Tag Archives: artificial intelligence

James Gunn-Wilkerson, CMX
Retail Food Safety Forum

The Future Is Now: AI Takes Journey from Supply Chain to Today’s Restaurant Kitchens

By James Gunn-Wilkerson
No Comments
James Gunn-Wilkerson, CMX

Futurist Ross Dawson has said that AI and automation will shape the future of work, and it also promises to transform our lives beyond the office. According to the World Economic Forum, when AI, which provides the ability to “enable devices to learn, reason and process information like humans,” is combined with Internet of Things (IoT) devices and systems, it creates AIoT. This super duo has the potential to power smart homes, smart cities, smart industries and even our smartwatches and fitness trackers, a market estimated by Gartner to be worth $87 billion by 2023. More importantly, this “interconnectedness” will change the way we interact with our devices as well as the way we will live and work in the future.

In the restaurant industry, we’re already seeing glimpses of this interconnectedness take shape, and in the past year, we’ve experienced major technological advancements that have transformed every facet of the way food establishments work. Reflecting on those advancements, I want to take a moment to share three areas of AI impact that are bubbling up in the restaurant sector in 2021.

1: AI-powered Intelligent Kitchens

From ghost kitchens to traditional kitchens, the “back of the house” continues to be a prime target for AI and automation. While great progress has been made, in many ways it seems like we’ve only scratched the surface when it comes to how far AI can take today’s restaurants. But every now and then, we hear examples of AI powering the future of our industry. For example, Nala Robotics, Inc. will be opening what it calls “the world’s first state-of-the-art intelligent restaurant” in Naperville, Illinois this year. The company says the AI-based robotic kitchen “can create dishes from any cuisine around the world, using authentic recipes from celebrated chefs”. A press release from Nala Robotics states that its flagship restaurant is taking “the first step in the food service industry with AI-powered service, addressing many of the issues affecting restaurant owners during COVID-19,” and it will “provide consumers an endless variety of cuisine without potential contamination from human contact.” This is the new frontier in intelligent kitchens, and it couldn’t have come at a better time, with the pandemic forcing restaurants to reimagine the way they do business.

2: AI-Driven Labor Shifts.

You can’t talk about AI in the restaurant industry without also having a conversation about the implications for the modern workforce. With AI in restaurant kitchens and beyond, the impact on the labor force is undeniable. By 2024, Gartner predicts “that these technologies will replace almost 69% of the manager’s workload.” But that’s not entirely a bad thing. Instead of manually filling out forms and updating records, managers can turn to AI to automate these and other tedious tasks. “By using AI…they can spend less time managing transactions and can invest more time on learning, performance management and goal setting,” Gartner adds.Managers can also use the extra time to focus more effort on the customer and employee experience. And indeed they should: In a recent Deloitte report, 60% of guests surveyed indicated that a positive experience would influence them to dine at a restaurant more frequently.

Looking at the impact of AI on labor at all levels, from the CEO to the entry-level wage earner, the shift, at its best, will be a transition to more meaningful—and less mundane—work. The evolution of humanity has taken us to the point we’re now at now, with food production and delivery processes becoming increasingly automated. This has been an evolution generations in the making. In an ideal world, everyone at every level of the organization should benefit from this new wave of technology. For example, automation can and should be used to open the door to new training and new opportunities for low-wage earners to learn new skills that elevate career paths, increase income and improve quality of life.

3: AI and Global Supply Chain Transformation

From the farm all the way to the table, AI is now poised to transform the global supply chain. From my perspective, the biggest impact will be around driving sustainability efforts. Restaurant and grocery brands are already beginning to leverage AI to forecast their food supply needs based on customer demand, leading to less over-ordering and less food waste to support sustainability initiatives. One company in this space, FourKites, is creating what it calls “the digital supply chain of the future.” Using real-time visibility and machine learning, FourKites powers and optimizes global supply chains, making them “automated, interconnected and collaborative—spanning transportation, warehouses, stores, trucks and more.”

In addition to predictive planning, more and more brands will start to use AI to create incident risk management models to identify trends and risks in the supply chain to determine whether bad or recalled products are originating from a specific supplier, distributor, or due to an environmental variable.With all of these changes, the need for comprehensive data standards will multiply as suppliers and distributors around the world work together to bring us produce and packaged food from all corners of the globe. Data standards will be critical to traceability and the exchange of critical tracking events and key data elements, and advances in data standards will power the meta-data needed to provide better insight for food quality and regulatory compliance, crisis management, and recalls—at scale.

Research firm Forrester states that, in the end, the greatest impact resulting from an investment in robotics and other technologies that automate operational tasks is improved customer experience (CX). “Most companies believe that investment in AI, automation, and robotics for engagement will decrease operational costs. While this is true, our research shows that the revenue upside from delivering better CX could deliver a greater impact on the bottom line over time,” Forrester states.

As a business engaged in digitizing and transforming supply chain operations, our team couldn’t agree with Forrester more. But we believe it will take striking the right balance between technology and the human touch to not only drive stronger CX, but to also create a world in which AI is implemented for the greater good—a world in which people, processes, business and technology all win.

Angel Suarez, EAS Consulting Group
FST Soapbox

Regulatory Cross Cutting with Artificial Intelligence and Imported Seafood

By Angel M. Suarez
No Comments
Angel Suarez, EAS Consulting Group

Since 2019 the FDA’s crosscutting work has implemented artificial intelligence (AI) as part of the its New Era of Smarter Food Safety initiative. This new application of available data sources can strengthen the agency’s public health mission with the goal using AI to improve capabilities to quickly and efficiently identify products that may pose a threat to public health by impeding their entry into the U.S. market.

On February 8 the FDA reported the initiation of their succeeding phase for AI activity with the Imported Seafood Pilot program. Running from February 1 through July 31, 2021, the pilot will allow FDA to study and evaluate the utility of AI in support of import targeting, ultimately assisting with the implementation of an AI model to target high-risk seafood products—a critical strategy, as the United States imports nearly 94% of its seafood, according to the FDA.

Where in the past, reliance on human intervention and/or trend analysis drove scrutiny of seafood shipments such as field exams, label exams or laboratory analysis of samples, with the use of AI technologies, FDA surveillance and regulatory efforts might be improved. The use of Artificial intelligence will allow for processing large amount of data at a faster rate and accuracy giving the capability for revamping FDA regulatory compliance and facilitate importers knowledge of compliance carrying through correct activity. FDA compliance officers would also get actionable insights faster, ensuring that operations can keep up with emerging compliance requirements.

Predictive Risk-based Evaluation for Dynamic Imports Compliance (PREDICT) is the current electronic tracking system that FDA uses to evaluate risk using a database screening system. It combs through every distribution line of imported food and ranks risk based on human inputs of historical data classifying foods as higher or lower risk. Higher-risk foods get more scrutiny at ports of entry. It is worth noting that AI is not intended to replace those noticeable PREDICT trends, but rather augment them. AI will be part of a wider toolset for regulators who want to figure out how and why certain trends happen so that they can make informed decisions.

AI’s focus in this regard is to strengthen food safety through the use of machine learning and identification of complex patterns in large data sets to order to detect and predict risk. AI combined with PREDICT has the potential to be the tool that expedites the clearance of lower risk seafood shipments, and identifies those that are higher risk.

The unleashing of data through this sophisticated mechanism can expedite sample collection, review and analysis with a focus on prevention and action-oriented information.

American consumers want safe food, whether it is domestically produced or imported from abroad. FDA needs to transform its computing and technology infrastructure to close the gap between rapid advances in product and process technology solutions to ensure that advances translate into meaningful results for these consumers.

There is a lot we humans can learn from data generated by machine learning and because of that learning curve, FDA is not expecting to see a reduction of FDA import enforcement action during the pilot program. Inputs will need to be adjusted, as well as performance and targets for violative seafood shipments, and the building of smart machines capable of performing tasks that typically require human interaction, optimizing workplans, planning and logistics will be prioritized.

In the future, AI will assist FDA in making regulatory decisions about which facilities must be inspected, what foods are most likely to make people sick, and other risk prioritization factors. As times and technologies change, FDA is changing with them, but its objective remains in protecting public health. There is much promise in AI, but developing a food safety algorithm takes time. FDA’s pilot program focusing on AI’s capabilities to strengthen the safety of U.S. seafood imports is a strong next step in predictive analytics in support of FDA’s New Era of Smarter Food Safety.

Nicole Lang, igus
Retail Food Safety Forum

Robots Serve Up Safety in Restaurants

By Nicole Lang
No Comments
Nicole Lang, igus

Perhaps the top takeaway from the worldwide COVID-19 pandemic is that people the world over realize how easily viruses can spread. Even with social distancing, masks and zealous, frequent handwashing, everyone has learned contagions can cycle through the atmosphere and put a person at risk of serious, and sometimes deadly, health complications. In reality, there are no safe spaces when proper protocols are not followed.

The primary culprit in transmission of norovirus, according to the CDC, is contaminated food. “The virus can easily contaminate food because it is very tiny and spreads easily,” the CDC says in a fact sheet for food workers posted on its website. “It only takes a very small amount of virus to make someone sick.”

The CDC numbers are alarming. The agency reports about 20 million people get sick from norovirus each year, most from close contact with infected people or by eating contaminated food. Norovirus is the leading cause of disease outbreaks from contaminated food in the United States, and infected food workers cause about 70% of reported norovirus outbreaks from contaminated food.

The solution to reducing the transmission of unhealthy particles could be starting to take shape through automation. While robots have been used for the past few years in food manufacturing and processing, new solutions take food handling to a new level. Robots are no longer in the back of the house in the food industry, isolated in packaging and manufacturing plants. They are now front and center. The next time you see a salad prepared for you at a favorite haunt, you may be watching a robot.

“The global pandemic has altered the way that we eat,” said Justin Rooney, of Dexai Robotics, a company that developed a food service robotic device. Reducing human contact with food via hands-free ordering and autonomous food serving capabilities has the potential to reduce the spread of pathogens and viruses, and could help keep food fresh for a longer period of time.

Painful Pandemic

Increased use of automation in the foodservice industry might be one of the salvations of the COVID-19 pandemic. In an industry searching for good news, that might be the silver lining in an otherwise gloomful crisis.

Job losses in the restaurant industry have been brutal. By the end of November, nearly 110,000 restaurants in the United States had closed. A report by the National Restaurant Association said restaurants lost three times more jobs than any other industry since the beginning of the pandemic. In December, reports said nearly 17% of U.S. restaurants had closed. Some restaurants clung to life by offering outdoor dining, but as winter set in, that option evaporated. Some governors even demanded restaurant closures as the pandemic escalated in late fall.

Restaurants have faced a chronic labor shortage for years. Despite layoffs during the pandemic, many former foodservice employees are electing to leave the industry.

Teenagers, for instance, and some older workers are staying away for health and safety reasons. Some former workers are also finding out that they can make more money on unemployment benefits than by returning to work. Restaurant chains have hiked wages, but filling positions still remains a challenge.

Automated Solutions

Restaurants began dancing with the idea of robots nearly 50 years ago. The trend started slowly, with customers ordering food directly through kiosks. As of 2011, McDonald’s installed nearly 7,000 touchscreen kiosks to handle cashiering responsibilities at restaurants throughout Europe.

As technology has advanced, so has the presence of robots in restaurants. In 2019 Seattle-based Picnic unveiled a robot that can prepare 300 pizzas in an hour. In January, Nala Robotics announced it would open the world’s first “intelligent” restaurant. The robotic kitchen can create dishes from any cuisine in the world. The kitchen, which is expected to open in April in Naperville, Illinois, will have the capability to create an endless variety of cuisine without potential contamination from human contact.

Dexai designed a new robotic unit that allows for hands-free ordering that can be placed through any device with an Internet connection. The robot also includes a new subsystem for utensils, which are stored in a food bin to keep them temperature controlled. This ensures that robot is compliant with ServSafe regulations. The company is working on improving robot system’s reliability, robustness, safety and user friendliness. The robot has two areas to hold tools, a kitchen display system, bowl passing arm, an enclosure for electronics and two refrigeration units. It has the unique ability to swap utensils to comply with food service standards and prevent contamination as a result of allergens, for example.

Why Automation

Many industries have been impacted by advancements in automation, and the foodservice industry is no different. While initially expensive, the benefits over time can provide to be worth the investment.

One of the most significant advantages, particularly important in the post-COVID era, is better quality control. Automated units can detect issues much earlier in the supply chain, and address those issues.

Automation can also help improve worker safety by executing some of the more repetitive and dangerous tasks. Robots can also boost efficiency (i.e., a robot used for making pizza that can press out dough five times faster than humans and place them into ovens) and eliminate the risk of injury. Robots are also being used to make coffee, manage orders and billing, and prepare the food. Robots can also collect data that will help foodservice owners regarding output, quantity, speed and other factors.

“Alfred’s actions are powered by artificial intelligence,” according to Rooney. “Each time Alfred performs an action, the associated data gets fed into a machine learning model. Consequently, each individual Alfred learns from the accumulated success and failures of every other Alfred that has existed.” Dexai plans to teach the robot to operate other commonly found pieces of kitchen equipment such as grills, fryers, espresso machines, ice cream cabinets and smoothie makers.

Unrelenting Trend

Automated solutions might have come along too late to save many restaurants, but the path forward is clear. While they are not yet everywhere, robots are now in play at significant number of restaurants, and there is no turning back. Any way you slice it, robots in restaurants, clearly, is an idea whose time has come.

FDA

FDA Begins Phase Two of Artificial Intelligence Imported Seafood Pilot Program

By Food Safety Tech Staff
No Comments
FDA

FDA is beginning phase two of its Artificial Intelligence Imported Seafood Pilot Program. The program, which is expected to run from February 1 through July 31, intends to improve FDA’s response in quickly and efficiently identifying potentially harmful imported seafood products.

Phase one of the pilot looked at using machine learning to find violative seafood shipments. “The pilot program will help the agency not only gain valuable experience with new powerful AI-enabled technology but also add to the tools used to determine compliance with regulatory requirements and speed up detection of public health threats,” FDA stated in a news release. “Following completion of the pilot, FDA will communicate on our findings to promote transparency and facilitate dialogue on how new and emerging technologies can be harnessed to solve complex public health challenges.”

The pilot program is part of the agency’s efforts that fall under the New Era of Smarter Food Safety.

FDA

In a Year of ‘Unprecedented Challenges’ FDA’s Food Program Achieved So Much

By Food Safety Tech Staff
No Comments
FDA

Earlier this week FSMA celebrated its 10-year anniversary, and FDA Deputy Commissioner for Food Policy and Response Frank Yiannas reflected on the progress and accomplishments as a result of this legislation, and the path forward. As we round out the first week of 2021, Yiannas is looking back at the achievements of 2020 in the face of the historic COVID-19 pandemic.

“I’m struck by how tirelessly our team members have worked together to help ensure the continuity of the food supply chain and to help keep food workers and consumers alike safe during the COVID-19 pandemic,” said Yiannas on the FDA Voices blog. “Their commitment has not wavered in a time when we’re all dealing personally with the impact of the pandemic on our families, schooling our children from home and taking care of elderly parents.”

  • Response to COVID-19. FDA addressed the concern of virus transmission, assuring consumers that COVID-19 cannot be transmitted via food or its packaging. The agency also worked with CDC and OSHA on resources to help promote worker safety and supply chain continuity.
  • Release of the New Era of Smarter Food Safety Blueprint
  • Release of the 2020 Leafy Greens STEC Action Plan with a focus on prevention, response and research gaps
  • Artificial Intelligence pilot program to strengthen the screening of imported foods
  • Proposed Food Traceability Rule issued in an effort to create more recordkeeping requirements for specific foods
  • New protocol for developing and registering antimicrobial treatments for pre-harvest agricultural water
  • Enhanced foodborne outbreak investigation processes and established the outbreak investigation table (via the CORE Network) to disseminate information about an outbreak right when the agency begins its investigation
Emily Newton, Revolutionized Magazine
FST Soapbox

How Can Preventive Maintenance Save Food Processors Money?

By Emily Newton
No Comments
Emily Newton, Revolutionized Magazine

The right preventive maintenance approach can improve food safety while saving money. With the right plan, food processing professionals can prevent serious machine failure, decrease maintenance costs and get a better sense of which machines may be more trouble than they’re worth.

However, not every preventive maintenance plan is guaranteed to help processors cut costs. Investing in the right strategy and tools will be necessary for a business that wants to save money with effective maintenance.

How an Effective Preventive Maintenance Approach Can Save Money

To start, the food safety benefits of a preventive maintenance program can help food processors avoid significant troubles down the line. Contamination and recalls will cost time and money.

They can also damage the professional relationships that businesses have with buyers. Recalls are extraordinarily expensive for food and beverage companies, costing an average of $10 million per recall, according to one joint study from the Food Marketing Institute and the Consumer Brands Association (formerly the Grocery Manufacturers Association).

Preventive maintenance can also extend machines’ life spans, giving a company more time before they’ll need to completely replace or rebuild a piece of equipment. Over time, this will help a business prevent machine failure or injuries resulting from improper machine behavior or function. In some cases, it can also mean cheaper repairs and less downtime.

Improving Records With the Right Plan

An effective preventive maintenance plan also generates a significant and detailed archive of maintenance records.

If a plan is implemented correctly, technicians will create a record every time they inspect, repair or otherwise maintain a particular machine. These records will be an invaluable asset in the event of an in-house or third-party audit, as they can help prove that machines have been properly lubricated, calibrated and otherwise maintained.

If a food processing business needs to resell a particular piece of equipment, they’ll also have a full service record that can help them establish the machine’s value.

Over time, the records will also give a highly accurate sense of how expensive the machines really are across an entire business. If the staff records repairs performed, tools used and resources and time spent, professionals can quickly tabulate each machine’s cost concerning man-hours or resources needed. These logs can help single out machinery that may be more trouble than it’s worth and plan future buying decisions.

With a digital system, like a computerized maintenance management system (CMMS), managers can automate most of the administrative work that goes into a preventive maintenance plan.

Modern CMMS tech also provides a few additional benefits beyond streamlining recordkeeping. For example, if a business is up against a major maintenance backlog or trying to balance limited resources against necessary repairs and checkups, a CMMS can help optimize their use of resources. As a result, they can make the most of the time, money and tools they have.

Common Preventive Maintenance Pitfalls

Typically, an effective preventive maintenance plan starts with a catalog of facility equipment. This catalog includes basic information on every piece of equipment in the facility — such as location, name, serial number and vendor, as well as information on how frequently the machine should be inspected or maintained.

Keeping spotty or incomplete records can make a preventative maintenance plan both less effective and more expensive. For example, a partial service record may give an improper idea of how well-maintained certain equipment is. Missing machine information may also confuse service technicians, making it harder for them to properly inspect or maintain a machine.

Too-frequent maintenance checks can also become a problem over time. Every time a maintenance technician opens up a machine, they can potentially expose sensitive electronics to dust, humidity or facility contaminants, or risk damage to machine components.

A maintenance check also means some downtime, as it’s usually not safe or practical to inspect a running machine.

Using the wrong maintenance methods can also sometimes decrease a machine’s life span. For example, certain cleaning agents can damage door gaskets over time. This can eventually cause equipment like a freeze dryer to be unable to create a proper seal.

The equipment manufacturer and technicians can usually help a company know what kind of maintenance will work best and how often they should inspect or tune up a machine.

Going Beyond Preventive Maintenance

Preventive maintenance is the standard approach in most industries, but it’s no longer the cutting-edge of maintenance practices. New developments in the tech world, like new Industrial Internet of Things (IIoT) sensors and real-time artificial intelligence (AI) analysis, have enabled a new form of maintenance called predictive maintenance.

With predictive maintenance, a food processing plant can outfit their machines with an array of special sensors. These sensors track information like vibration, lubrication levels, temperature and even noise. A digital maintenance system will record that information, establishing baselines and data about normal operating levels.

Once the baseline is established, the predictive technology can use fluctuations or extreme variables to predict improper operation or machine failure. If some machine variable exceeds safe operating thresholds, the predictive maintenance system can alert facility supervisors — or, depending on what kind of control the system has, shut down a machine altogether.

The predictive approach can catch issues that may arise in-between checks in a preventive schedule. This can help reduce the frequency of maintenance checks — possibly preventing further machine damage and saving the business money on technician labor.

The data a predictive maintenance system collects can also help optimize equipment for maximum efficiency.

Implementing a predictive maintenance plan will require a bit of a tech investment, however.

Food Processors Can Save Money With the Right Maintenance Approach

Preventive maintenance isn’t just essential for food safety — done well, it can also be a major cost-saving measure for food processors.

Good recordkeeping, a regular maintenance schedule and new technology can all help a business decrease maintenance and equipment costs. For processors that want to invest more in their maintenance plans, a predictive approach can provide even better results.

Maria Fontanazza, Food Safety Tech
From the Editor’s Desk

Top 10 from the 2020 Food Safety Consortium Virtual Conference Series

By Maria Fontanazza
No Comments
Maria Fontanazza, Food Safety Tech

2020 has taken a lot away from us, but it has also taught us the importance of being able to quickly adapt (can you say…“pivot”?) to rapidly changing, dire circumstances. For Food Safety Tech, that meant shifting our in-person annual Food Safety Consortium to a virtual event. I really look forward to the Consortium each year, because we are a virtual company, and this is the one time of year that most of the Food Safety Tech and Innovative Publishing Company team are together. When we made the decision to move the event online, we really wanted to be considerate of our attendees, who more than likely were quickly developing webinar and Zoom fatigue. So we created a series of 14 Episodes that spanned from September until last week. I am not going to single out one episode or speaker/session in particular, because I think that all of our speakers and sponsors brought a tremendous amount of education to the food safety community. Thank you.

With that, the following are my top 10 takeaways from the 2020 Food Safety Consortium Virtual Conference Series—and this simply scratches the surface. Feel free to leave a comment on what you learned from our speakers and the discussions this fall.

  1. COVID-19 has served as the springboard for digital transformation, more of which we have seen in the past nine months than in the last several years or even decade. Tech advances are increasing efficiencies, adding the ability to be more predictive, giving more visibility and traceability in the supply chain and offering increased accessibility. These include: IoT; Advanced analytics; Artificial intelligence (FDA has been piloting AI technology); Graph technology used in supply chain visibility; blockchain; mixed reality; and remote monitoring.
  2. There are new responsibilities that come with being a part of America’s critical infrastructure and protecting essential frontline workers.
    • Companies must have a strong relationship (or work to build one) with local health departments and authorities
    • Name a COVID Czar at your company: This is a designated person, located both within a production facility as well as at the corporate location, who manages the bulk of the requirements and precautions that companies should be undertaking to address the pandemic.
  3. Every company should have an emergency risk management plan that centers around good communication.
  4. The COVID-19 pandemic is a reminder to us that the threat for viruses is always lurking beneath the surface. There is still work to be done on the food labs side regarding more rapid assays, leveling the playing field regarding conducting viral testing, and technology that enables labs to get safe, effective and consistent results.
  5. Lessons in sanitation: Investment in sanitation is critical, there are no shortcuts, and empower your sanitation employees, give them the tools they need to effectively do their jobs.
  6. The FDA’s FSMA Proposed Traceability rule is expected to be a “game changer”. It will lay the foundation for meaningful harmonization. FDA Deputy Commissioner for Food Policy and Response Frank Yiannas said the pandemic really put a spotlight on the fact that the U.S. food industry needs better tracking and tracing.
  7. Know your suppliers, know your suppliers, know your suppliers!
  8. Biofilms are ubiquitous, and the process of detecting and eliminating Listeria in your facility is a marathon with no finish line.
  9. Food Safety Culture is a profit center, not an overhead department.
  10. “If I’m not well, I can’t do well.” Making sure your needs are met personally and professionally plays an important role in being a better contributor to your company’s success.

As part of a special offering, we are making four episodes of the 2020 Food Safety Consortium Virtual Conference Series available on demand for free. Head to our Events & Webinars page to register to view the sessions on or after January 2021.

Are Traasdahl, Crisp
Retail Food Safety Forum

Is Programmatic Commerce the Next Wave in Supply Chain Tech?

By Are Traasdahl
No Comments
Are Traasdahl, Crisp

While COVID-19 exposed disconnects in the food supply chain, it also served as an overdue catalyst for rapid technology adoption. Food manufacturers, distributors and retailers were forced to grapple with consumer behaviors that—previously expected to occur over five years— changed within about five weeks. Faced with unprecedented demand, channel shifts and rapidly changing consumer purchasing behaviors, forward-looking brands and retailers have started to transform their business models to become highly responsive and agile.

A new approach called “programmatic commerce” may be the key to faster market insights and pivots. Taking cues from past attempts to digitize the supply chain from end-to-end, programmatic commerce uses artificial intelligence (AI) and machine learning (ML) to connect and unify critical business data across food manufacturers, distributors and retailers using common retail portals, BI and CRM tools as well as other data resources and platforms.

With a real-time unified view of channels and activity, programmatic commerce has the potential to create fully automated trade processes to optimize production, inventory management, logistics, promotions and more for both upstream and downstream supply chain activities.

To achieve the potential of programmatic commerce, real-time or near real-time data sources must be easily integrated, unified and displayed. This is in stark contrast to previous attempts to create end-to-end supply chain visibility, which often required custom or manual integrations, had costly and lengthy implementation requirements and necessitated custom reporting.

The programmatic approach is already gaining traction, enabling retailers to leverage AI and ML technology to optimize supply chains. But the real value is in taking it one step further—to tap into rich customer data, understand rapidly changing consumer behaviors and ultimately—to predict and personalize shopping experiences at scale.

Tracking and Adapting to Evolving Consumer Journeys

Consumers increasingly demand greater choice, control, personalization and transparency and companies must continuously create, track and manage a 360º view of customers’ shopping journeys to stay ahead of these trends. Fortunately, real-time data and analytical capabilities are available to supply the critical information they need to implement a programmatic commerce approach.

Among the shifts companies must track as a result of COVID-19 is the explosion in online grocery shopping. In November 2020, U.S. grocery delivery and pickup sales totaled $5.9 billion and a record high 83% of consumers intend to purchase groceries online again, signaling this trend continues as the pandemic lingers on.1 By 2025, online grocery sales are predicted to account for 21.5% of total grocery sales, representing more than a 60% increase over pre-pandemic estimates.2 A permanent shift toward online grocery shopping can be expected as consumers’ shopping and fulfillment experience continues to improve.

For consumers still shopping in stores, the pandemic also drove switches in primary physical store locations. In the United States, an estimated 17% of consumers shifted away from their primary store since the start of the pandemic.3 This was driven by increased work-from-home, which eliminated commuting routes and made different store locations more convenient, including ones closer to home.

Given the multitude of changes impacting consumer journeys during the pandemic, it is imperative that companies track relevant purchase drivers and considerations of each purchase occasion, while also taking into account their recent shopping experience. This creates the need for consistent, seamless and relevant experiences across both digital and physical channels that aligns all touchpoints with the consumer as part of their “total commerce experience.”

Multiple retailers are already pursuing this approach in the hope of retaining their “primary store” status across the totality of their consumers’ shopping experiences. Walmart recently launched a new store format to help achieve “seamless omni-shopping experiences” for its customers through a digitally enabled shopping environment. Customers can use the Walmart app to efficiently find what they’re looking for, discover new products, check pricing, and complete contactless checkout.4 Data tracked on these customers can eventually be used to create personalized recommendations and in-store activations and assistance based on their purchase history and in-store experience.

Conversely, the “digital store” is also being reimagined to align with consumers’ in-store experience to create a seamless shopping experience. For example, personalized meal planning service The Dinner Daily now offers the ability for its members to order recipe ingredients directly from Kroger and other Kroger-owned stores through The Dinner Daily app.5 Integrated data from multiple shopping platforms and consumer touchpoints can provide food manufacturers and retailers with shopper profiles, consumer experiences, and purchase history along with inventory status and other inputs to ultimately build personalized customer experiences and enhance shopper loyalty.

Applying Programmatic Commerce to Deliver Personalization to Consumers

Once armed with real-time data in a uniform format from sources ranging from consumer search analytics to retailer promotional pricing, a programmatic commerce approach can provide companies with predictive understanding of demand and supply to optimize decision making from raw materials through production through retail or direct-to-consumer.

Using online grocery shopping as an example, consumer personalization can be delivered through the accurate prediction and display of items relevant to each shopper based on shopping history, preferences, current cart selections, and other inputs such as real-time availability, marketing promotions and more.

Innovations are already in the market, including Halla, a data science company that developed a grocery-specific personalization algorithm that works with grocery retailer e-commerce platforms to create smart recommendations based on understanding of individual shoppers’ product usage and preferences.6 Another example is the Locai Solutions digital grocery platform, which applies AI to personalize recipe recommendations based on consumer preferences and purchase history and determines ingredients and quantities needed for easy incorporation into their shopping cart.7

The Path Ahead: Accelerating Technology Adoption in the Food Industry

AI and ML are already reducing waste across supply chains and enabling consumer personalization. However, currently only about 12% of retail decision-makers feel they are very effective at providing these experiences to customers and only 10% have access to the real-time data needed to achieve this goal.8

Modern programmatic commerce platforms (see Figure 1) can effectively bridge information gaps, improve inventory and distribution to prevent shortages or overages and help companies be data-ready to meet actual demand. Beyond this, a programmatic approach unlocks the next stage of customer satisfaction and loyalty, personalizing the experience during and after the pandemic.

Programmatic Commerce Platform visualization
Figure 1. Programmatic Commerce Platform visualization. (Courtesy of Crisp)

References

  1. Bishop, D. (2020). Tracking Online Grocery’s Growth. Brick Meets Click.
  2. Mercatus. (2020). The Evolution of the Grocery Customer.
  3.  Briedis, H., et al. (2020). Adapting to the next normal in retail: The customer experience imperative. McKinsey & Company.
  4. Whiteside, J. (2020). Reimagining Store Design to Help Customers Better Navigate the Omni-Shopping Experience. Walmart.
  5.  Corke, R. (2020). Our Online Ordering Connection for Kroger is Here. The Dinner Daily.
  6.  Halla. (2016). Halla Grocery Solutions.
  7. Locai. (2018). Locai Meal Planning.
  8. Bluecore. (2019). Align Technology, Data, And Your Organization to Deliver Customer Value.

 

Megan Nichols
FST Soapbox

Four Influential Technologies Changing Food Manufacturing

By Megan Ray Nichols
No Comments
Megan Nichols

Some impressive technologies are not only impacting the food industry right now but will also have a huge impact in the future. As their use grows to be more prevalent, the industry will change to be smarter and more efficient, with continued improvements across the board.

1. AI and Advanced Robotics

While artificial intelligence and advanced robotics are two distinct technologies, they are frequently paired together. AI, and the data it digests, is used to command robots, allowing them to be more precise, more intelligent and more aware.

Most robots on their own are capable of completing only repetitive and clearly defined tasks. Throw something unique into the mix and they’ll either fumble or fail. However, when governed by data-based intelligence solutions like AI or machine learning, those robots become something incredibly advanced.

In the food industry, machinery and robots are leveraged to improve operations, further maintaining quality and efficiency, at affordable costs. They often work alongside human laborers to augment or enhance processes. They come with several unexpected benefits as well, such as much-improved safety for workers, faster and higher product output and consistent, reliable quality.

For example, JBS, one of the world’s largest meatpacking firms, deployed robotic butchers within its plants. The robots were used to slice more challenging meats, which reduced workplace injuries.

2. Automation

Automation stands alongside AI and advanced robotics, even incorporating those technologies to create a streamlined system. As of 2017, 73% of surveyed companies in the food and beverage manufacturing industry either had or were in the process of establishing automation within their facilities.

Many systems are designed to replace or enhance repetitive tasks, boosting their speed and accuracy, to significantly improve output, without incurring a loss in quality. It’s not just about hardware, like swapping a human laborer for a robot. It’s also achieved through software. Think supply chain management solutions that help plan for various events and experiences without human input.

When many of these technologies are used side-by-side, it strengthens their application and usability. As is true of advanced robotics, for example, AI can also be used to create more intelligent automation platforms. Instead of carrying out rote or simple tasks, they can be programmed to react and engage through any number of parameters. The system might slow production, for instance, based on a decrease in product demand. Or, it might swap to an alternate component or ingredient because of a shortage somewhere.

With the right controls and support, automation technologies are game-changing. With the global population growing and demands increasing more with each year, food manufacturers will look to streamline their operations and boost output in any way possible, and automation will be a go-to.

3. Digital Twins

Digital twins in food manufacturing are essentially simulated copies or a virtual representation of a physical system. That definition might seem confusing, but think of it as a clone that can be manipulated for testing and analytics.In other words, it is a twin of the actual system and information, in every sense of the word, albeit one that is more versatile and less vulnerable. It allows manufacturers and distributors to run simulations by feeding specific information into the system to identify patterns, recognize outcomes and much more.

As the systems and controls supporting the field become smarter and more digitized, digital twins in food manufacturing will find their way into product development, testing, post-production, distribution and nearly every other facet of the industry. It will become an integral component to not only understand what’s happening in the market but also for keeping up with the ebb and flow of supply and demand.

4. Blockchain

Even well before the pandemic, people had become much more conscious about the foods they consume. They want to know the origin of their goods and whether they’ve been sourced using safe, healthy and environmentally friendly methods. The problem with such demands is that, until recently, there haven’t been many solutions for increased visibility within the food supply chain.

Growing concerns for health are now a priority, and visibility is an absolute must. Blockchain technology is the answer, providing precisely the kind of visibility, efficiency, controls and collaboration that consumers want.

With this food manufacturing technology in place, someone could trace a head of lettuce back to its initial seeding. They can see who grew the plants and where, and which methods they used to mature the crop. Then, they can follow its journey to the store shelf.

How is such a thing possible? It all has to do with the technology. In its simplest form, Blockchain is a digital ledger or complete and digitized record of a particular data set. The data that goes in is added to something called a block, and as more is added, it is tacked on to the end of that block to create a long, linked record. Every bit of information is visible across the entire chain, hence the name blockchain.

Walmart is using the technology to track potential food contamination outbreaks. It empowers them to not just find the source but also find the many branches involved — like where goods might have been shipped and who may have purchased them.

Food Manufacturing Technology for the Future

While each food manufacturing technology discussed here is incredibly influential and will have a direct impact on the future of the industry, they are not the only solutions making waves. Some additional examples include:

  • Drones and automated delivery vehicles
  • 3-D printing for edible goods
  • Smart or precision agriculture
  • High-tech packaging
  • Smarter waste disposal and recycling

The takeaway is that technology is vastly improving the operational efficiency of the food supply chain, from farmers and manufacturers to the retail stores featuring goods on their shelves. There’s no right or wrong buy-in, as any one of these technologies can be used to streamline separate processes. The biggest challenge will be deciding what to upgrade first, especially when it comes to delivering high-quality, fresh goods in a prompt manner.

Checklist

2020 FSC Episode 2 Wrap: Pest Management and How Technology Is Transforming Business

By Maria Fontanazza
No Comments
Checklist

Last week we were joined by experts in pest management for Episode 2 of the 2020 Food Safety Consortium Virtual Conference Series. Although pest management may not be seen as the most exciting topic, all food plants are required to have an integrated pest management program. In addition, the digital transformation fast-tracked by COVID-19 is also driving innovation in the remote monitoring of pests.

Barney Debnam, global agriculture strategy lead at Microsoft kicked off the conversation with some key themes driving change within the global food system, which have also been accelerated by COVID: Geopolitical forces, consumerization, democratized biology, sustainability, shifting economics and food security. As technology continues to evolve and is adopted at a faster pace (think artificial intelligence and how accessible it is now), businesses will be able to transform their outcomes by becoming more predictive. The key technology enablers in the process include:

  • Internet of Things and edge computing
  • Advanced analytics
  • Artificial intelligence and cognitive computing
  • Graph technology
  • Blockchain
  • Digital workplace
  • Mixed reality

The most significant benefit of implementing technology such as remote monitoring into an IPM program is its ability to provide visibility and the data to back up what is happening in a facility.

Get access to the presentations and points discussed during this exclusive session by registering for the 2020 Food Safety Consortium Conference Virtual Series. Attendees will have access to upcoming sessions as well as the recordings of all sessions.