologies on this list to enhance communication across supply chain partners and improve the accuracy of demand forecasting, resulting in less waste and more profit for the food industry. It enables huge volumes of data to be used to predict demand, including past buying patterns, market changes, weather, events and holidays, social media input and more to create a more accurate picture of demand.

The alternative to cloud-based demand forecasting that is still in use today involves Excel or manual spreadsheets and lots of number crunching, which are time-intensive and prone to human error. This manual approach is not a sustainable process, but AI, machine learning and automation can step in to resolve these issues.

Obtaining real-time insights from a centralized, accurate and accessible data source enables food suppliers, brokers, distributors, brands and retailers to share information and be nimble, improving their ability to adjust supply in response to factors influencing demand.8 This, in turn, reduces cost, time and food waste, since brands can accurately predict how much to produce down to the individual SKU level, where to send it and even what factors might impact it along the way.

Speeding Up Adoption

As illustrated in Figure 1, the pace of technology change in the food industry has been slow compared to other industries, such as music and telecommunications. But we now have the tools, the data and the brainpower to create more resilient food supply chains.

Technology adoption, food industry
Figure 1. The pace of technology change in the food industry has been slow compared to other industries. Figure courtesy of Crisp.

Given the inherent connectivity of partners in the food supply chain, we now need to work together to connect information systems in ways that give us the insights needed to deliver exactly the rights foods to the right places, at the right time. This will not only improve consumer satisfaction but will also protect revenue and margins up and down food supply chains and reduce global waste.

References

  1. Weightman, G. (2015). The History of the Bar Code. Smithsonian Magazine.
  2. Locken, S. (2012). History of EDI Technology. EDI Alliance.
  3. Markoff, R, Seifert, R. (2019). RFID: Yesterday’s blockchain. International Institute for Management Development.
  4. Wollenhaupt, G. (2018). What’s next for RFID? Supply Chain Dive.
  5. Tran, S. (2019). IBM Food Trust: Cutting Through the Complexity of the World’s Food Supply with Blockchain. Blockchain News.
  6. Galvez, J, Mejuto, J.C., Simal-Gandara, J. (2018). Future Challenge on the use of blockchain for food traceability analysis. Science Direct.
  7. (2019). Crisp launches with $14.2 million to cut food waste using big data. Venture Beat.
  8. Dixie, G. (2005). The Impact of Supply and Demand. Marketing Extension Guide.
Melanie Neumann, Neumann Risk Services
FST Soapbox

The COVID-19 Record Retention Conundrum

By Melanie Neumann, JD, MS
2 Comments
Melanie Neumann, Neumann Risk Services

During this global pandemic, the U.S. Equal Employment Opportunity Commission (EEOC) green-lighted employers to take temperatures checks of employees and to administer COVID-19 testing for workers prior to returning to work without running afoul of the Americans with Disabilities Act (ADA). This appears straight-forward upon first reading, however, several practical uncertainties about implementation, including confidentiality, discrimination, and how long to retain records remain.

As such, deciding whether to take temperatures and/or require COVID- 19 testing as a return to work strategy is more complicated than it may seem.

Temperature Screening & Testing Considerations

Temperature screening and COVID-19 mandatory testing are both permitted medical examinations during this pandemic but are otherwise prohibited during non-pandemic times. Before adopting, employers should understand the requirements impacting the records these tests generate, including the need to protect confidentiality and to retain records for longer than one may expect.

Temperature Screens
Under normal circumstances, temperature checks are considered a prohibited medical examination under the ADA. During a pandemic, however, the Equal Employment Opportunity Commission (“EEOC”) makes an exception, allowing employers to take temperatures/use temperature checks and exclude employees from the workplace should temperatures exceed public health recommendations. If employers keep records of temperatures, they must retain these records per applicable regulations. This is important because an “employee medical record” would likely result if employers take employees’ temperatures or collect temperature related records. As we will see below, there are regulatory requirements that require how we conduct these screens, and where and for how long we must retain them.

COVID-19 Testing

COVID-19 testing also constitutes a permissible medical exam under ADA during this pandemic, per the EEOC-issued guidance regarding mandatory employee testing.

For medical examinations to be allowed under the ADA, the test must be “job related and consistent with business necessity,” and employers must treat information as a confidential medical exam.

The initial guidance acknowledged that the spread of COVID-19 is a “direct threat,” hence meeting the requirement that a medical exam be “job related and consistent with business necessity” and that temperature screenings were therefore appropriate. For the same reasons, in updated guidance released at the end of April 2020, the EEOC expanded that guidance to clarify that employers may choose to administer COVID-19 testing to employees before they enter the workplace to determine if they have the virus for the same reasons.

When reading the EEOC’s language closely, the permission granted by EEOC appears to be for diagnostic tests, as the guidance states testing is to determine if employees have the virus before allowing employees to return to work. It is unclear whether antibody testing is included in the above analysis because antibody tests do not determine if someone is currently infected.

In addition, there are other considerations employers should assess before adopting a testing protocol. EEOC reminds employers that they must review the accuracy and efficacy of the selected test per FDA and CDC recommendations. Moreover, pragmatic considerations, such as how to maintain social distancing and employee privacy, determining who will perform the testing and at what the frequency, not to mention evaluating whether there is enough test capacity to perform employee-wide testing at a meaningful cadence should be evaluated.

Records Management & Retention

There is another often over-looked question: What do employers do with documented test records? This question applies whether the employer conducts the test, requires tests from employee’s healthcare providers to be off work to self-isolate, or as a return to work requirement.

It was clearly outlined above that temperature records and COVID-19 test records constitute employee medical records. Why is this important? Because there are specific requirements relating to employee medical records, including what appears to be a surprisingly long retention requirement.

Where to retain: An employer should store all medical information related to COVID-19 in existing medical files, separate from the employee’s personnel file, per the ADA, limiting access to this employee confidential information. This includes an employee’s statement that he has COVID-19 or suspects he/she has the disease, or the employer’s notes or other documentation from questioning an employee about symptoms.

How long to retain: That is the 30-year question. The Department of Labor’s Occupational Safety and Health Agency (OSHA) provides retention requirements for employee medical records in certain situations for a period of an employee’s employment plus 30 years.

While COVID-19 test results and temperature screening documentation are deemed medical examinations under the applicable regulations, are the documented results deemed medical records? We turn to applicable EEOC OSHA regulations in section 1910.1020 for answers.

OSHA Requirements

The OSHA general duty clause, section 5(a)(1) requires employers to furnish to each of its employees a workplace free from recognized hazards that are causing or likely to cause death or serious physical harm. COVID-19 appears to rise to this threat level. But is that fact alone dispositive to falling under the applicable OSHA retention requirements?

OSHA regulation section 1910.1020 requires employers to retain employee exposure or employee medical records relating to employee exposure to certain hazards. This section applies to each general industry, maritime and construction employer who makes, maintains, contracts for, or has access to employee exposure or medical records, or analyses thereof, pertaining to employees exposed to toxic substances or harmful physical agents (Emphasis added).

Is SARS-CoV-2, the virus that causes COVID-19, considered a “toxic substance or harmful physical agent?”

Most would quickly assume the answer is ‘yes’. But it may not be as clear as the black and white letter of the law would hope. Let’s review some key definitions in the applicable regulation to help shed more light on this question.

What are Toxic Substances or Harmful Physical Agents?

The record retention requirement pivots on the last phrase of 1910.1020, that is “…pertaining to employees exposed to toxic substances or harmful physical agents.”

Toxic substances or harmful physical agents are defined as follows;

  • 1910.1020(c)(13) “Toxic substance or harmful physical agent” means any chemical substance, biological agent (bacteria, virus, fungus, etc.), or physical stress (noise, heat, cold, vibration, repetitive motion, ionizing and non-ionizing radiation, hypo – or hyperbaric pressure, etc.) which:
    • 1910.1020(c)(13)(i) is listed in the latest printed edition of the National Institute for Occupational Safety and Health (NIOSH) Registry of Toxic Effects of Chemical Substances (RTECS) which is incorporated by reference as specified in Sec. 1910.6; or
    • 1910.1020(c)(13)(ii) has yielded positive evidence of an acute or chronic health hazard in testing conducted by, or known to, the employer; or
    • 1910.1020(c)(13)(iii) is the subject of a material safety data sheet kept by or known to the employer indicating that the material may pose a hazard to human health. (Emphasis added by author).

The use of “or” clarifies that only one of the criteria need to be met. Based on the above, while subsections (c)(13)(i) and (c)(13)(iii) do not appear relevant, subsection (c)(13)(ii) appears to apply as SARS-CoV-2 has shown to result in acute health hazard, resulting in the disease COVID-19. Whether there is a chronic health impact remains to be seen given the novelty of this virus. That said, acute health impact appears sufficient to determine SARS-CoV-2 as a “toxic substance or harmful physical agent” for purposes of this analysis.

This alone doesn’t automatically place an employer in a 30-plus year requirement to retain employee medical records. What constitutes an “employee medical record” and “employee exposure record” for purposes of this regulation must be further understood before determining appropriate retention.

What are Employee Medical Records and Employee Exposure Records?

“Employee medical records” are defined in section 1910.1020(c)(6), and means a record concerning the health status of an employee that is made or maintained by a physician, nurse or other healthcare personnel, or technician, including: Medical and employment questionnaires or histories, the results of medical exams, lab test results, medical opinions/doctor’s recommendations, first aid records, employee medical complaints, and descriptions of treatment or prescriptions.

Section 1910.1020(d)(1)(i) goes on to specifically prescribes a minimum of a 30-plus year retention period as follows: “The medical record for each employee shall be preserved and maintained for at least the duration of employment plus thirty (30) years.”

“Employee exposure records,” are defined in subsection 1910.1020(d)(1)(ii), as: “Each employee exposure record shall be preserved and maintained for at least thirty (30) years,…”. Some exceptions are listed in this subsection for records relating to health insurance claims, first aid records and records relating to employees working less than one year.

What Constitutes Employee Exposure?

One must also look at what “employee exposure” means in light of this regulatory requirement to determine applicability of the 30-plus year retention.

1910.1020(c)(8) defines “exposure” or “exposed” to mean that an employee is subjected to a toxic substance or harmful physical agent in the course of employment through any route of entry (inhalation, ingestion, skin contact or absorption, etc.), and includes past exposure and potential (e.g., accidental or possible) exposure, but does not include situations where the employer can demonstrate that the toxic substance or harmful physical agent is not used, handled, stored, generated, or present in the workplace in any manner different from typical non-occupational situations.

More Questions than Answers

This analysis may leave more questions than answers, as several questions remain after looking closely at the regulatory requirements. For example:

  • How can an employee prove that exposure to SARS-CoV-2 occurred in the course of employment?
  • Does the employee even have to? The regulation clearly states that it is the employer’s burden, in that the “employer demonstrate that a toxic substance or harmful physical agent was not present in the workplace in any manner different from typical, non-occupational situations”.
  • How can an “employer demonstrate” that the harmful physical agent was not present? In other words, how can employers demonstrate that its employees are at any greater exposure by coming to work than they are in their every day lives, like going to the grocery store?
  • How do employers prove absence? Is it even possible given several people are asymptomatic?
  • Does this analysis differ by food industry sectors? What about meat and poultry processors with known high rates of infection in their workplace? Would the analysis differ?

Conclusion

Short of additional guidance issued by Department of Labor’s OSHA, ultimately this will likely be decided by the courts when the first lawsuit on this topic arises, known as decision via case law. What do employers do in the interim while these shades of gray are not yet adjudicated? It is recommended to err on the side of caution. Find ways to adjust your company’s record retention procedures and systems to be able to accurately retain these records for the duration of your employee’s employment plus 30 years.

Resources

  1. OSHA Laws & Regulations. OSH Act of 1970. SEC 5. Duties. Retrieved from https://www.osha.gov/laws-regs/oshact/section5-duties
  2. OSHA Standards. Part 1910, Standard 1910.1020. Retrieved from https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.1020
  3. OSHA. Access to Medical and Exposure Records. (2001). U.S. Department of Labor, OSHA. Retrieved from https://www.osha.gov/Publications/pub3110text.html
  4.  U.S. Equal Employment Opportunity Commission. “What You Should Know About COVID-19 and the ADA, the Rehabilitation Act, and Other EEO Laws”. (Updated May 7, 2020). Retrieved from https://www.eeoc.gov/wysk/what-you-should-know-about-covid-19-and-ada-rehabilitation-act-and-other-eeo-laws. See A. 6 and B.1.
Angela Fernandez, GS1
Retail Food Safety Forum

Can We See Some ID?

By Angela Fernandez
No Comments
Angela Fernandez, GS1

Several leading consumer packaged goods (CPG) brands and retailers started collaborating last year to address an issue growing larger by the day—inaccurate product data in the supply chain. They have challenged themselves to better serve customers who are shopping for their groceries more and more with smartphone in hand or shopping online. These companies worked together with the common understanding that standardization is imperative to have a consistent view of product data across the supply chain.

Verified GS1
A new, global cloud-based registry that will help trading partners confirm the unique identity of products. Image courtesy of GS1.

The group led by GS1 and the Consumer Goods Forum focused on the root causes of bad data in the retail grocery industry. Verified by GS1— a new, global cloud-based registry that will help trading partners confirm the unique identity of products—resulted from these discussions. It will serve as a single source for retailers, marketplaces and the solution providers they work with to automatically check core product attributes to help ensure the integrity of product listings.

For these recipients to access trusted data through this registry platform, brands must first provide seven core attributes for an “identification card” for products, similar to the identification card you carry around in your wallet. Much like eye color, hair color and height, products have attributes used by retailers to confirm the product is what a brand says it is. Each one provides a layer of trust to help increase efficiency and accuracy in the supply chain.

Let’s break down the importance of these attributes and learn why they are essential to confirm a product’s unique identity.

The Identification Number

Global Trade Item Number (GTIN) is used to uniquely identify a trade item in the global supply chain. This number is encoded into the U.P.C. barcode used at the point of sale or can be included in online product listings.

The GTIN plays a critical role in a product’s identity due to the way it is constructed. The brand owner selling the product is identified in the number itself in the form of a company prefix, the first few numbers of the GTIN. But over the years, erroneous numbers have plagued the CPG industry. A prefix that has four zeros, for example, is an indicator that the GTIN is not unique and might have been the result of human error. Also, some brand owners have found that GTINs were “borrowed” from other products during the setup process, resulting in duplicate GTINs in the supply chain, often tied to very different products. The GTIN is the key piece of information for a retailer to know they are working with a reputable company and can confidently add a product to their offering.

The Essential Descriptors

Brand name is another important part of a product’s identity, especially in relation to its GTIN. Verified by GS1 will provide a way for brands and retailers to make sure the right brand name is used in connection with the right GTIN. GS1 worked with member companies to set forth a common definition for brand name to increase consistency in the supply chain. It is a name provided by the brand owner that is intended to be recognized by the consumer as represented on the product.

Let’s say your company makes jam. The brand name would be Sticky’s Traditional, because that is what’s recognizable by the consumer. Some contributors to Verified by GS1 were surprised to find extreme inconsistencies with brand names in their backend systems, which caused confusion for consumers who searched online for familiar keywords and came up with nothing.

Product description is defined as a description of a product using a combination of key elements familiar to consumers, such as flavor or scent. The description should be unique so that consumers can properly distinguish it from other products. In our jam example, the product description is just what it sounds like it would be: Sticky’s Traditional Raspberry Jam, Low Sugar, 18 oz.

Front-facing product, product identifcation
An example of a standard, front-facing product image URL. Image courtesy of GS1.

Much like your driver’s license describes what you look like through eye color, hair color, or whether or not you wear glasses, the product description is what the consumer can visually confirm when they look at the package. Another key attribute in the Verified by GS1 identification card, the product image URL, serves the same purpose. A standardized product image clearly depicts the product being sold, and the industry can now align on a common naming convention for the image as well as how to communicate the image to trading partners.

The Necessary Technical Components

The three remaining parts of the product’s ID card are the components of identification most important for machines to read and understand and are less sought-after by consumers. Global product category, for example, is a classification code developed in accordance with GS1 Standards that provides buyers and sellers a common language for grouping products in the same way. It could be used as classifying option for consumers shopping online. In our jam example, the global product category is “10000581 – Food Glazes (Shelf Stable).”

Net content and unit of measure are essential to commonly represent a product’s weights and dimensions. This attribute makes it clear that metrics and units of measure go hand-in-hand—our jar of jam cannot just say NET 18. It needs to say it weighs NET 18 OZ. Either of these attributes independent of each other are red flags that the data is erroneous.

Country of sale or target market are used interchangeably and both indicate the location where the product is being sold. For multinational companies selling products in more than one country, this becomes important to ensure the right language is on the right product packaging to match the target market where it is being sold. For example, one product that has French on its packaging should signify France as its country of sale/target market, while an identical product with German on its packaging should be coded for Germany.

All seven attributes are pieces of information deemed important to consumer satisfaction and serve as a jumping off point for the transparency initiatives being demanded by consumers. While it is only just ramping up in the retail grocery industry now, Verified by GS1 is designed to help several different types of industries confirm product identity. It has the potential to significantly improve the foundational data that will only grow in importance as more consumers shop digitally.

Ultimately, as more data is shared consistently according to standards, incremental progress will be made toward the ultimate goal of cementing the trust of consumers, no matter where and how they encounter information about the products they purchase.

Doug MacDonald, Oracle Retail
Retail Food Safety Forum

To Protect Food Quality, Start With the Data

By Doug Macdonald
No Comments
Doug MacDonald, Oracle Retail

Last month, the FDA held a public meeting to discuss its New Era of Smarter Food Safety initiative, with a rallying call to create a more “digital, traceable and safer food system.”

FDA Deputy Commissioner for Food Policy and Response Frank Yiannas made it clear that the FDA is not replacing FSMA. Rather, the goal is to build on it, recognizing changes in the food industry over the last 10 years and the technologies available to tackle new challenges.

This isn’t surprising given continuing quality issues resulting in food recalls and shelf withdrawals. Last year, two major outbreaks of E. coli that were tied to consumption of romaine lettuce made a mark on industry perceptions, impacting customer trust, brand loyalty and the bottom line of companies involved were affected. Research by Allianz found recall costs could reach $10,000,000 for significant events.

To achieve the FDA’s goal of end-to-end traceability, the amount of information carried by every food item needs to increase, as will information about its location and condition in the supply chain. Grocers are at the sharp end of the food chain, meaning everything the FDA is proposing will impact them. As well as being merchandisers, they are brand-owners in their own right. They work directly with farmers and growers, they are directly involved in food safety, storage and distribution, and they feel the impact of recalls more than most. Unlike others in the food chain, they interact with consumers daily. This is important to note, since consumers are expecting communication on recalls immediately. In a recent study of more than 15,800 global consumers, 66% of respondents noted that they expect immediate notification of a product recall and another 28% stated they expect notification within a week.1 Furthermore, 88% said if a retailer immediately informed them of an issue, they would be more likely or slightly likely to trust them. The study also found that only 16% of consumers completely trust the product information provided to them from retailers today. In short, the impact of recalls extends far beyond the empty store shelf, and gives the industry even more reason to strive for safety.

High-Tech Next Steps

The FDA plans to publish a strategic blueprint early in 2020 of planned actions to meet its goal, but food brands and grocers need not wait to act. Proven technologies like brand compliance solutions, combined with emerging blockchain track and trace solutions and Internet of Things (IoT) sensors can add new depth and detail to traceability in the food supply chain, and these new technologies are already helping grocers and retailers keep consumers safe.

As retailers have sought a better means to track supply chain movements, blockchain technology has emerged as a potential way forward. Originally developed to manage financial transactions involving cryptocurrency, blockchain has proven to be capable of providing a verifiable record of the movement of goods through a supply chain. In fact, one major retailer has been piloting blockchain for more than a year and has already proven its value on produce items, cutting traceability times from more than a week to a matter of seconds. Some want to go even further and use IoT sensors to monitor the condition (e.g., temperature) of food products in the supply chain. Together, blockchain can help trace the path a product took through the supply chain and IoT can monitor the environmental conditions en route, providing a more cohesive picture of its supply chain journey.

But while supporting a few simple products with one ingredient and a one-step supply chain, such as fruits or vegetables, is one thing, scaling to address the needs of the average private brand retailer—now handling more than 10,000 active products from 2,000 production sites globally—is another. Managing the complexity of a product like tiramisu or a ready-made meal with dozens of ingredients, all coming from different sources, needs a different approach. To address the complexity, many are turning to brand compliance solutions—trusted, real-time repositories of information spanning the entire supply chain. For example, those using brand compliance solutions now have complete visibility of the ingredients in their private label products, helping them ensure labeling accuracy and transparency for consumers. Brand compliance tools also bring improved visibility of the food supply chain, enabling them to verify the status of manufacturing sites and respond quickly to food quality issues.

This combination of detailed product and supplier information makes brand compliance a foundational enabler for any blockchain/IoT-based initiative to improve supply chain visibility and traceability. For example, using brand compliance solutions, grocers can:

  • Confirm the ethical compliance of the supply chain at the point of selection or review, while using blockchain/IoT to monitor the ongoing conformance to these standards
  • Validate shelf life claims during formulation, while blockchain/IoT monitors logistical movement and environments to optimise products’ freshness
  • Record products’ formulation and ingredients to ensure safety, legal compliance and labeling accuracy, with blockchain/IoT monitoring the ongoing conformance to these standards
  • Rapidly identify potential risks across the entire formulation and supply chain, while tracking the affected batches to stores using blockchain and IoT

This convergence of static factual data (e.g., formulation, nutrition and allergens) linked to near real-time traceability and checking offers grocers confidence in the data and supports the consumer’s confidence of an actual product in their basket.

Looking Ahead

It seems clear that the food business is moving in the same direction as airlines and banks and becoming much more data driven. For grocers looking to keep pace, they will need to:

  • Treat data as a core competency. This means hiring information experts, investing for the future, and using data to identify ways to deliver better, safer products.
  • Create a customer-centric value promise. Grocers must go beyond regulatory compliance and use data to improve consumer transparency, support ethical sourcing initiatives, expand sustainable packaging and speed innovation.
  • Go above and beyond. Rather than waiting for FDA direction or simply complying with requirements, brands should take matters into their own hands, hold themselves to high markers and get started now.

In the future, improving the way that we manage the food supply chain is not just about how well we work with trucks and warehouses; it’s about how use information. The FDA’s initiative makes a clear statement that now is the time to modernize our food supply chains. As we look ahead to a new decade, the industry can come together to improve food safety and protect consumers, and we need not wait for the FDA’s blueprint or even the new year to get started.

Reference

  1. Setting the Bar: Global Customer Experience Trends 2019. (2019). Oracle Retail. Retrieved from https://go.oracle.com/LP=86024.

How Automated Inventory Tracking Systems Contribute to Food Safety

By Ryan Hardy
No Comments

When a business decides to invest in technology, the primary driver is usually to save money over the long term. As with most automated systems, inventory management tools can reduce costs by saving time and resources used to manage inventory.

But the benefits that automated inventory tracking can provide through traceability (of lots, batches, and even individual items) go beyond the financial. These systems can also be used in every aspect of your food safety program from helping with compliance, to improving your quality controls.

Exchange knowledge about managing your supply chain at the Best Practices in Food Safety Supply Chain conference | June 5–6, 2017 | LEARN MORE

In a nutshell, having an automated system that allows full visibility into the supply chain—that is, one that identifies in real time where items are being used and where they are sent, while retaining a historical record of that flow through the chain—makes it much simpler and faster to implement procedures to ensure the safety of the food you produce.

All about Accuracy and Speed

Speed and accuracy make a huge difference when it comes to dealing with potentially contaminated food. Being faster and more accurate than a manual inventory method is the most immediate benefit that an automated system brings to your food safety program.

The most compelling reason for having accurate and readily accessible track-and-trace data is to handle food recalls and to comply with requests for documentation from government agencies such as the FDA. In cases where consumer health is at risk, that information needs to be delivered quickly to prevent further harm, and it must be accurate to enable investigators to move in the right direction. Responding to requests for detailed documentation within a 24-hour timeframe can be nearly impossible if you are not using an automated system.

Even when the situation doesn’t involve a federal investigation, once a situation in which possible contamination or mislabeling arises, the faster you have accurate and detailed data, the faster your internal processes can move forward.

If the issue is identified through your quality control process, you will be more likely to be able to prevent contaminated product from reaching the retail outlet and thus getting into the hands of the consumer. Having traceability built into your inventory management systems provides immediate knowledge about whether a product using ingredients from the same batch have entered the distribution chain, and if so, where they are going. This greatly improves the likelihood of limiting the cost and scope of a recall.

Depending on the specific technology you employ, an automated system can provide immediate access to the track and trace information for specific ingredients at least one step backward and one step forward, as required by the Bioterrorism Act of 2002. A supply chain that integrates the most sophisticated technology, such as DNA tracking, can trace an item all the way from the farm or border to the individual consumer or restaurant kitchen.

This traceability means that if an ingredient was already contaminated before it entered your production line, the inventory tracking system can identify all products using that ingredient from the contaminated lot and thus will help you define the scope of the problem. This automation can go a step further by identifying where the ingredient lot originated, and thus help trace the ingredient at least one step backward to the vendor. If the vendor (whether a distribution company or a direct supplier) has traceability in an automated system, or if you are using a system hosted by a distribution partner, tracing the source farther back than one step is possible.

Such information can help you respond more quickly to FDA requests for product information and support the agency’s efforts in product traceability.

Protect Your Reputation

Just as using tracing technology can help identify potential contamination sources quickly, it can also be used to eliminate sources more quickly and accurately, thereby speeding up investigations into food contamination incidents. The faster a company can be eliminated from an investigation, the less time is taken away from normal production. In addition, quick exclusion can protect a company’s reputation from harm.

Additional Benefits

Through their ability to store specific data that can be used to identify potential risks, automated track and trace systems contribute to many preventive food safety measures as well as to the following corrective responses:

  • For perishable products, automated traceability can identify how long specific perishables have been in supply chain. This allows you to avoid using ingredients close to spoilage and to remove overdue products from the distribution chain.
  • During mock recalls, automated tracking systems reduce the time spent away from regular production and allow you consistent information throughout the organization, eliminating wasted effort due to miscommunications.
  • Automated systems reduce the time needed for notifications both internally and externally in the case of an incident affecting food quality or safety. This leads to faster line clearance and faster isolation of the possibly contaminated product.
  • With more effective accounting for possibly affected batches, you can better identify where to apply cleanup measures in the production chain.

In short, automated tracking can improve implementation of preventive controls to stop the contaminated product from reaching the marketplace, and in cases in which corrective actions are required, the automated system can help you respond more quickly and can reduce the scope of risk.

Not just Foodstuffs

Although raw ingredients and food products obviously require traceability, they aren’t the only traceable inventory that can impact food safety. Automated lot tracking can enhance food safety efforts related to all inventory items used in food processing/manufacturing:

  • Packaging. A sub-standard packaging lot can allow incursion of harmful substances or the growth of harmful bacteria. Leakers can contaminate an entire batch of meat or poultry product. Automated lot tracking can help you rapidly isolate the bad lot and know which production lines have already used the sub-standard materials.
  • Labeling. If an inferior adhesive has been applied to a batch of labels, you can identify which product lots to pull from the distribution chain. You can do the same if your quality controls find a batch of inaccurate labels.
  • Protective equipment and clothing. Gloves, masks and other protective gear must function properly to ensure the safety of your workers and also to prevent contamination from being introduced on the production line. An inferior batch of protective gloves that tear during use, for example, could violate your food safety practices. Identifying the bad batch quickly and removing it from the operations area immediately can save potential contamination.
  • Cleaning solutions. Even a batch of cleaning solution can be sub-par. If tests show that cleaning has not eliminated the targeted bacteria, for example, you can more quickly take measures to determine whether the root cause of the problem was a procedural issue or a quality issue with the batch of cleaner.

Beyond the Production Line

The benefits of automated tracking systems to your food safety program extend beyond the production line. They can also enhance decision-making, vendor management and communications functions.

When it comes to potential contamination, decision making needs to be both timely and based on the best information available. Automated systems can provide you with accurate information quickly to help you answer these and other key questions, so that the decision on what actions to take can be based on good information:

  • How widespread is the potential contamination?
  • Where is the product in the production and distribution chains?
  • Have we already exposed consumers?

These systems can put the answers to these questions in front of the appropriate decision makers early in the process. The technology can be configured to allow access to the data via a browser, so if those who make the final decisions are located elsewhere, they can see in real time the same information that you are seeing in the plant. This makes communication about potential contamination more effective and clear, since everyone can see the same thing at the same time, and it can eliminate the potential for miscommunication up the chain of command.

By identifying where bad lots entered your supply chain, automated track-and-trace can enhance supplier accountability. You can accurately see if you have vendors with recurring issues in the quality of the supplies they are providing.

Automated Inventory Tracking Technologies

An automated inventory tracking system depends on three components:

  • A physical component, such as a label or tag, which contains detailed information identifying the specific lot or item.
  • A database, where each discrete data item is stored.
  • A reporting interface that allows people to access and use the identification information. This is the programming code that performs searches, retrieves the data, and formats the information in a formatted report, which is then presented on the screen, saved to a file, or sent to a printer.

The most common physical components used by automated inventory tracking systems rely on barcode or RFID technology, or a combination of both. The choice of which technology to use to integrate into the inventory management database layer of the system depends on a number of factors, but both have been proven extremely accurate (some sources say up to 99%). What is more important than the choice of tracking tools is the quality of the data encoded in them.

The latest in tracking technology uses an engineered DNA marker, in the form of an edible spray. When applied to produce, this DNA marker can track the individual item (i.e., an apple, head of lettuce or onion), along the entire food supply chain, identifying where it was farmed, the date it was picked, and where it was processed.

Whatever form of technology you employ, ensuring that your data is complete and accurate and can be integrated into both your supply and distribution chain is critical to realizing the benefits of that system in supporting your food safety efforts.

The WDS Food Safety Team also contributed to this article.