Tag Archives: allergens

USP Food Fraud Database

Why Include Food Fraud Records in Your Hazard Analysis?

By Karen Everstine
No Comments
USP Food Fraud Database

Food fraud is a recognized threat to the quality of food ingredients and finished food products. There are also instances where food fraud presents a safety risk to consumers, such as when perpetrators add hazardous substances to foods (e.g., melamine in milk, industrial dyes in spices, known allergens, etc.).

FSMA’s Preventive Controls Rules require food manufacturers to identify and evaluate all “known or reasonably foreseeable hazards” related to foods produced at their facilities to determine if any hazards require a preventive control. The rules apply both to adulterants that are unintentionally occurring and those that may be intentionally added for economically motivated or fraudulent purposes. The FDA HARPC Draft Guidance for Industry includes, in Appendix 1, tables of “Potential Hazards for Foods and Processes.” As noted during the recent GMA Science Forum, FDA investigators conducting Preventive Controls inspections are using Appendix 1 “extensively.”

The tables in Appendix 1 include 17 food categories and are presented in three series:

  • Information that you should consider for potential food-related biological hazards
  • Information that you should consider for potential food-related chemical hazards
  • Information that you should consider for potential process-related hazards

According to the FDA draft guidance, chemical hazards can include undeclared allergens, drug residues, heavy metals, industrial chemicals, mycotoxins/natural toxins, pesticides, unapproved colors and additives, and radiological hazards.

USP develops tools and resources that help ensure the quality and authenticity of food ingredients and, by extension, manufactured food products. More importantly, however, these same resources can help ensure the safety of food products by reducing the risk of fraudulent adulteration with hazardous substances.

Incidents for dairy ingredients, food fraud
Geographic Distribution of Incidents for Dairy Ingredients. Graphic courtesy of USP.

Data from food fraud records from sources such as USP’s Food Fraud Database (USP FFD) contain important information related to potential chemical hazards and should be incorporated into manufacturers’ hazard analyses. USP FFD currently has data directly related to the identification of six of the chemical hazards identified by FDA: Undeclared allergens, drug residues, heavy metals, industrial chemicals, pesticides, and unapproved colors and additives. The following are some examples of information found in food fraud records for these chemical hazards.

Undeclared allergens: In addition to the widely publicized incident of peanuts in cumin, peanut products can be fraudulently added to a variety of food ingredients, including ground hazelnuts, olive oils, ground almonds, and milk powder. There have also been reports of the presence of cow’s milk protein in coconut-based beverages.

Drug residues: Seafood and honey have repeatedly been fraudulently adulterated with antibiotics that are not permitted for use in foods. Recently, beef pet food adulterated with pentobarbital was recalled in the United States.

Heavy metals: Lead, often in the form of lead chromate or lead oxide which add color to spices, is a persistent problem in the industry, particularly with turmeric.

Industrial Chemicals: Industrial dyes have been associated with a variety of food products, including palm oil, chili powder, curry sauce, and soft drinks. Melamine was added to both milk and wheat gluten to fraudulently increase the apparent protein content and industrial grade soybean oil sold as food-grade oil caused the deaths of thousands of turkeys.

Pesticides: Fraud in organic labeling has been in the news recently. Also concerning is the detection of illegal pesticides in foods such as oregano due to fraudulent substitution with myrtle or olive leaves.

Unapproved colors/additives: Examples include undeclared sulfites in unrefined cane sugar and ginger, food dyes in wine, and tartrazine (Yellow No. 5) in tea powder.

Adulteration, chili powder, skim milk powder, olive oil
Time Series Plot of Records for Chili Powder (blue), Skim Milk Powder (green), and Olive Oil (orange)

Continue to page 2 below.

Suresh Neethirajan, University of Guelph
In the Food Lab

Identifying Peanut and Other Allergens Outside the Lab

By Suresh Neethirajan, Ph.D
1 Comment
Suresh Neethirajan, University of Guelph

Judging the nature and suitability of items we put in our mouths is a task we perform daily, whether it’s due to different taste preferences, being on a diet, or from particular foods not agreeing with our metabolisms. Some foods can trigger mild reactions such as an upset stomach, or more serious skin rashes and outbreaks, from shortness of breath to even death.

Many of us have been somewhere where someone with a peanut allergy has been brought to everyone’s attention. The situation may have been publicized before boarding a plane, at a school where parents are asked to refrain from giving their children any food containing peanut products, or restaurants that clearly indicate which dishes are peanut-free on their menu, or that the kitchen is absent of the legume.

The number of people with food allergies continues to rise, and although many theories have been provided for the increase, the exact cause is unknown. Many foods are documented as being able to produce an allergic reaction—milk, eggs, soy and shellfish, to name a few—but peanuts and gluten are highlighted as major offenders. Canadian government regulations require that manufacturers label products that contain certain allergens, even if they are made in a facility where allergens are in another product.

The Threat of Gluten and Peanuts

Gluten contained in wheat has become a widely avoided food substance, although the reason for this might has more to do with health concerns than allergies. The American College of Allergy, Asthma and Immunology (ACAAI) estimates that 400,000 U.S. school children have a peanut allergy, with many of those also having other food allergies. According to the ACAAI, many children will eventually outgrow most food allergies, but only 20% of those who have a peanut tolerance will outgrow it.

The charity organization Food Allergy Canada states that 2.5 million people suffer from a food allergy in Canada, while 2 in 100 children are susceptible to peanuts causing a reaction. There isn’t a cure for food allergies, so governments and food inspectors have the weighty task of ensuring that commercially produced products are packaged or served with proper labeling and information to protect consumers. This requires constant checking and testing of products that may have come in contact with peanuts or gluten.

New Tool for Food Inspectors

To provide regular analysis, the procedure has been lengthy and expensive, but scientific researchers at Canada’s University of Guelph have developed an apparatus that can identify allergens in a much shorter time span while being considerably more cost effective. The new allergen detector could expedite allergen reporting and possibly reduce the number of allergic reactions through more timely results.

Biosensor, University of Guelph
Schematic of the biosensor for the rapid detection of food allergens. Image courtesy of BioNanoLab, University of Guelph.

Based on the ELISA (enzyme-linked immunosorbent assay) platform that is widely used in diagnostic labs to identify allergens, the new apparatus provides comparable accuracy. The technology has been miniaturized so that equipment is portable, about the size of an audiocassette case, and tests can be conducted on location instead of relying on a lab that may be far away.

An Allergen that Glows

In the case of peanuts, the scientists focused on a prominent allergen named Ara h 1, because it can be identified through non-radioactive fluorescence. Although there are other allergens in peanuts, they don’t share the same property by which they can be identified, as does Ara h 1.

The process requires a small amount of the suspected food to be liquefied in a suspension so that it can be injected using a filter syringe into a silicon-based plate, or chip, of microcapillaries. As the sample passes through tiny tubes of the microfluidic chip using capillary action, it travels through a beam of light from a LED source that is monitored by a specialized camera, which is also a product of the scientists’ work.

The image captures Ara h 1 protein particles that fluoresce when they come in contact with the chemical properties of the suspension. Currently, the camera records the data and sends it to a computer to be analyzed and deciphered with a result being provided within 20 minutes, compared to a conventional lab test that takes up to four hours after a sample has been received.

In a modification to provide an extremely portable system, research is underway to develop an app to enable results via a smartphone. Testing foods in the near future will be as convenient and prompt as holding the detector in one hand and a smartphone in the other so that a restaurant owner, for example, will be assured that dishes are allergen-free before being served to customers.

Imitating the Human System for Detection

To enable the allergen to fluoresce, the compound graphene oxide (GO) was utilized in combination with a bio-sensing component, known as an aptamer. The aptamer acts similarly to antibodies that identify and attach themselves to foreign and hostile elements that enter our blood system. Once a GO-aptamer mixture is attached to the allergen, the light source allows the protein particle to be detected and its image captured electronically.

By altering an aptamer’s composition to identify other allergens, such as gluten, the detector is a versatile piece of scientific equipment for identifying potentially hazardous food ingredients. The developers of the technology are confident that their discovery will change the future of identifying potentially hazardous food components. The final step in the allergen detector’s development seems to be fine tuning the detection process for certain processed foods, such as roasted peanuts, that can alter the composition of Ara H 1 making it less obvious to be identified.

FDA

FDA’s Annual Food Registry Report Finds Listeria and Allergens as Top Issues

By Food Safety Tech Staff
No Comments
FDA

Yesterday FDA released its Reportable Food Registry (RFR) and cited Listeria monocytogenes as generating the greatest number of reports (223), along with undeclared milk (27), in Year Five (from September 8, 2013–September 7, 2014).

FDA defines a reportable food as “an article of food/feed for which there is a reasonable probability that the use of, or exposure to, such article of food will cause serious adverse health consequences or death to humans or animals.” The purpose of the registry is to allow FDA to track patterns of food and feed adulteration in order to help the agency focus its already limited inspection resources.

Year Five saw 909 reportable food entries, including 201 primary reports regarding safety concerns with food or animal feed and 464 subsequent reports from suppliers or recipients of food or feed that was the subject of the primary reports, and 244 amended reports. The following food safety hazards were identified within the 201 primary reports in Year Five: Drug contamination, pathogenic E. coli, Listeria monocytogenes, nutrient imbalance, lead, Salmonella, undeclared allergens and undeclared sulfites. In addition, Salmonella, Listeria and undeclared allergens made up about 88% of the total primary entries for all five years of the RFR.

The report’s complete breakdown of the RFR submissions by year, along with identified commodities and hazards, is available on FDA’s website.

Undeclared Allergens Continue to Serve as a Primary Factor in Product Recalls

In the fourth quarter of 2014, undeclared allergens accounted for 50 percent of all FDA food-related recalled units and 83 percent of USDA recalled units.

In the past few months, retailers pulled hundreds of products from shelves after a spice supplier found traces of peanut proteins in their cumin spice – an ingredient that dozens of manufacturers use in products across the country.

Stericycle-Recall-March-2015

Ramifications from the recall, which began in December, still occur daily; over two months after the spice supplier first identified the issue. To some the recall may seem miniscule, however, to the nearly 15 million Americans the CDC says has food allergies, undeclared allergens can be a life-threatening scare.

Despite increasing regulations and industry scrutiny, undeclared allergens continue to serve as a primary cause of food recalls in the U.S. According to the latest Stericycle Recall Index, in the fourth quarter of 2014, undeclared allergens accounted for 50 percent of all FDA food-related recalled units and 83 percent of USDA recalled units.

According to FDA, the most common foods involved in food allergen recalls are bakery products, snack foods, candy, dairy products and dressings. The FDA also identifies the most common allergens causing the recalls as milk, wheat and soy.

Undeclared allergen recalls are often a result of a simple manufacturing operational error, such as mislabeling, mis-packaging or unintentional cross-contamination. In the U.S., manufacturers of FDA regulated foods are required to identify major food allergens on the label; if mistakes occur in manufacturing, companies may be subject to a product recall.

As recent recalls show, the more complex the supply chain, the more complex product recalls become. Globalization of the supply chain also complicates recalls, especially when regulatory agencies from multiple countries have different recall mandates. The Stericycle Recall Index highlights some of these unique challenges in the global supply chain, including accessibility to remote areas.

Companies with proactive recall strategies in place can navigate their supply chain with ease when a supplier or an undeclared allergen issue arises. Having these processes identified prior to an event can save valuable time, money and help a company maintain regulatory compliance, while also concentrating on future growth.

Click here to access the report.

Mitigate Food Contamination Risk

Whether mycotoxins or microbiological values, heavy metals or pesticides – independent sampling and testing provide an objective and comprehensive overview of what food products contain and help comply with food safety regulations.

Nuts containing mould, frozen strawberries contaminated with hepatitis pathogens, and pesticide-laden vegetables – more than 3,000 products were objected by EU authorities in 2013. With increasing government, industry and consumer concerns about the hazards of food contaminants, and the risks they pose, food manufacturers, governments and non-governmental agencies, are implementing policies and processes to monitor and reduce contaminants.

Key food contaminants

Food contaminants cover a wide range of potential substances including:

  • Dioxins: Produced as unintentional by-products of industrial processes such as waste incineration, chemical manufacturing and paper bleaching, dioxins can be found in the air, in water and contaminated soil.
  • Allergens: Virtually all of the known food allergens are proteins that can subsist in large quantities and often survive food processing.
  • Genetically modified organisms (GMOs): Banned in a number of countries, controversy still exists with regard to the use of GMOs. Selling food and/or feed that is non-GMO in restricted markets places the burden of proof on the supply chain.
  • Heavy metals: Whilst heavy metals, such as lead (Pb), cadmium (Cd), mercury (Hg) and arsenic (As), can be found in nature, industrial and environmental pollutants have resulted in their increased presence in food and feed.
  • Hormones: Commonly used in animal husbandry to promote growth, hormone residues can be found in the food supply.
  • Melamine: Harmful to animal and human health, melamine is not a permitted food additive.
  • Mycotoxins: Produced by several strains of fungi found on food and feed products, mycotoxins are often invisible, tasteless, and chemically stable both at high temperatures and during long periods of storage.
  • Pesticide residues: Over-use of pesticides can lead to dangerous levels of hazardous chemicals entering the food chain with fresh fruit and vegetables being most susceptible to pesticide residues.
  • Polychlorinated biphenyls (PCBs): Used in many products, some PCBs are toxic and stable enough to resist breaking down even when released into the environment.
  • Radiation contamination: There are three ways that foodstuffs can become contaminated by radiation: surface, ground and water contamination.
  • Veterinary drug residues: Used in the treatment of animals, veterinary drugs can leave residues in animals subsequently sent into the food chain. The impact of contaminants varies. Depending on their toxicity and the level of contamination their effects can range from causing skin allergies, to more serious illnesses (including cancers and neurological impairments) and, in the most extreme cases, death.

To ensure that your food and feed products are fit for consumption, you need to test for specific contaminants throughout the value chain. For example, in concentrated levels, melamine, antibiotics and hormones can be harmful to animals and humans. Only thorough contaminant testing will determine if the above-mentioned impurities, among others, are present. After identification the relevant goods can be eliminated from the production and distribution chain.

Maximum levels and regulations

In order to protect consumers, maximum levels permitted in food products have been set by food safety legislation in many countries. Disappointingly, and despite efforts in some product areas, maximum levels are rarely harmonized across national borders. This inconsistency places responsibility for compliance firmly with the food supply chain. A comprehensive testing program can verify that your products meet maximum levels and the safety standards they represent.

In the European Union (EU), it is the food business operator who carries primary responsibility for food safety and the General Food Law Regulation (EC) 178/20022 is the primary EC legislation on general food safety. More specific directives and regulations compliment this, for example, EU regulations concerning non-GMO/GMO products, include Directive 2001/18/EC and regulations 1829/2003 and 1830/2003.

The U.S. Food and Drugs Administration has overseen the development and signing into law of the Food Safety Modernization Act (FSMA). Within the U.S., state regulators retain the right to apply additional regulations and laws. As result, rules regarding maximum levels, for example, vary from state to state.

In China, the Food Safety Law (FSL) was passed into law by the Chinese government in 2009. It introduced enhanced provision for monitoring and supervision, improved safety standards, recalls for substandard products and dealing with compliance failures.

Brazil’s food safety agency, Anvisa, coordinates, supervises and controls activities to assure health surveillance over food, beverages, water, ingredients, packages, contamination limits, and veterinary residues for import. No specific restrictions have been established yet for export.

Monitoring

Monitoring programs are frequently used to identify any contamination issues. From seeds, through the growing process and harvest, transportation, collection, storing and processing to the market channel, independent monitoring delivers credible and independently collected data on both quality and contaminants.

With so many policies and standards, both nationally and internationally, anyone involved in the food industry needs to be sure of accurate and up-to date information on food contaminant regulations. Whether mycotoxins or microbiological values, heavy metals or pesticides – independent sampling and testing provide an objective and comprehensive overview of what grain and food products contain.

For more information, please visit: www.SGS.com/foodsafety.

How can Food Safety Management Systems Improve Compliance and Reduce Risk?

By Food Safety Tech Staff
No Comments

LeAnn Chuboff, Senior Technical Director, SQFI, talks about using data within the food safety management system to prioritize and address food safety risks within the organization.

Food safety regulations are driving organizations to seek more methods of enhancing visibility into their quality and safety operations to increase compliance and reduce risk. As this need evolves, the tools inherent in the Food Safety Management System are crucial in helping an organization take a proactive approach to preventing food safety risks.  

LeAnn Chuboff, Senior Technical Director, SQFIWhat lessons can you learn by looking at and analyzing your non-conformance reports and how can you use these to better your food safety management programs?

LeAnn Chuboff, Senior Technical Director, SQFI, talked about using data within the food safety management system to prioritize food safety risks within your organization.

Speaking recently on the topic of How can Food Safety Management Systems Improve Compliance and Reduce Risk, Chuboff discussed the example of SQF analyzing a year’s worth of audit reports and non-conformances. Below are some excerpts. 

“We asked ourselves the following questions: What area has the greatest impact to food safety – is this impact overall, major, minor or critical? What is one of the main reasons for recalls? What is the top major or critical non-conformances? And what is the frequently missed element? And we identified allergen management as the top area.”

Chuboff listed the key requirements for an allergen management program:

  • The facility needs to have an allergen management program in place;
  • The program should have cleaning and validation requirements in place;
  • There should be a register of list of allergens maintained;
  • And the allergen management program should be thoroughly addressed in the facility’s food safety plan.

On further analysis, SQF found that 84 percent of the facilities were missing an allergen program; 13 percent of the non-conformances were due to improper storage of the food products; the next issue was that facilities have improper labeling in place – 2 percent of non-conformances were due to labeling issues. And another problem was inadequately addressing rework. 

So what can a supplier do in terms of corrective actions to address these non-conformances: 

  • Conduct validation study for SSOPs (validate it, test it, revalidate it) – if you don’t have in-house expertise, bring them in from outside; 
  • Identify ingredients as allergens at receiving, in process and rework – do a complete reassessment of the labeling program; 
  • Establish label inspection program at receipt and in packaging – work with raw material suppliers to ascertain that the labels are clearly specified, taking into account requirements of both the country that it’s produced in and the country it’s being shipped to; 
  • Include allergens in the facility’s HACCP plan; and  
  • Have a strong internal audit program – this will help you engage your employees, identify problems, and address them successfully. 

What can auditors and scheme owners do? 

  • Support additional research for effective allergen control;  
  • Training and guidance for auditors and suppliers is needed for this sensitive area; and 
  • Work on providing stronger GFSI guidance? 

In summary, Chuboff added that companies need to gather the right data, use the data available to identify areas of opportunity and establish KPIs; conduct a root cause analysis and use the tools available and work with all members on the team to develop a solution; avoid settling on simple solutions and immediate corrections and instead plan to get to the root; establish a preventive action plan for long-term control; and finally, repeat all the above! 

To listen to Leann Chuboff talk more on this topic, click here.