Tag Archives: barriers

Checklist

2020 FSC Episode 3 Wrap: Does Your Company Have a COVID Czar?

By Maria Fontanazza
No Comments
Checklist

Navigating the murky waters that COVID-19 presents has been no easy task for food companies. Being part of America’s critical infrastructure has meant that adapting to the pandemic has been unavoidable, and the industry has directly taken on the challenges to ensure the nation has a reliable food supply. But what about the frontline workers, their safety and how this ties into operational continuity as a whole? During last week’s episode of the 2020 Food Safety Consortium Virtual Conference Series, an expert panel discussed the practices that food companies have put in place during the pandemic and offered advice on managing the entire scope of COVID-19 challenges including screening employees and preventing infection transmission, safeguarding workers and the facility, administrative and engineering controls, education and training, and risk management.

“No doubt that it is a concert of controls and interventions that have allowed our industry to effectively combat this over the past several months,” said Sanjay Gummalla, senior vice president of scientific affairs at the American Frozen Foods Institute. “By and large, the industry has taken charge of this situation in a way that could not have been predicted.” Gummalla was joined by Trish Wester, founder of the Association for Food Safety Auditing Professionals and Melanie Neumann, executive vice president and general counsel for Matrix Sciences International.

First up, the COVID Czar—what is it and does your company have one? According to Neumann, this is a designated person, located both within a production facility as well as at the corporate location, who manages the bulk of the requirements and precautions that companies should be undertaking to address the pandemic. “We’re not trained in people safety—we’re trained in food safety,” said Neumann. “And it’s a lot to ask, especially on top of having to manage food safety.”

Some of the takeaways during the discussion include:

  • Administrative controls that must be managed: Appropriate cleaning, disinfection and sanitation; PPE; employee hygiene; shift management; and surveillance mechanisms
  • PPE: “It’s really clear now that face masks and coverings are critical in managing source control—it prevents the spread and protects other employees,” said Gummalla. “All employees wearing masks present the highest level of protection.” When the attendees were polled about whether face coverings are mandatory where they work, 91% answered ‘yes’.
  • Engineering controls within facility: Physical distancing measures such as plexiglass barriers, six-foot distance markings, traffic movement, limited employees, and hand sanitizer stations. “Engineering controls in a facility involve isolation from the virus,” said Gummalla. “In this case, controlling [and] reducing the exposure to the virus without relying on specific worker behavior. This is where facilities have implemented a great amount of thoughtful intervention, probably at a high capital cost as well.” Companies should also consider airflow management, which can involving bringing in an outside professional with expertise in negative and positive air pressure, advised Wester.
  • Verification activities and enterprise risk management: Neumann emphasized the importance of documentation as well as advising companies to apply a maturity model (similar to a food safety culture maturity model) to a COVID control program. The goal is to ensure that employees are following certain behaviors when no one is watching. “We want to be able to go from ‘told’ to ‘habit’,” she said.
  • Education and training: Using posters, infographics, brochures and videos, all of which are multilingual, to help emphasize that responsibility lies with every employee. “It is important to recognize the transmission is predominately is person to person,” said Gummalla. Do you have a daily huddle? Neumann suggests having a regular dialogue with employees about COVID.
  • The future, 2021 and beyond: Does your company have a contingency, preparedness or recovery plan? “The next six months are going to be critical; in many parts of the world, the worse is not over yet,” said Gummalla. “There will be a lot more innovation in our industry, and communication will be at the heart of all of this.”

As part of a special offering, Episode 3 has been made available for viewing on demand for free. Register to view the on-demand recording.

Dave Premo, Birko Corp.
FST Soapbox

How to Maintain Food Safety and Protect Your Brand During Construction

By Dave Premo
No Comments
Dave Premo, Birko Corp.

If your food processing facility needs an expansion or update, construction can be a disruptive event. Throughout the process, a variety of food safety hazards can be present, potentially putting your products at risk. While the contractors you work with are skilled at their trade, protecting your brand is ultimately your responsibility.

Construction, food safety
Developing a thorough plan can keep products, the facility and your employees safe during construction. Images courtesy of Birko.

Extra precautions are needed to minimize the food safety risks during construction, but by developing a thorough plan and following it diligently, you can keep your products, facility and employees safe.

Preparation: The Important First Steps for Safety

Having an established environmental plan before construction starts will make the construction process go smoothly and help maintain safety. If the plan your staff is following needs changes or improvements, make updates in advance of construction and be sure that your staff is up to speed before the project begins.

First, remove any equipment that can be moved from the construction zone and cover all electrical panels, open conduit and electrical outlets to minimize areas that might harbor dust or bacteria during construction.

Next, taking steps to separate the construction and production areas is crucial. Installing heavy gauge plastic sheeting or even temporary walls to isolate the construction area will help prevent cross-contamination. Any doors or wall openings on the temporary barriers should be sealed on both sides, and the gaps between the base of the barriers and the floor should be adequately sealed to keep the surrounding production areas safe. Do whatever is necessary to minimize organisms from traveling by air outside of the construction zone.

The HVAC and air handling system in the construction area should also be evaluated for cross-contamination potential. Be sure to close off or divert the airflow to prevent air movement from the construction zone to any production areas. In addition, make sure the system will be able to accommodate additional areas or space after construction is complete and make any upgrades if necessary. Thoroughly clean the HVAC system and filters before the construction process starts.

Similarly, evaluate any drains that are present in the construction zone for cross-contamination potential and take precautions to keep pathogens from passing from the construction area to the food production areas.

Make Contractors Part of Your Plan

While contractors might have years of experience in their trade, they don’t know your food safety plan. Schedule a formal food safety training session with the contractor and all members of the construction staff. Don’t allow anyone to work in the facility before completing the training. Determine which protective clothing contractors and their team will need, such as frocks, boot covers or hairnets, and provide a separate bag or place to store them during the construction process.

Designating a single entrance for contractors and construction staff will minimize confusion and avoid mistaken entries into prohibited areas. Educate them on the appropriate traffic flow as they arrive, enter the facility, and conduct their work. Their entrance should be separate from those used by office and food production employees. Have quat or alcohol hand and tool sanitizers stationed at the designated contractor entrance, and require them to sanitize any tools, materials or equipment before entering the facility. Emphasize that no mud or other debris should be tracked into the facility. Provide the necessary guidance and monitor the entrance area to prevent that from happening.

Shoe coverings, food safety, construction
Effectively communicate safety plan with all contractors involved.

Construction staff and in-house food production staff should be separated at all times. To prevent cross-contamination, there shouldn’t be any direct paths from the construction area to the production area. No material from the construction area should ever be brought into the food production area. Contractors and construction staff should also be prohibited from using the break rooms or restrooms that are used by the facility employees. Because they won’t have access to other areas, temporary hand wash sinks may be needed for construction employees to follow frequent hand washing and sanitizing procedures.

Best Practices for Sanitation During Construction

Before demolishing and removing any walls during the construction process, apply a foam disinfectant at 800–1000 ppm without rinsing. If any equipment needs to be moved, or if there will be new equipment brought into the area, clean and disinfect it with quat at 800–1000 ppm without rinsing.

Quat should also be applied heavily on the floors around the designated construction team entrances. Foam or spray contractors’ walkways and the construction area floor every four hours at 800–1000 ppm. Allow contractors, forklifts, dollies or other wheeled carts to regularly travel through the disinfectant to keep their feet and wheels sanitized as they move throughout the construction area.

If your construction project involves new equipment installation, discuss the sanitation requirements and restrictions with a sanitation chemical provider before purchasing this equipment to ensure you have the right chemistry on hand. Any new equipment should be cleaned and sanitized, as well as the area where it will be installed, before bringing the equipment into the area. Make sure all the surfaces of the new equipment are compatible with your current cleaning chemistry and that the installation follows proper food safety guidelines. If necessary, upgrade your food safety process to accommodate the new equipment.

Transitioning from Construction to Safe Food Production
Once the construction project is complete, remove all construction materials, tools, debris, plastic sheeting and temporary walls. Seal any holes that might have occurred in the floors, walls and ceilings where equipment was moved, and repair or replace epoxy or other floor coverings. Inspect any forklifts or man lifts used during the construction, and clean and sanitize them.

Clean the HVAC and air handling system and return it to either its pre-construction settings or an updated configuration based on what the new area requires.

Continue cleaning everything in the construction area, from ceiling to floor, including lights, walls, drains, refrigeration units and all equipment following SSOPs. Note that different cleaning products containing solvents may be needed for the initial cleaning to remove cutting oil, welding flux residues, greases, and other elements from the construction process. Be sure to have those cleaning products on hand before you get to this step to avoid delays of a thorough sanitation process. Where necessary, passivate any stainless steel equipment.

Finally, test the environment. Collect a special set of swabs and monitor the results. Apply post-rinse sanitizer and then begin food production. Implement an enhanced environmental monitoring program in all areas disrupted by the construction until the data shows a return to the baseline levels. Revise your facility SSOPs in light of any changes based on the new construction.

Achieving Seamless Productivity

Expansion can mean new capabilities for your business, but lax food safety processes during construction can jeopardize the new opportunities your expansion brings. By having a strong plan in place, following it diligently, educating contractors on your plan, monitoring activity, and using effective sanitizing chemistry, you will be able to expand while protecting your brand and avoiding food safety issues.

Developing an Effective Environmental Monitoring, Sampling and Testing Program

By Food Safety Tech Staff
1 Comment

As the food industry is moving toward a more preventive food safety strategy, environmental monitoring is playing an increasingly critical role in testing. Hazard analysis is shifting the focus from finished product testing to proactively testing the environment and the processing as critical control points to continuously monitor and reduce risk. Today many facilities are adding or strengthening their environmental monitoring programs to enhance their food safety risk reduction efforts.

In a recent webinar, Ann Draughon, Emeritus Professor of Food Microbiology and Toxicology, University of Tennessee spoke about Developing an Effective Environmental Monitoring, Sampling and Testing (EMS) Program. We present some excerpts from her presentation.

What do you need to get started with an EMS program?

“You need to first identify the right team; think about what kind of food you are processing (raw products or ready-to-eat products) and if it has had any food safety outbreak associated with it; determine critical or hygiene zones in your facility; determine sample locations; finalize which indicator tests will be done, and in which zones; determine which pathogens you will test for; choose the right test methods; set a baseline, and link that with your sampling plan, and establish testing frequency once you have finalized the number of samples and zones,” explains Draughon.

To establish critical hygiene zones, she advises to:

  • Survey entire facility and have a map of that facility;
  • Study that map and identify traffic patterns to divide the facility into critical hygiene zones, GMP zones, and non-processing zones;
  • Put in place barriers between these zones and dedicate equipment to the critical hygiene zone, and restrict access between zones; and
  • Establish strict cleaning, sanitation and monitoring plans for these diff zones.

Sampling of zones should be based on risk of contamination and/ or transmission of pathogens to food from environment, says Draughon. The sampling should also take into account potential sources of product contamination by whatever means during food processing (see image 1 for examples of 4 zone and 3-zone hygiene systems).

Selecting the right assays for your EMS program

There are many options, and it can be confusing to select the right assay for your needs. Draughon advises that companies need to look their monitoring needs and consider both indicator bacteria and pathogenic bacteria to select the right assay.

For monitoring with indicator bacteria, most companies look at ATP for environmental sanitation, often before start-up to make sure facility is clean before processing begins. Protein assays are also used to pick up any allergen on equipment.

APC or total viable count is a simple assay offering many choices, which tests for the number of live bacteria on your equipment or in your environment that can grow under air or oxygen at room temperature.

Yeast/ mold count assays are good for two purposes: 1. Mold frequently is the cause of spoilage in food, so it’s useful to understand if there are any present to determine shelf life, and 2. It also helps us understand the number of particulates in the air.

We can also select specific microbial groups as indicators, such as total Enterobacteriacae, fecal coliform or E.coli or Listeria species.

Sample collection and prep

When we collect a sample, we have to clearly document the sample including information such as when it was taken, from where, by whom, what happened to that sample etc. Use clean SOPs to reduce error. Use the assays previously selected and do it as quickly as feasible. If you are working with an outside company, decide how they are going to handle the sample. Finally, always keep in mind plant safety and leave nothing behind after sampling, and avoid cross-contamination.

For characterizing pathogens, you may want to genetically fingerprint any pathogenic isolates from your facilities. This will allow you to see if you have a constant harborage of a particular pathogen or if it changes. Draughon recommends using a contract lab for characterizing pathogens, as they would be better suited, and have better resources to do this. Destroy the isolates after characterization – you don’t want any chance of the pathogen spreading into the product or the environment.

Written SOPs for EMS programs

It’s critical to have clear written SOPs for EMS programs which include the following:

  • Frequency of sampling;
  • When, where , how and duration of sampling;
  • Procedure for recording data and coding;
  • Sample number, size or volume;
  • Specific sampling and analysis validated protocols;
  • Monitoring of incubators and use of equipment;
  • Handling and shipping of samples; and
  • Alert and action levels and appropriate response to deviations from alert or action levels.

It’s also important that we train and validate the personnel performing EMS. Each individual doing this needs to demonstrate proficiency of doing this. They need to understand proper recording of EMS program data, alert and action levels, and zero tolerance levels. The personnel should be comfortable and qualified for sampling protocol, and using all the equipment.

In summary, sampling plans should be adaptable, which highest risk sites being tested initially. Establish a baseline and modify sampling plan as needed. Establish your sampling and testing criteria and sample as needed with each zone to fully assess the environmental program.