Following a report released nearly two weeks ago about the potential danger posed by toxic heavy metals found in baby foods manufactured by several major companies, FDA has issued a response. The report, “Baby Foods Are Tainted with Dangerous Levels of Arsenic, Lead, Cadmium, and Mercury”, was released by the U.S. House of Representatives Committee on Oversight and Reform Subcommittee on Economic and Consumer Policy on February 4. The Subcommittee stated that FDA should require baby food manufacturers to test their finished products for toxic heavy metals and require any toxic heavy metals be reported on food labeling. It also stated that FDA should set maximum levels of toxic heavy metals allowed in baby foods.
“The FDA has been actively working on this issue using a risk-based approach to prioritize and target the agency’s efforts. Consumers should know that FDA scientists routinely monitor levels of toxic elements in baby foods, along with other foods consumed in the country’s diet, through the Total Diet Study,” the agency stated in a CFSAN update. “Further, the FDA also monitors baby food under the FDA’s compliance program for Toxic Elements in Food and Foodware, and Radionuclides in Food and through targeted sampling assignments.”
FDA cited its work in sampling infant rice cereal for arsenic, which it says has resulted in safer products on the market, along with its recent court order to stop a U.S. company from distributing adulterated juice that had potentially harmful levels of inorganic arsenic and patulin (a mycotoxin).
The CFSAN update, however, did not specifically address the companies or baby foods called out in the Subcommittee’s report.
Last week a report released by Congress cited dangerous levels of toxic heavy metals in several brands of baby food. Back in November 2019, the Subcommittee on Economic and Consumer Policy asked for internal documents and test results from baby food manufacturers Nurture, Inc. (Happy Family Organics), Beech-Nut Nutrition Company, Hain Celestial Group, Inc., Gerber, Campbell Soup Company, Walmart, Inc., and Sprout Foods. According to the staff report, Nurture, Beech-Nut, Hain and Gerber responded to the requests, while Walmart, Campbell and Sprout Organic Foods did not.
The findings indicate that significant levels of arsenic, lead, cadmium and mercury were found in the baby foods of the four manufacturers who responded to the Subcommittee’s requests (Nurture, Beech-Nut, Hain and Gerber). It also stated the alarming point that, “Internal company standards permit dangerously high levels of toxic heavy metals, and documents revealed that the manufacturers have often sold foods that exceeded those levels.”
The Subcommittee voiced “grave concerns” that the baby food made by Walmart, Sprout Organic Foods and Campbell was “obscuring the presence of even higher levels of toxic heavy metals in their baby food products than their competitors’ products” due to their lack of cooperation.
In addition, the report states that the Trump administration “ignored a secret industry presentation to federal regulators revealing increased risks of toxic heavy metals in baby foods” in August 2019.
“To this day, baby foods containing toxic heavy metals bear no label or warning to parents. Manufacturers are free to test only ingredients, or, for the vast majority of baby foods, to conduct no testing at all,” the report stated (infant rice cereal is the only baby food held to a stringent standard regarding the presence of inorganic arsenic).
As a result of the findings, the Subcommittee has made several recommendations:
FDA should require baby food manufacturers to test their finished products for toxic heavy metals.
FDA should require manufacturers to report toxic heavy metals on food labels.
Manufacturers should find substitutes for ingredients that are high in toxic heavy metals or phase out the ingredients that are high in toxic heavy metals.
FDA should set maximum levels of toxic heavy metals allowed in baby foods.
Parents should avoid baby foods that contain ingredients that test high in toxic heavy metals.
There are more than 1000 different pesticides in use around the world. While these chemicals are designed to target insects, weeds and other pests, residual amounts can remain on food that is subsequently eaten by consumers. The effects of pesticides on the population can be acute or chronic depending on the exposure. Acute over-exposure can cause poisoning and result in long-term effects such as cancer or reproductive issues. Chronic, lower dose exposure to pesticides has been associated with health issues such as respiratory problems, skin conditions, depression, birth defects, cancer and neurological disorders such as Parkinson’s disease.
People who face the greatest risk for adverse health outcomes from pesticide exposure are those in agricultural roles, who are more likely to come into direct contact with these chemicals. However, developing fetuses, infants and children, as well as pregnant and nursing mothers and women of childbearing age are at increased risk of experiencing negative health effects due to the presence of unsafe levels of pesticides in food. Exposure throughout a child’s development¬–including in the womb, infancy, early childhood, and puberty–can be particularly dangerous, affecting hormone regulation and brain development.
To minimize adverse health effects, the United States Environmental Protection Agency (EPA) and the European Union (EU) impose strict regulations on the amount of pesticides that can be applied to a crop, in order to limit the residue exposure downstream. Pesticides are assigned maximum residue levels (MRLs) depending on their toxicity, with the majority typically set at 10 µg/kg. However, due to the greater risk of certain compounds affecting the healthy development of infants and young children, some pesticides are controlled further: For instance, in the EU, specific pesticides are restricted in baby foods with MRLs of between 3–8 µg/kg.
Triple Quadrupole GC-MS/MS: Meeting the Needs of Pesticide Analysis
In order to test foods for pesticide residues at these very low levels, food safety laboratories require sophisticated analyte detection technologies. Gas chromatography-tandem mass spectrometry (GC-MS/MS) is a powerful analytical technique that offers the sensitivity and selectivity required to detect and identify pesticide residues at levels that often go beyond those mandated by regulatory authorities, even in complex sample matrices such as baby food. Indeed, GC-MS/MS can detect multiple residues within samples at levels as low as 0.025 µg/kg, much lower than the MRLs of regulated pesticides.
The sensitivity of the latest triple quadrupole GC-MS/MS systems is enabling levels of detection so low that many food testing laboratories have been able to adopt more efficient and universally-applicable sample preparation procedures based on QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) methods. Combining these modern GC-MS/MS systems with QuEChERS sample preparation techniques allows food samples to be analyzed directly, significantly reducing workflow complexity. Furthermore, the specificity of triple quadrupole GC-MS/MS can easily compensate for the additional matrix components or residual acetonitrile carried over from sample preparation.
EU SANTE Criteria for Pesticide Residue Quantitation
When it comes to the detection of pesticides in baby foods, workflows must comply with rigorous quality control and method validation standards. The EU SANTE/11813/2017 criteria outline three specific requirements that pesticide residue analysis methods must satisfy to achieve compliance.
Firstly, a minimum of two product ions must be detected for each pesticide with a peak signal-to-noise ratio greater than 3 (or in case noise is absent, a signal must be present in at least five subsequent scans), and the mass resolution for precursor ion isolation must be equal to or better than unit mass resolution. Secondly, the retention time of an analyte within a sample must not differ by more than 0.1 minutes compared with standards in the same sequence. Finally, the relative ion ratio for each analyte must remain within 30% of the average of calibration standards from the same sequence.
Fortunately, modern triple quadrupole GC-MS/MS systems are ensuring food safety testing laboratories comply with these criteria. In terms of peak detection and resolution, the specificities achieved using the latest triple quadrupole instruments meet or exceed the EU SANTE requirements by providing consistent data points regardless of sample preparation approach or matrix type. Precise detection at the ultra-low concentrations required for pesticide residue quantitation is routinely achieved using modern triple quadrupole GC-MS/MS systems, with analyses offering qualitative identification of each analyte among a large group of residues. Furthermore, the latest systems deliver stable ion ratios that are well within the required 30% range at the default 10 µg/kg MRL across multiple injections.
Ultra-low-level Quantification of Pesticides Using Triple Quadrupole GC-MS/MS
In a recent study that put the capabilities of the latest triple quadrupole GC-MS/MS systems to the test, samples of baby food (carrot/potato and apple/pear/banana) spiked with a mixture of more than 200 pesticides at three concentrations (1.0, 2.5 and 10.0 μg/kg) were analyzed using the Thermo Scientific TSQ 9000 triple quadrupole GC-MS/MS system fitted with an Advanced Electron Ionization (AEI) source. Prior to injection into the instrument, the homogenized spiked samples were prepared for analysis using a QuEChERS method that included an acetonitrile extraction step, a clean-up step involving primary secondary amine (PSA) and dispersive solid phase extraction (dSPE), followed by acidification with 5% formic acid in acetonitrile.
The triple quadrupole GC-MS/MS system met all SANTE criteria at the three spiking concentrations in both food matrices. More than 97% of the target pesticide residues in the 1 μg/kg spiked sample had recoveries in the range of 70%–120%, highlighting the broad applicability of the method. The recoveries of the target pesticides from the apple/pear/banana sample spiked at 10 μg/kg are shown in Figure 1.
Figure 1. Recovery and precision data for apple/pear/banana extractions (n=6) at a concentration of 10 μg/kg, obtained using TSQ 9000 triple quadrupole GC-MS/MS system fitted with an advanced electron ionization (AEI) source.(Figure 1 continued)
Triple Quadrupole GC-MS/MS: Supporting Exceptional Limits of Detection
To determine the limits of detection of the system, baby food samples prepared by the previously-described QuEChERS method were spiked with the same mixture of pesticides at 14 concentrations ranging from 0.025 to 250 μg/kg. Using the triple quadrupole GC-MS/MS system, the SANTE criteria were met for all of the pesticides targeted at the default MRL of 10 μg/kg. Additionally, more than 90% of the target compounds had a limit of identification (LOI) satisfying all SANTE requirements below 0.5 µg/kg, and more than 60% of the target residues met these criteria below 0.1 µg/kg (Figure 2).
Figure 2. Number of target residues satisfying the EU SANTE requirements (carrot/potato sample matrix). IDL, instrumental detection limit; LOI, limit of identification.
Instrumental detection limits (IDLs) were also determined for each pesticide residue by performing 10 replicate injections of the lowest matrix-matched standard of carrot/potato that met all SANTE criteria. IDLs were then evaluated using one-tailed student t-tests, taking into account the concentration and absolute peak area %RSD for each compound. The evaluated IDLs ranged from approximately 5 fg (for chlorobenzilate) to 2.0 pg (for bioallethrin), with over 95% of the residues exhibiting an IDL of less than 500 fg on the column (equivalent to 0.5 µg/kg in each sample extract). These results highlight the exceptional performance of the system, offering quantitative analysis of more than 200 pesticides over up to five orders of magnitude.
Conclusion
Enforcing regulations on the amounts and types of pesticides used is essential to limit our exposure to safe levels. The latest GC-MS/MS systems are capable of detecting and identifying pesticide residues at levels far beyond those required under regulatory standards, helping food testing laboratories efficiently ensure the food our children eat is always safe to consume.
Whole Foods Market voluntarily recalls packaged raw macadamia nuts due to possible Salmonella contamination. Recalled items were sold in AR, AZ, CA, CO, HI, KS, LA, NM, NV, OK, TX, and UT Whole Foods Market Stores. No illnesses have been reported to-date. Based upon routine testing conducted by an FDA-contracted laboratory, it was determined that the raw macadamia nuts tested positive for Salmonella.
Beech-Nut Nutrition recalls approximately 1,920 pounds of baby food products that may be contaminated with small pieces of glass… The baby food product was produced on December 12, 2014: 4-oz. glass jars containing “Stage 2 Beech-Nut CLASSICS sweet potato & chicken. The problem was discovered after the firm received a complaint from a consumer who found a small piece of glass in the product. The company has received a report of an oral injury associated with consumption of these products. FSIS has received no additional reports of injury or illness from consumption of these products.
Beech-Nut responds: “At Beech-Nut, we strive to make baby food with the best ingredients nature has to offer – freshly prepared and packaged in clean, safe and environmentally-friendly packaging. So, when any product of ours falls short of those standards, we take swift action to correct it.”
The cured and uncured pork items were produced on various dates between August 7, 2014 and April 1, 2015… The problem was discovered when an FSIS inspector was conducting a Food Safety Assessment and observed a processing deviation.
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookies should be enabled at all times so that we can save your preferences for these cookie settings.
We use tracking pixels that set your arrival time at our website, this is used as part of our anti-spam and security measures. Disabling this tracking pixel would disable some of our security measures, and is therefore considered necessary for the safe operation of the website. This tracking pixel is cleared from your system when you delete files in your history.
We also use cookies to store your preferences regarding the setting of 3rd Party Cookies.
If you visit and/or use the FST Training Calendar, cookies are used to store your search terms, and keep track of which records you have seen already. Without these cookies, the Training Calendar would not work.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.
Cookie Policy
A browser cookie is a small piece of data that is stored on your device to help websites and mobile apps remember things about you. Other technologies, including Web storage and identifiers associated with your device, may be used for similar purposes. In this policy, we say “cookies” to discuss all of these technologies.
Our Privacy Policy explains how we collect and use information from and about you when you use This website and certain other Innovative Publishing Co LLC services. This policy explains more about how we use cookies and your related choices.
How We Use Cookies
Data generated from cookies and other behavioral tracking technology is not made available to any outside parties, and is only used in the aggregate to make editorial decisions for the websites. Most browsers are initially set up to accept cookies, but you can reset your browser to refuse all cookies or to indicate when a cookie is being sent by visiting this Cookies Policy page. If your cookies are disabled in the browser, neither the tracking cookie nor the preference cookie is set, and you are in effect opted-out.
In other cases, our advertisers request to use third-party tracking to verify our ad delivery, or to remarket their products and/or services to you on other websites. You may opt-out of these tracking pixels by adjusting the Do Not Track settings in your browser, or by visiting the Network Advertising Initiative Opt Out page.
You have control over whether, how, and when cookies and other tracking technologies are installed on your devices. Although each browser is different, most browsers enable their users to access and edit their cookie preferences in their browser settings. The rejection or disabling of some cookies may impact certain features of the site or to cause some of the website’s services not to function properly.
Individuals may opt-out of 3rd Party Cookies used on IPC websites by adjusting your cookie preferences through this Cookie Preferences tool, or by setting web browser settings to refuse cookies and similar tracking mechanisms. Please note that web browsers operate using different identifiers. As such, you must adjust your settings in each web browser and for each computer or device on which you would like to opt-out on. Further, if you simply delete your cookies, you will need to remove cookies from your device after every visit to the websites. You may download a browser plugin that will help you maintain your opt-out choices by visiting www.aboutads.info/pmc. You may block cookies entirely by disabling cookie use in your browser or by setting your browser to ask for your permission before setting a cookie. Blocking cookies entirely may cause some websites to work incorrectly or less effectively.
The use of online tracking mechanisms by third parties is subject to those third parties’ own privacy policies, and not this Policy. If you prefer to prevent third parties from setting and accessing cookies on your computer, you may set your browser to block all cookies. Additionally, you may remove yourself from the targeted advertising of companies within the Network Advertising Initiative by opting out here, or of companies participating in the Digital Advertising Alliance program by opting out here.