Tag Archives: automation

Derek Rickard, Cimcorp Automation Ltd.
FST Soapbox

Up to Speed: How Automated Order Picking Protects Product Freshness

By Derek Rickard
No Comments
Derek Rickard, Cimcorp Automation Ltd.

Today’s food producers and retailers are in a constant race against time. This race starts within the four walls of the distribution center, where products must move from receiving, through storage and dispatch—with high speed and accuracy. While the goal (or finish line) is to get these products to stores as fast as possible and meet consumer expectations, speed of delivery also plays a vital role in ensuring the quality of foods—particularly easily perishable ones like fruits, vegetables, eggs, meats, certain dairy products and baked goods.

Namely, efficient product flow means companies can meet shorter lead times and thereby deliver fresher, safer food—with longer shelf lives—to market. It’s a seemingly easy concept, yet many organizations continue to stumble as a result of ongoing operational challenges that slow distribution down, especially in facilities that continue to utilize manual order picking.

Major challenges include:

  • Continued reliance on physical labor with fulfillment speed highly dependent on the endurance of individual employees.
  • SKU proliferation due to product diversification, where facilities must now store and manage more products than ever before in a seemingly shrinking amount of space.
  • Seasonal spikes in business that require order picking staff to work harder and often longer hours to keep up with the influx of orders.

For organizations struggling to address these challenges and meet the need for speed in distribution, now is an opportune time to look at automation. There are now robotic order picking systems that can store, retrieve and move products effortlessly through a facility, ensuring rapid handling and very short lead times.

By choosing to automate, food producers and retailers can realize numerous benefits, including the following.

1. Accelerated Order Fulfillment

Naturally a robotic system can assemble orders and prepare them for outbound shipping far faster than humanly possible. Thus, an automated distribution center is often up to six times more efficient than a manual one. Notably, there are systems now that integrate order picking and product handling in a single solution, rather than separate functions (as traditionally done but which is too slow for fresh food distribution).

Such a system can perform both buffer storage and order picking in one simultaneous operation for significant time savings. Facilities can thereby prepare orders closer to the time of a truck’s arrival, instead of hours in advance. Foods then spend less time in transport and can maintain their quality and consistency. This also helps to reduce chances of spoilage, which in turn cuts back on waste and the supply chain’s impact on the environment.

2. Improved Ergonomics and Workplace Safety

In distribution centers that rely solely on manual order picking, employees have to run up and down long stretches of aisles and lift heavy crates or boxes. In addition to being inefficient, such manual operations make order picking a strenuous and injury-prone job. The risks for injury have only helped further the labor shortage problem seen nationwide, as job seekers show declining interest in material handling careers.

But when automated systems take over the majority of order picking processes, there is less human involvement—which can help fill in any gaps left by labor shortages. Order fulfillment speed also becomes less dependent on the physical capabilities of employees. Existing staff can then be elevated into new roles in managing and overseeing automated systems. These are safer and far more enriching positions that can draw a whole new pool of technical talent.

3. Better Space Utilization

As mentioned, there is a growing trend towards product diversification, where companies are now offering more options to consumers, such as additional sizes, flavors and health-conscious choices. As a result, the number of SKUs in most distribution centers is exploding. Some facilities once designed to house a few hundred SKUs are now dealing with thousands, leaving little room to spare.

Those challenged by SKU proliferation can consider an overhead robotic system that uses high-density, floor-based storage, where goods are stacked on the warehouse floor. This eliminates the need for racking or traveling around aisles. Plus, it reduces the number of movements required to pick an order. Facilities can store more products within their existing space, offsetting the costs of possible new construction. An overhead robotic system can also clear all products from the warehouse floor for easy, hygienic cleaning.

4. Flexibility to Keep Up During Seasonal Peaks

In all consumer goods industries, there are times of the year when demand spikes and orders come pouring in. For the food industry, companies tend to see spikes during the holiday season and in the summer months—times when people commonly host get-togethers.

Seasonal peaks can take a heavy toll on manual warehouse operations. Some try to hire temporary employees to get by, but that comes with challenges in providing proper training in a short span of time. But automated systems—particularly those with a modular design—are flexible and scalable, enabling facilities to adjust their number of robots to meet fluctuations in order volume—during seasonal highs and lows.

A notable example of a food company that is successfully leveraging automation is grocery leader Kroger. Namely, Kroger wanted to develop a state-of-the-art, automated plant and distribution center to achieve many of the benefits discussed above, including ensuring product quality and reducing employee risks of injury.

Built in Denver, Colorado, Kroger’s “Mountain View Foods” facility processes fresh conventional and organic milk, and packages aseptically processed milk, creams and juices. Within Mountain View Foods, Kroger has installed an end-to-end automated system that can store up to 36,000 crates and pick 32,000 crates per day. Cases are picked according to specified sequences on one end of the facility and then palletized for truck loading at the other, with significant storage buffering in between.

Cimcorp, Kroger, Automation
Having installed an end-to-end automated system, Kroger benefits from orders picked with 100-percent accuracy, at faster speeds, which results in shorter lead times and optimal product freshness for shoppers. Image courtesy of Cimcorp.

A warehouse control system (WCS) controls all robotic movements and serves as the brains behind the automation. The software also collects data on each processed order, giving Kroger traceable information to meet food safety requirements. Kroger benefits from orders picked with 100-percent accuracy, at faster speeds, which results in shorter lead times and optimal product freshness for shoppers.

Kroger’s story demonstrates the power of automation in enabling more streamlined order fulfillment. Those that choose to automate can overcome the many challenges that inhibit efficient product flow and thereby bolster their supply chain velocity. Simply put, faster fulfillment means fresher products in stores. And, fresher products are safer products for consumers to enjoy.

Eddie Hall, Vital Vio
FST Soapbox

How Automated Technology is Transforming Sanitation in Plant Operations

By Eddie Hall
No Comments
Eddie Hall, Vital Vio

Food safety remains a top-of-mind concern for food manufacturers, especially considering some of the top recalls in 2019 were caused by bacteria contamination—including Listeria and E. coli. Every aspect of the plant operation, from maintenance to executives, to junior staff and quality control, holds both responsibility and concern in producing safe food. Unfortunately, there’s a lot at stake when plant operations’ sanitation programs run into issues, which can cause health threats.

While the rapid explosion of new innovations complements our daily lives in efficiency and convenience, plant operations may find difficulty in keeping up-to-speed with new technology such as robotics, drones and automated applications. When facilities’ equipment becomes more and more outdated, it poses food safety challenges around cleaning, maintenance and upgrades.

Luckily, in some cases, innovation is becoming much easier to deploy. Opportunities abound for food processing plants to integrate new technologies into their operations to deliver significant returns on investment while simultaneously enhancing sanitation, safety and production efficiency on the plant floor.

The Dangers with Today’s Practices

There are many pitfalls with older, more traditional cleaning techniques. In a place where cleanliness is critical to food safety and public health around the world, the industry understands sanitation means more than just scrubbing, mopping and wiping. While these are important daily practices to be done around the processing plant, there are still concerns on whether this kind of intermittent cleaning is truly enough to keep surfaces completely sanitized—knowing that continuous cleaning around the clock seems impractical in any facilities.

Unfortunately, there are many areas, some very hard to reach, for bacteria and other pathogens to live and spread around a processing plant. Zone 1, which holds the conveyor belt and other common high-touch points, consistently comes into contact with food, chemicals and humans. However, for processors to reduce the likelihood of contaminated food, they must consider areas outside of Zone 1 as well—including employee break rooms, hallways and bathrooms—to implement automated sanitation technologies. Additionally, the most common food contaminants, such as Listeria, Salmonella and E. coli, are usually invisible to the naked eye. Therefore, plants need to employ automated technology to continuously kill microscopic bacteria, mold and fungi to prevent regrowth and ensure clean food and equipment.

Looking to New Tech to Fight Germs

When looking to upgrade a plant operation facility, automated technology should be top-of-mind. Automated food production technologies solve two main problems: Food safety and sanitation efficiency. Wash-down robotic systems work to prevent food contamination, while other automated robots complete tasks on the production floor such as packaging, transporting and lifting. With the CDC estimating that roughly one in six Americans suffer from foodborne illnesses, the need for improved sanitation design is integral.

In today’s age, there are several ways to achieve heightened cleanliness by incorporating automation and robotics into production lines. Slicers, dicers and cutters are manufactured with hygienic design in mind. Smart cleaning equipment can automatically store various cleaning steps. Data tracking applications can monitor sanitation steps and ensure all boxes are checked throughout the cleaning program.

Incorporating antimicrobial LED lighting ensures sanitation is truly integrated into the facility’s design—working continually 24/7 to kill and prevent bacteria, and its growth while also serving a dual purpose of both antimicrobial protection and a proper source of illumination. As is the case with this type of technology, once these lights are installed, it becomes an easy, hands-free way of reducing labor, chemicals and, in many cases, work stoppages.

According to Meticulous Research, the global food automation market is expected to be worth $14.3 billion by 2025. With automation set to explode, it’s important for leaders in the food and beverage industry to take advantage of safety tech innovations to advance sanitation around the processing plant. Facility upgrades to improve, enhance and automate sanitation could impact food manufacturers in the long-term by decreasing costs, preventing recalls, improving brand value, gaining consumer trust, minimizing risk and impacting the bottom line.

Megan Nichols
FST Soapbox

Machine Vision Training Tips to Improve Food Inspections

By Megan Ray Nichols
No Comments
Megan Nichols

As machines become more intelligent, every industry on earth will find abundant new applications and ways to benefit. For the food industry, which has an incredible number of moving parts and is especially risk-averse, machine vision and machine learning are especially valuable additions to the supply chain.

The following is a look at what machine vision is, how it can play a role in manufacturing and distributing foods and beverages, and how employers can train workers to get the most out of this exciting technology.

What Is Machine Vision?

Machine vision isn’t a brand-new concept. Cameras and barcode readers with machine vision have long been capable of reading barcodes and QR codes and verifying that products have correct labels. Modern machine vision takes the concept to new levels of usefulness.

Barcodes and product identifiers have a limited set of known configurations, which makes it relatively straightforward to program an automated inspection station to recognize, sort or reject products as necessary. Instead, true machine vision means handlers don’t have to account for every potential eventuality. Machine vision instead learns over time, based on known parameters, to differentiate between degrees of product damage.

Consider the problem of appraising an apple for its salability. Is it bruised or discolored? Machine vision recognizes that no two bruises look precisely alike. There’s also the matter of identifying different degrees of packaging damage. To tackle these problems, it’s not possible to program machine vision to recognize a fixed set of visual clues. Instead, its programming must interpret its surroundings and make a judgment about what it sees.

Apples, machine vision
On an apple, no two bruises are alike. Machine vision technology can help. Photo credit: Pexels.

The neural networks that power machine vision have a wide range of applications, including improving pathfinding abilities for robots. In this article, I’ll focus on how to leverage machine vision to improve the quality of edible products and the profitability of the food and beverage industry.

Applications for Machine Vision in the Food Industry

There are lots of ways to apply machine vision to a food processing environment, with new variations on the technology cropping up regularly. The following is a rundown on how different kinds of machine vision systems serve different functions in the food and beverage sector.

1. Frame Grabbing and 3-D Machine Vision
Machine vision systems require optimal lighting to carry out successful inspections. If part of the scanning environment lies in shadow, undesirable products might find their way onto shelves and into customers’ homes.

Food products sometimes have unique needs when it comes to carrying out visual inspections. It’s difficult or impossible for fallible human eyeballs to perform detailed scans of thousands of peas or nuts as they pass over a conveyor belt. 3-D machine vision offers a tool called “frame grabbing,” which takes stills of — potentially — tens of thousands of tiny, moving products at once to find flaws and perform sorting.

2. Automated Sorting for Large Product Batches
Machine vision inspection systems can easily become part of a much larger automation effort. Automation is a welcome addition to the food and beverage sector, translating into improved worker safety and efficiency and better quality control across the enterprise.

Inspection stations with machine vision cameras can scan single products or whole batches of products to detect flaws. But physically separating these products must be just as efficient a process as identifying them. For this reason, machine vision is an ideal companion to compressed air systems and others, which can carefully blow away and remove even a single grain of rice from a larger batch in preparation.

3. Near-Infrared Cameras
Machine vision takes many forms, including barcode and QR code readers. A newer technology, called near-infrared (NIR) cameras, is already substantially improving the usefulness and capabilities of machine vision.

Remember that bruised apple? Sometimes physical damage to fruits and vegetables doesn’t immediately appear on the outside. NIR technology expands the light spectrum cameras can observe, giving them the ability to detect interior damage before it shows up on the exterior. It represents a distinct advantage over previous-generation technology and human inspectors, both of which can leave flaws undiscovered.

Tips on Training Workers to Use Machine Vision

Implementing machine vision into a productive environment delivers major benefits, but it also comes with a potentially disruptive learning curve. The following are some ideas on how to navigate it.

1. Take Advantage of Third-Party Training Courses
Don’t expect employees to hit the ground running with machine vision if they’re not familiar with the fundamentals of how it works. Google has a crash course on machine learning, and Amazon offers a curriculum as well to help companies get their employees up to speed on the technology and how to use it.

2. Get the Lighting Right
Having the appropriate intensity of light shining on the food product is essential for the machine vision cameras to get a clear photo or video. The most common types of lighting for machine vision are quartz halogen, LEDs, metal halide and xenon lights. Metal halide and xenon are better for larger-scale operations because of their brightness.

Train employees to check the amount and positioning of the lighting before each inspection station starts up for the day, so that no shadows obscure products from view.

3. Single Out Promising Subject Matter Leaders
Companies today don’t seem to have much confidence in how well they’re preparing their workforce for tomorrow, including future innovations. According to Deloitte, just 47% of companies in the world believe they’re doing enough to train their employees on the technologies and opportunities of Industry 4.0.

Machine vision does not involve buying a camera or two, setting them up, then slapping the “autopilot” button. As products turn over, and manufacturing and distribution environments change and grow over time, machine vision algorithms require re-training, and you might need to redesign the lighting setup.

Employers should find individuals from their ranks who show interest and aptitude in this technology and then invest in them as subject matter experts and process owners. Even if an outside vendor is the one providing libraries of algorithms and ultimately coming up with machine vision designs, every company needs a knowledgeable liaison who can align company needs with the products on the market.

Machine Vision Is the Future of Food Inspections

The market for machine vision technology is likely to reach $30.8 in value by 2021, according to BCC Research.

It is important to remember that neither machine learning nor machine vision are about creating hardware that thinks and sees like humans do. With the right approach, these systems can roundly outperform human employees.

But first, companies need to recognize the opportunities. Then, they must match the available products to their unsolved problems and make sure their culture supports ongoing learning and the discovery of new aptitudes. Machine vision might be superior to human eyesight, but it uses decidedly human judgments as it goes about its work.

Lab grown meat

How Plant-Based Foods Are Changing the Supply Chain

By Maria Fontanazza
No Comments
Lab grown meat

The plant-based meat market is anticipated to be worth more than $320 million in the next five years, according to a report released last summer by Global Market Insights. As the popularity of meat-alternative products continues to rise, new challenges are being introduced to supply chain management. Joe Scioscia, vice president of sales at VAI explains some of these hurdles and proposes how technology can help.

Food Safety Tech: Is the growing popularity of plant-based foods introducing hazards or challenges to the supply chain?

Joe Scioscia, VAI
“The growing popularity of plant-based foods has presented a new set of challenges for the supply chain,” says Joe Scioscia of VAI.

Joe Scioscia: The growing popularity of plant-based foods has presented a new set of challenges for the supply chain, especially considering many of these organic items are being introduced by traditionally non-organic retailers. Impossible Foods received FDA approval for its plant-based burger in 2019, showing just how new the plant-based movement is to the industry.

Obviously, the organic supply chain and produce suppliers have long followed regulations for handling produce, such as temperature controls, cargo tracking, and supply and demand planning software, so the produce could be tracked from farm to table and in the case of a recall, be traced back to the source. But for meat alternatives that are combining multiple plant-based ingredients, organizations in the supply chain who are handling these products
have new food safety concerns. Considerations on how to store and process meat alternatives, how to treat each ingredient in the product and, most importantly, how to determine temperature controls or the source of contamination are all discussions the food industry is currently having.

FST: How are plant-based foods changing the dynamic of the supply chain from a food safety perspective?

Scioscia: The food supply chain has changed dramatically in recent years to become more complex, with food items traveling farther than ever before, containing more ingredients and required to follow stricter regulations. Many of the changes to the supply chain are for the better—organic and plant-based alternatives offer health benefits for consumers and are a move towards a more sustainable future. But the reality is that the supply chain isn’t quite there yet. Suppliers, retailers and producers at every part of the supply chain need to work together to ensure transparency and food safety compliance—including for plant-based products. Foodborne illnesses are still a real threat to the safety of consumers, and these same consumers are demanding transparency into the source of their food and sustainable practices from brands. All of these considerations are what’s making this next era of the food industry more complicated than ever before.

Because food safety compliance is always top of mind in the food industry to keep consumers safe, this new and complex supply chain has required companies to rely heavily on technology solutions to ensure plant-based products are equally as safe to consume as non-organic alternatives. These same solutions are also helping supply chains become more transparent for customers and streamline food processes to build a more sustainable future.

FST: What technologies can food companies and retailers use to better manage the supply chain risk while supporting the increased consumer demand for meat alternatives?

Scioscia: Utilizing a centralized software system is one tool many food suppliers and distributors can use to better visualize, trace and process products in the supply chain—including for plant-based alternatives. Having access to a central platform for business data to track assets and ensure food safety regulations are being met allows for companies to optimize processes and cut unnecessary costs along the way.

Heading into 2020, many organizations in the food supply chain are also looking at new applications like IoT, automation, and blockchain as ways to curb food safety issues. The FDA has taken steps to pilot blockchain and AI programs to better track drugs and food products, in conjunction with major food brands and technology companies. Other organizations are following suit with their own programs and many are looking at these solutions to improve their food tracking efforts. It’s clear technology has the most potential to make it easier on the industry to comply with food safety regulations while meeting customer demands for plant-based alternatives and organic options—all the while building a sustainable supply chain for the future.

Checklist

2020 Priorities: Sanitation, Automation and Brand Transparency in Supply Chain

By Maria Fontanazza
No Comments
Checklist

In a Q&A with Food Safety Tech, Eddie Hall, business development director and food safety expert at Vital Vio looks ahead to 2020 and how technology will be impacting food safety, the additional measures that the industry will be taking to protect consumers, and the critical emphasis on sanitation.

Food Safety Tech: What are some of the touch points for food safety innovation in the supply chain in 2020?

Eddie Hall, Vital Vio
Eddie Hall, business development director and food safety expert at Vital Vio

Eddie Hall: When we think of the supply chain, we often imagine food traveling during transportation—by road, rail and air. During transit, our food comes into contact with countless surfaces, hands, tools and bacteria that travels from the farm to the table. However, transit isn’t the only place for germ spread and bacteria growth. When food reaches the factory for processing and packaging, there are opportunities for contact with debris, mold and dust, along with un-sanitized machinery and employees. Not only does this negatively affect the health of our workers, but also the cleanliness and safety of the food that consumers are buying off the shelves. In food manufacturing plants, Zones 1 and 2 are the most obvious for safety innovation in the supply chain, given food is bound to come into contact with tools, conveyor belts, etc. However, processors must consider the touch points in Zones 3 and 4 as well—such as employee break rooms, bathrooms and offices around the plant that foster bacteria. If these areas are not cleaned, food manufacturers have a significantly higher chance of breeding bacteria in food production areas, even if the right protocols are put in place in those zones.

FST: How will the retail sector step up to the consumer demand for safer food?

Hall: Consumers are increasingly demanding transparency around how food ends up on their plate, and prioritizing purchasing from brands that they trust to be safe. Food suppliers are being careful to remove harmful chemicals from the manufacturing process, along with displaying ingredients and supply chain information. For example, Bumble Bee Foods is using blockchain technology for its tuna fish, allowing consumers to access detailed information around the tuna’s origin, authenticity, freshness and sustainability by scanning the QR code on its packaging. Panera Bread has been consistent in offering customers ingredient transparency [by] providing calorie counts on menu items and removing antibiotic-treated animal proteins, as well as vocalizing recent efforts to perform safety audits throughout its supply chain. Not only does tracking technology and clarity meet consumers’ demands, but [it] also helps retailers pinpoint locations of outbreaks, foodborne illness and mislabeling. We’re already seeing retailers step up to meet the growing demand for safer food, but in 2020 we will see an uptick in brand transparency around supply chain information, safety programs and ingredient clarity within restaurants, fast food chains, processing companies and grocery stores.

FST: How will automation play a role in advancing food safety?

Hall: Food processing companies and retailers are implementing remote monitoring technologies that track data and help measure protocol, temperature controls, sanitation, record-keeping and food traceability. Automation can also help advance food safety through methods such as enhance sanitation and sterilization efforts. It is critical for food industry employees to maintain clean environments, but continuously cleaning every hour of every day can become labor-intensive, and sometimes fall off the to-do list. Automated technologies can take on some of these tedious tasks and work in our favor to heighten food safety. For example, Stop and Shop’s new robot, Marty, patrols the aisles to detect food on the floor, torn packaging, empty shelves and more. However, robots aren’t the only place we’re seeing automation in action. Vital Vio has found a way to automate killing bacteria through antimicrobial LED lighting technology, which continuously kills pathogens with the flick of a switch. Automated tech isn’t meant to replace workers, but to enhance their work around cleaning, sanitizing and meeting safety requirements. In 2020, automation is expected to explode and it’s important for leaders in the food and beverage industry to take advantage of safety tech innovations to advance food safety in 2020 and beyond.

FST: How will food companies continue to work towards reducing contamination issues and recalls?

Hall: The U.S. government has stepped in to tackle issues in the food industry by implementing new regulations, such as FSMA. This regulation urges food companies to shift from reactively responding to safety and contamination issues, to proactively working to prevent them. In an effort to reduce recalls, retail giant Walmart recently employed blockchain to track its lettuce supply chains all the way back to the grower. For food companies to reduce contamination, they must also implement more automated sanitation technologies along the supply chain. The most common food contaminants are usually invisible to the naked eye, such as mold, Listeria, Salmonella and E. coli. Sanitation automation tech—such as antimicrobial LED lighting—can continuously kill microscopic bacteria and prevent regrowth, ensuring clean food and equipment. Not only will food companies begin implementing more sanitization technologies, but also focus on other ways, like blockchain traceability, to prevent food recalls and bacteria growth that pose serious health risks to their customers.

FST: Any additional comments?

Hall: Our Dirty Truth report reveals disturbing stats around Americans’ cleaning habits, such as 1 in 4 (27%) do not sanitize their hands after traveling on public transportation. This means that factory or grocery employees that commute to work via bus, train, etc. are bringing bacteria and other germs with them. What’s worse, 1 in 6 Americans get sick and 3,000 die each year from consuming contaminated foods or beverages. This alarming rate can only be improved if we see effort from all sides of the industry—including food processors, manufacturers, workers throughout the supply chain and retailers. Continuous cleaning and sanitation measures can be labor-intensive and sometimes impossible to tackle throughout the day. Luckily, automated technology exists and is expected to address this growing issue of contamination, the spread of bacteria, recalls, and consumer demand for safety and transparency.

Allison Kopf, Artemis

How Technologies for Cultivation Management Help Growers Avoid Food Safety Issues

By Maria Fontanazza
No Comments
Allison Kopf, Artemis

Visibility, accountability and traceability are paramount in the agriculture industry, says Allison Kopf, founder and CEO of Artemis. In a Q&A with Food Safety Tech, Kopf explains how growers can take advantage of cultivation management platforms to better arm them with the tools they need to help prevent food safety issues within their operations and maintain compliance.

Food Safety Tech: What are the key challenges and risks that growers face in managing their operations?

Allison Kopf: One of the easiest challenges for growers to overcome is how they collect and utilize data. I’ve spent my entire career in agriculture, and it’s been painful to watch operations track all of their farm data on clipboards and spreadsheets. By not digitizing processes, growers become bogged down by the process of logging information and sifting through old notebooks for usable insights—if they even choose to do that.

Allison Kopf, Artemis
Allison Kopf is the founder and CEO of Artemis, a cultivation management platform serving the fruit, vegetable, floriculture, cannabis, and hemp industries. She is also is an investment partner at XFactor Ventures and serves on the boards of Cornell University’s Controlled Environment Agriculture program and Santa Clara University’s College of Arts and Sciences.

I was visiting a farm the other day and the grower pulled out a big binder. The binder contained all of his standard operating procedures and growing specifications for the varieties he’s grown over the past 20 years. Then he pulled out a pile of black notebooks. If you’ve ever worked on a farm, you’d recognize grower notebooks anywhere. They’re used to log data points such as yield, quality and notes on production. These notebooks sit in filing cabinets with the hopeful promise of becoming useful at some point in the future—to stop production from falling into the same pitfalls or to mirror successful outcomes. However, in reality, the notebooks never see the light of day again. The grower talked about the pain of this process—when he goes on vacation, no one can fill his shoes; when he retires, so does the information in his head; when auditors come in, they’ll have to duplicate work to create proper documentation; and worse, it’s impossible to determine what resources are needed proactively based on anything other than gut. Here’s the bigger issue: All of the solutions are there; they’re just filed away in notebooks sitting in the filing cabinet.

Labor is the number one expense for commercial growing operations. Unless you’re a data analyst and don’t have the full-time responsibilities of managing a complex growing operation, spreadsheets and notebooks won’t give you the details needed to figure out when and where you’re over- or under-staffing. Guessing labor needs day-to-day is horribly inefficient and expensive.

Another challenge is managing food safety and compliance. Food contamination remains a huge issue within the agriculture industry. E. coli, Listeria and other outbreaks (usually linked to leafy greens, berries and other specialty crops) happen regularly. If crops are not tracked, it can take months to follow the contamination up the chain to its source. Once identified, growers might have to destroy entire batches of crops rather than the specific culprit if they don’t have appropriate tracking methods in place. This is a time-consuming and expensive waste.

Existing solutions that growers use like ERPs are great for tracking payroll, billing, inventory, logistics, etc., but the downside is that they’re expensive, difficult to implement, and most importantly aren’t specific to the agriculture industry. The result is that growers can manage some data digitally, but not everything, and certainly not in one place. This is where a cultivation management platform (CMP) comes into play.

FST: How are technologies helping address these issues?

Kopf: More and more solutions are coming online to enable commercial growers to detect, prevent and trace food safety issues, and stay compliant with regulations. The key is making sure growers are not just tracking data but also ensuring the data becomes accessible and functional. A CMP can offer growers what ERPs and other farm management software can’t: Detailed and complete visibility of operations, labor accountability and crop traceability.

A CMP enables better product safety by keeping crop data easily traceable across the supply chain. Rather than having to destroy entire batches in the event of contamination, growers can simply trace it to the source and pinpoint the problem. A CMP greatly decreases the time it takes to log food safety data, which also helps growers’ bottom line.

CMPs also help growers manage regulatory compliance. This is true within the food industry as well as the cannabis industry. Regulations surrounding legal pesticides are changing all the time. It’s difficult keeping up with constantly shifting regulatory environment. In cannabis this is especially true. By keeping crops easily traceable, growers can seamlessly manage standard operating procedures across the operation (GAP, HACCP, SQF, FSMA, etc.) and streamline audits of all their permits, licenses, records and logs, which can be digitized and organized in one place.

FST: Where is the future headed regarding the use of technology that generates actionable data for growers? How is this changing the game in sustainability?

Kopf: Technology such as artificial intelligence and the internet of things are changing just about every industry. This is true of agriculture as well. Some of these changes are already happening: Farmers use autonomous tractors, drones to monitor crops, and AI to optimize water usage.

As the agriculture industry becomes more connected, the more growers will be able to access meaningful and actionable information. Plugging into this data will be the key for growers who want to stay profitable. These technologies will give them up-to-the-second information about the health of their crops, but will also drive their pest, labor, and risk & compliance management strategies, all of which affect food safety.

When growers optimize their operations and production for profitability, naturally they are able to optimize for sustainability as well. More gain from fewer resources. It costs its customers less money, time and hassle to run their farms and it costs the planet less of its resources.

Technology innovation, including CMPs, enable cultivation that will provide food for a growing population despite decreasing resources. Technology that works both with outdoor and greenhouse growing operations will help fight food scarcity by keeping crops growing in areas where they might not be able to grow naturally. It also keeps production efficient, driving productivity as higher yields will be necessary.

Beyond scarcity, traceability capabilities enforce food security which is arguable the largest public health concern across the agricultural supply chain. More than 3,000 people die every year due to foodborne illness. By making a safer, traceable supply chain, new technology that enables growers to leverage their data will protect human life.

Data protection, security

The Digital Transformation of Global Food Security

By Katie Evans
No Comments
Data protection, security

Modern food supply chains are inherently complex, with products typically passing through multiple suppliers and distributors, as well as countries and continents, before they end up on the supermarket shelf. While global supply chains offer consumers greater choice and convenience, they also make protecting the security of food products more challenging. With additional stakeholders between farm and fork, products are exposed to an elevated risk of biological or chemical contamination, as well as food counterfeiting and adulteration challenges—potentially putting consumer health and brand reputation in jeopardy.

Given the importance of maintaining the safety, quality and provenance of food products, global regulatory bodies are placing the integrity of supply chains under increased scrutiny. In the United States, for example, the adoption of FSMA moved the focus from responding to foodborne illnesses to preventing them by prioritizing comprehensive food testing measures, enforcing inspections and checks, and enabling authorities to react appropriately to safety issues through fines, recalls or permit suspensions.1 Similarly, China’s revised Food Safety Law (known as FSL 2015) is widely considered to be the strictest in the country’s history, and seeks to drive up quality standards by empowering regulators, and enhancing traceability and accountability through robust record-keeping. 2 The European Union continues to closely regulate and monitor food safety through its General Food Law, which is independently overseen by the European Food Safety Authority from a scientific perspective.

Achieving the Highest Standards of Food Security, Integrity and Traceability

For producers, manufacturers and distributors, the heightened regulatory focus on the security and integrity of the food supply chain has placed additional emphasis on accurate record-keeping, transparent accountability and end-to-end traceability. To meet the needs of the modern regulatory landscape, food chain stakeholders require robust systems and tools to manage their quality control (QC), environmental monitoring and chain of custody data. Despite this, many businesses still handle this information using paper-based approaches or localized spreadsheets, which can compromise operational efficiency and regulatory compliance.

The fundamental flaw of these traditional data management approaches is their reliance on manual data entry and transcription steps, leaving information vulnerable to human error. To ensure the accuracy of data, some companies implement resource-intensive verification or review checks. However, these steps inevitably extend workflows and delay decision-making, ultimately holding up the release of products at a high cost to businesses. Moreover, as paper and spreadsheet-based data management systems must be updated by hand, they often serve merely as a record of past events and are unable to provide insight into ongoing activities. The time lag associated with recording and accessing supply chain information means that vital insight is typically unavailable until the end of a process, and data cannot be used to optimize operations in real-time.

Furthermore, using traditional data management approaches, gathering information in the event of an audit or food safety incident can be extremely challenging. Trawling through paperwork or requesting information contained in spreadsheets saved on local computers is time-consuming and resource-intensive. When it comes to establishing accountability for actions, these systems are often unable to provide a complete audit trail of events.

Digital Solutions Transform Food Security and Compliance

Given the limitations of traditional workflows, food supply chain stakeholders are increasingly seeking more robust data management solutions that will allow them to drive efficiency, while meeting the latest regulatory expectations. For many businesses, laboratory information management systems (LIMS) are proving to be a highly effective solution for collecting, storing and sharing their QC, environmental monitoring and chain of custody data.

One of the most significant advantages of managing data using LIMS is the way in which they bring together people, instruments, workflows and data in a single integrated system. When it comes to managing the receipt of raw materials, for example, LIMS can improve overall workflow visibility, and help to make processes faster and more efficient. By using barcodes, radiofrequency identification (RFID) tags or near-field communication, samples can be tracked by the system throughout various laboratory and storage locations. With LIMS tracking samples at every stage, ingredients and other materials can be automatically released into production as soon as the QC results have been authorized, streamlining processes and eliminating costly delays.

By storing the standard operating procedures (SOPs) used for raw material testing or QC centrally in a LIMS, worklists, protocols and instrument methods can be automatically downloaded directly to equipment. In this way, LIMS are able to eliminate time-consuming data entry steps, reducing the potential for human error and improving data integrity. When integrated with laboratory execution systems (LES), these solutions can even guide operators step-by-step through procedures, ensuring SOPs are executed consistently, and in a regulatory compliant manner. Not only can these integrated solutions improve the reliability and consistency of data by making sure tests are performed in a standardized way across multiple sites and testing teams, they can also boost operational efficiency by simplifying set-up procedures and accelerating the delivery of results. What’s more, because LIMS can provide a detailed audit trail of all user interactions within the system, this centralized approach to data management is a robust way of ensuring full traceability and accountability.

This high level of operational efficiency and usability also extends to the way in which data is processed, analyzed and reported. LIMS platforms can support multi-level parameter review and can rapidly perform calculations and check results against specifications for relevant customers. In this way, LIMS can ensure pathogens, pesticides and veterinary drug residues are within specifications for specific markets. With all data stored centrally, certificates of analysis can be automatically delivered to enterprise resource planning (ERP) software or process information management systems (PIMS) to facilitate rapid decision-making and batch release. Furthermore, the sophisticated data analysis tools built into the most advanced LIMS software enable users to monitor the way in which instruments are used and how they are performing, helping businesses to manage their assets more efficiently. Using predictive algorithms to warn users when principal QC instruments are showing early signs of deterioration, the latest LIMS can help companies take preventative action before small issues turn into much bigger problems. As a result, these powerful tools can help to reduce unplanned maintenance, keep supply chains moving, and better maintain the quality and integrity of goods.

While LIMS are very effective at building more resilient supply chains and preventing food security issues, they also make responding to potential threats much faster, easier and more efficient. With real-time access to QC, environmental monitoring and chain of custody data, food contamination or adulteration issues can be detected early, triggering the prompt isolation of affected batches before they are released. And in the event of a recall or audit, batch traceability in modern LIMS enables the rapid retrieval of relevant results and metadata associated with suspect products through all stages of production. This allows the determination of affected batches and swift action to be taken, which can be instrumental in protecting consumer safety as well as brand value.

Using LIMS to Protect Security and Integrity of the Food Supply Chain

Increasingly, LIMS are helping businesses transform food security by bringing people, instruments and workflows into a single integrated system. By simplifying and automating processes, providing end-to-end visibility across the food supply chain, and protecting the integrity of data at every stage, these robust digital solutions are not only helping food supply chain stakeholders to ensure full compliance with the latest regulations; they are enabling businesses to operate more efficiently, too.

References

  1. FDA. (2011). FDA Food Safety Modernization Act. Accessed October 3, 2019. Retrieved from https://www.fda.gov/food/food-safety-modernization-act-fsma/full-text-food-safety-modernization-act-fsma.
  2. Balzano, J. (2015). “Revised Food Safety Law In China Signals Many Changes And Some Surprises”. Forbes. Accessed October 3, 2019. Retrieved from https://www.forbes.com/sites/johnbalzano/2015/05/03/revised-food-safety-law-in-china-signals-many-changes-and-some-surprises/#624b72db6e59.
Laura Nelson, Alchemy

Changing Consumer Preferences and Employee Compliance Training Driving Industry Evolution

By Maria Fontanazza
No Comments
Laura Nelson, Alchemy

The food industry is undergoing considerable change, especially as consumers become increasingly more vocal about their preferences and concerns, and as technology improvement and adoption plays a larger role in the conversation. In a recent Q&A with Food Safety Tech, Laura Dunn Nelson, vice president of food safety at Alchemy, shares her thoughts about current industry trends and how they are impacting food companies, where more help is needed, as well as ways in which companies can help advance food safety culture internally.

Food Safety Tech: The food industry is rapidly evolving. What are some of the trends you’re seeing and are these posing different challenges to food manufacturers?

Laura Dunn Nelson: The food industry is rapidly evolving in three key areas: Who produces our food, the variety of our food, and how consumers access our food.

As consumers continue to shift their food preferences toward an increase in healthy ingredients, locally sourced products, and clean labels, companies in turn continue to innovate and reformulate. Mergers and acquisitions continue as larger companies look to partner with niche companies that are focused on products marketed to the health-conscious consumer. Companies like Impossible Foods and Beyond Meat are expanding rapidly, reaching both vegans and meat eaters in the United States and expanding into international markets. Ever-changing consumer preferences create challenges for the industry to accelerate their research and development processes in order to remain competitive in the marketplace.

Changes in product formulas and increases in product lines create the need for new ingredient procurement, changes in production schedules, and new operating procedures. There has been a proliferation of start-up companies using CBD as an ingredient for food and beverages despite the lagging food safety regulations forcing some city and state regulators like New York City to create their own ban of CBD products. As the FDA explores future regulations, producers and consumers are left to determine the safety of these products.

Home delivery of food continues to be a hot trend as the market continues to grow for companies like UberEats, Grubhub, retailers and foodservice companies like Domino’s Pizza where you can Tweet your pizza order. The home delivery service area presents new considerations for food safety including monitoring appropriate product temperatures.

Finally, discussion around blockchain technology continues to gain prominence as companies work to develop transparency within their supply chain. For many companies, this will translate into a significant shift in technology adoption and a move away from disparate data sources and therefore an investment in not only the technology but in revising their procurement processes.

Laura Nelson, Alchemy
Laura Nelson is vice president of food safety at Alchemy and currently serves as the vice-chair of the Food Safety Culture Professional Development Group (PDG) for IAFP.

FST: What are the areas in which you feel companies need a bit more guidance?

Nelson: How we effectively train our employees to ensure learning and comprehension is paramount to our success in the future. IBM Institute for Business Value recently completed their study “The Enterprise Guide to Closing the Skills Gap,” and noted “120 million workers in the world’s biggest economies may need to be retrained as a result of artificial intelligence (AI) and automation in the workplace.” Reskilling will be the new norm as new technologies and automation of equipment disrupt the current state.

Deloitte noted that “reinventing the way people learn” was the number one trend in the 2019 Global Human Capital Trends Report. Many companies are focused almost exclusively on mandatory compliance training and conducting the training the same way they have for years. Typically, orientation food safety training is provided during the employee’s first week of work and annual refreshers are given every year. In the Global Food Safety Training Survey that Alchemy provides to the global industry with Campden BRI, we consistently find that 67% of responding QA managers report that employees do not follow their food safety programs, despite their food safety training. Unfortunately, the emphasis on food safety is often relegated to that one day a year of refresher training with little reinforcement the remaining 364 days of the year. The ‘noise’ of competing priorities of production and customer expectations often distracts employees from their food safety responsibilities.

Some companies still define training as classroom training when, in fact, employees are being trained each and every day by their supervisors and peers. Companies that put additional emphasis in not only their training but validation of training through observations of employees’ food safety behaviors achieve higher food safety compliance. The power of two-way conversations between the employee and the supervisor as a coach creates an environment of communication and trust.

Alchemy worked with independent researchers to determine the effect of active coaching with prescribed behavior feedback on the plant floor. The results were conclusive: every facility included in the study revealed a 38% improvement in aligned employee behaviors.

Ultimately, companies need to evaluate their current learning organization for effectiveness and focus on job competencies and their ongoing assessment of compliant employee behaviors.

FST: What maturity level are you seeing in the industry related to food safety culture and the related implementation of best practices?

Nelson: The food industry is still relatively new to the concept of a mature food safety culture, and even how to define that. The industry focus of this topic has largely been driven by efforts within the GFSI community, particularly with the publication of the position paper “A Culture of Food Safety.” Pioneers in food safety culture research, like Dr. Lone Jespersen, and emerging training assessment tools are working toward pushing these newer concepts to the mainstream of our industry.

As with many important constructs, the QA/QC team is typically tasked with introducing this concept to their organization, defining their company’s level of food safety culture maturity, and establishing a continuous improvement plan. This is a tough ask from individuals who typically have a technical education background with little experience in behavioral science. To address these challenges, there are a growing number of consultants, books, and resources to help define a company’s food safety culture maturity and establish improvement strategies.

To help frame the benefits of a mature culture, a recent publication by Lone Jespersen et al, “The Impact of Maturing Food Safety Culture and a Pathway to Economic Gain,” notes the value of a mature food safety culture in reducing the cost of poor quality and food safety risks. Research indicates that many companies are currently in mid-maturity of their food safety culture. Suggested best practices to help an organization mature their food safety culture include:

  1. Foster cross-company ownership of food safety.
  2. Move from compliance driven operations to risk reduction through continuous improvement.
  3. Improve engagement skills of technical staff.

The first step is an assessment to understand the company’s unique performance gaps, either through an internal review or an external assessment. Once the specific gaps are identified, companies can develop their food safety culture improvement plan and execute. It’s helpful to conduct a reassessment over time to ensure the established improvement strategies are successful.

The effort can be challenging but research confirms that a more mature food safety culture will deliver improved food safety performance of food safety behaviors, improved product quality, and a reduction in food safety risks.

FST Soapbox

A Digital Approach to Environmental Monitoring: Let’s Get Proactive!

By David Hatch
No Comments

Technology and automation for safety and surveillance have already impacted nearly every industry in the world. For example, in the United States and many other developed regions, we have just lived through the transformation to electronic health records within the healthcare industry. Prior to that, we lived through the digital transformation of all of our banking information to an online banking platform—now the norm across the world.

However, the food and beverage industry is still learning how technology can improve their organizations. The food safety segment of this market is particularly in need of a digital transformation, as the risk associated with foodborne illness is potentially catastrophic to food companies, and moreso, to the end consumers who are impacted by preventable pathogenic outbreaks.

Along with regulation advancements, such as the timed roll-out of FSMA, the industry continues to work towards a more effective approach to food safety. But most regulations, and advancements in the industry are pointed toward a reactive stance to food safety issues, rather than a preventive stance. For example, although traceability is important in leading investigations to the source and taking remediation steps sooner, a more proactive approach to prevention should be considered when investing in food safety programs.

This is where the importance of an automated environmental monitoring program comes in. To be proactive requires a commitment to embracing data and digital technology. Knowing where to start to effectively pivot your digital approach can be a challenge.

Understanding the following thought process can help you to recognize areas of potential improvement and growth within your environmental monitoring program.

  • Define Your Business Objectives. Ask how profitability and production uptime is connected to food safety issues.
  • Verify Suppliers. Establish protocols for incoming product from external suppliers and validate their food safety performance and ability to maintain a clean facility.
  • Modernize Your Environmental Monitoring Program (EMP). Are you able to confirm that your EMP is being executed consistently? Across all facilities?
  • Understand Data Exhaust. See how your organization’s valuable data can be used to identify trends and accelerate root cause analysis that impact decision-making processes.

Define Your Business Objectives

Food companies large and small are being challenged to implement required processes and procedures to meet the demands of FSMA, and ultimately achieve a more proactive and preventative food safety stance. Transformation in this arena, led by government regulation, and enhanced by standards certification requirements, has highlighted the responsibility of suppliers and manufacturers to protect consumers.

Many organizations are not aware that a single failure in their food safety program could actually be the most devastating profitability risk that the organization faces today. When your organization is focused on production uptime and profitability, it can be easy to overlook the details involved in maintaining a strong food safety program. In reality, though, food safety and profitability are inextricably linked due to the risk of production interruptions that can be caused by safety issues.

Whenever a food recall occurs, it has the potential to start the dominoes falling, with major implications regarding costs, reputational damage, compliance penalties, supply chain interruption, and sales declines. Worse yet, these impacts can last for years after the actual event. By delaying both the importance of recognizing the seriousness of this risk as well as taking necessary steps to prevent it, your organization’s reputation could be on the line.

Unfortunately, planning is often sacrificed when managers fail to implement the proper technological solutions. Fulfilling fundamental documentation requirements involves a smart, automated approach. This is the best way to optimize recall prevention. By incorporating an automated EMP process, a supplier management system, and other FSMA Preventive Controls measures, suppliers ultimately improve the strength of the entire chain for their partners, consumers and themselves.

There are many other facets to food safety, but the EMP is where inspectors and auditors will look to see the indicators of contamination and the efficacy of your sanitation controls. Therefore, it is critical that your organization exhibit not only that you are on top of things and are following your EMP procedures consistently, but that you can analyze and pinpoint issues as they arise, and that you have a track record of corrective actions in response to those issues. This, in-turn, allows you to see where your business objectives are most at-risk.

Regardless of which specific food industry segment your company operates in, or which governing body it reports to, it’s essential to stay informed and compliant with changing regulations in order to reduce the risk of experiencing a recall. In a strategic operational role, intelligent environmental monitoring allows companies to not only proactively work to avoid public health issues, but is vital to retaining a consistent bottom line.

Verify Suppliers

Earlier this year, the FDA heralded what they call a “New Era of Smarter Food Safety”. As technology becomes increasingly accessible, more and more companies are investigating how technology can be used to harness and control the growing complexity of supply chain implications.

The challenge of making sure your organization is doing its due diligence to prevent recalls is further complicated when incorporating outside suppliers. For example, 15% of the United State’s overall food supply is imported from more than 200 other countries, according to the FDA. Making sure the product coming into a facility is also meeting your standards is vital to preventing pathogens from entering your supply chain either through containers, people, or the incoming product itself.

The complexity grows exponentially when we contemplate what this means for tracking food safety across a supply chain of this scope. Generally suppliers are asked to provide verification for the cleanliness of the product they are bringing into your facility. However, by going a step further and establishing test points for the product when it comes in, you will be better equipped to catch pathogens before they can enter into your own supply chain and potentially contaminate other products. While you may already have a good relationship with your suppliers, being able to independently verify the safety of their products and that their own processes are working, creates a mutually beneficial relationship.

Modernize Your Environmental Monitoring Program

Food experts at the World Health Organization headquarters in Geneva discussed the critical nature of ensuring food safety across geographic boundaries, as it is an issue that affects everyone. Incidents of pathogen outbreaks around the world have a direct impact on the health of global citizens, with one in 10 people falling ill due to food contamination.

A traditional EMP allows organizations to continuously verify that their sanitation programs are working by scheduling testing, monitoring results for any signs of pathogens, and maintaining compliance with regulatory bodies. Historically, this type of program is documented in spreadsheets and three-ring binders, but today the acceptance of new tools being offered by vendors and labs are expanding offerings to modernize the monitoring process.

Food safety professionals, many of whom are trained microbiologists, should have better tools at their disposal than spreadsheets that force them to manually sift through data. All regulatory bodies in the food industry have guidelines when it comes to where, what, and when you should be testing in your facilities. Ensuring that this is happening is a basic requirement for meeting regulatory mandates.

By choosing an automated EMP, FSQA teams are able to schedule testing plans including randomization and test point coverage rules, see what testing is being performed when, and obtain all testing data in one system for ease of access before or during an audit. This offers an “always-on” source of audit data and more importantly, trending and root-cause analysis capabilities to find and define actions to remediate recurring problems.

Further, an automated EMP that is integrated with your food safety plan allows you to set up workflows and automatically notify appropriate team members according to your organization’s policies. Each remediation step can be recorded and time stamped as the corrective action moves towards completion.

Understand Data Exhaust

A dominant theme pushed forward by FSMA is the need to document all aspects of your food safety plan, from the written outline to the records indicating proper implementation. Today’s manufacturers face a time of heightened regulation, and with stricter enforcement comes greater requirements for documentation. Automated EMPs not only provide your organization insight into what is happening within your facilities for documentation, it also gives time back to your FSQA team who, instead of spending their days with three ring binders, can analyze and investigate recurring issues in your facility to look for new, innovative ways for the organization to maintain a high standard of quality.

However, effective testing also means reading, understanding and responding to results. It is not enough to simply meet the required volume and frequency of environmental testing metrics. You need to use the resulting information to effect change and improvements by lowering the likeliness of pathogens, allergens and contaminants from entering the food supply chain. The more data collected, the more it leads to true understandings. What testing might show is just the symptoms of the problem—not the root cause of a far bigger problem. As more data is available, it becomes more valuable through the insights that can be gained through trend analysis. This, in turn, moves the conversation to higher levels within the organization who care about ensuring productivity and reducing avoidable risk.

Incorporating your lab into the equation is essential. Find a lab partner that offers an automated testing program that is integrated with their LIMS. Your organization will then be in a better position to ensure results are being responded to in an appropriate time frame.

There are many diagnostic tools in use today, both in-plant and at the lab. Each of these tools generates “data exhaust” in the form of a diagnostic result. But are your data streams being integrated and analyzed to find correlations and potential cause/effect relationships? Or does your ATP device simply record its data to a dedicated laptop or spreadsheet?

Testing, combined with an automated EMP, can allow you to combine data from various diagnostic systems (on-premise or from your lab partner) to identify trends and therefore a more holistic path to remediation. For this to occur, data must be accessible, aggregated and actionable, which an automated EMP achieves.

Forward-thinking companies and facility managers are leveraging valuable software solutions to improve processes, protect reputations, minimize inefficiencies, and simplify multifaceted compliance and audit tasks. Over the next three to five years, numerous organizations will reduce their risk of food recalls by combining their EMPs with analytics capabilities to reduce food risk and improve quality using diagnostic solutions and data assets. This change will be arduous, as all digital transformations in other industries have shown. But, in the end, they have shown the value and long-term success that the food industry now needs to experience.

Robotic technology, automation

Automation Bandwagon: Know the Challenges Before Jumping On

By Maria Fontanazza
No Comments
Robotic technology, automation

The food industry is behind high tech industries when it comes to automating certain manufacturing and warehousing processes. Although the advantages of using automation technologies can benefit many food companies in the long run, they should also be aware of the potential hurdles before moving forward. “With our growing population, we’re going to have to grow more food with [fewer] resources—automation will enable us to do that,” said Wendy White, project manager, food safety at Georgia Tech during her presentation at the IAFP annual meeting in Louisville, KY. “There are a lot of jobs in our industry that will benefit from automation—I don’t think it will necessarily eliminate jobs; I think it will help eliminate the harshness of some of the repetitive tasks.”

The benefits of automation are clear (especially for processes that involve close precision). Automation technologies can contribute to preventing injuries on the job, promote operational efficiencies, and give companies better access to records and reporting. They also can in turn enable the production of more consistent products, aid in faster product release and lower food costs. The following are the challenges that food companies may face, which include the reproduction of human senses, having the facility footprint that allows for these technologies, expense and complexity, and potential vulnerability to outages and even cybercrimes.

Challenge 1: It’s hard to replicate a human. It’s difficult to replicate any human task that requires thought. “For example, it’s hard for us to understand how many decisions go into picking off an apple from a tree,” said White. “It’s actually extremely hard for a robot to do… we underestimate how many things happen before you pick an apple.” White referred to a project at the Georgia Tech Research Institute’s Food Processing Technology Division that uses cameras to assess characteristics of an apple (i.e., insect intrusion spots, bruises, damage, ripeness, desired color), and integrates different sensing capabilities into a robotic arm. The robotic arm can sense the different gases being produced by the apple and can understand if it is at the peak of its ripeness. Yet, doing this type of work in a lab is very different from operating the robotic arm out in an actual apple orchard, so there is still a lot of work to be done.

Another example is the process of deboning a chicken carcass. “We have to figure out a way to get the bones off faster,” said White, adding that with American consumption of chicken reaching about 92 pounds annually, the poultry industry is trying to keep up. There are safety concerns with deboning, including making sure that a sliver of bone or cartilage is not left on the end product. It’s another task that is not easy for a robot to execute. She discussed current work that is using cameras and x-ray technology to understand the joint location, and from there this information is fed into an algorithm to help the robot make decisions that a trained human would intrinsically make. Once again, it takes a lot of effort for a robot to make those decisions, White pointed out.

Challenge 2: Facility footprint. Implementing automation technologies usually requires a larger facility footprint, and many food companies simply don’t have the space.

Challenge 3: Robot injuries. According to OSHA, about 4,500 injuries occurred in food facilities in 2013, two of which were robot related. However, those two robot-related injuries resulted in death. Although robot injuries are less likely to occur, they are usually more serious when they do happen, cautioned White. She stated between 1984 and 2013, 38 robot-related accidents were reported and 28 resulted in fatalities.

Challenge 4: Finding increasingly skilled labor. An employee needs to operate the robot. Although this may not seem like it would be difficult, the question is whether the existing workforce at a company can handle a completely different way of doing their jobs. Finding the level of skill required to either operate these robots or finding the employee who is willing to even work with these technologies could be a hurdle. White added that she is seeing a lot of research around co-bots, or collaborative robots, which is the term for robots that provide assistance to humans in conducting tasks such as heavy lifting.

Challenge 5: Complexity. The more complex the technology, the more likely there is to be an issue. And when this issue occurs, how long will it take to fix? Will it shut down an entire product line? This is also a consideration for companies that are considering retrofitting their existing facilities.

“We owe it to our workforce to make their jobs as safe and as easy as possible,” said White. She encourages industry to pursue automation but to also be aware of these challenges and vulnerabilities to ensure that companies are approaching implementation in the right way.