Global food supply chains are complex and therefore quite vulnerable to errors or fraudulent activity. A company in Chile repackaged and falsely labeled cheap raspberries from China, reselling them as top-level organic Chilean raspberries in Canada. These raspberries were linked to a norovirus outbreak in Canada, sickening hundreds of people. A whistleblower complaint helped to uncover this fraudulent scheme that posed a significant risk to human health.
Remember the 2015 Listeria outbreak linked to Blue Bell Creameries? The outbreak led to three deaths and 10 illnesses between January 2010 and January 2015. On Thursday the Department of Justice ordered the company to pay $17.25 million in criminal penalties for shipping contaminated products linked to that outbreak. The sentence, enforced by U.S. District Judge Robert Pitman (Austin, Texas), is the largest fine and forfeiture ever imposed in a conviction involving a food safety case.
“American consumers must be able to trust that the foods they purchase are safe to eat,” stated – Acting Assistant Attorney General Jeffrey Bossert Clark, Justice Department’s Civil Division in an agency news release. “The sentence imposed today sends a clear message to food manufacturers that the Department of Justice will take appropriate actions when contaminated food products endanger consumers.”
In May 2020 Blue Bell pleaded guilty to two misdemeanor counts of distributing adulterated ice cream. The following is an excerpt from the Department of Justice news release:
“The plea agreement and criminal information filed against Blue Bell allege that the company distributed ice cream products that were manufactured under insanitary conditions and contaminated with Listeria monocytogenes, in violation of the Food, Drug and Cosmetic Act. According to the plea agreement, Texas state officials notified Blue Bell in February 2015 that samples of two ice cream products from the company’s Brenham, Texas factory tested positive for Listeria monocytogenes, a dangerous pathogen that can lead to serious illness or death in vulnerable populations such as pregnant women, newborns, the elderly, and those with compromised immune systems. Blue Bell directed its delivery route drivers to remove remaining stock of the two products from store shelves, but the company did not recall the products or issue any formal communication to inform customers about the potential Listeria contamination. Two weeks after receiving notification of the first positive Listeria tests, Texas state officials informed Blue Bell that additional state-led testing confirmed Listeria in a third product. Blue Bell again chose not to issue any formal notification to customers regarding the positive tests. Blue Bell’s customers included military installations.”
During the production process, physical hazards can contaminate food products, making them unfit for human consumption. According to the USDA’s Food Safety and Inspection Service (FSIS), the leading cause of food recalls is foreign material contamination. This includes 20 of the top 50, and three of the top five, largest food recalls issued in 2019.
As methods for detecting foreign materials in food have improved over time, you might think that associated recalls should be declining. To the contrary, USDA FSIS and FDA recalls due to foreign material seem to be increasing. During the entire calendar year of 2018, 28 of the 382 food recalls (7.3%) in the USDA’s recall case archive were for foreign material contamination. Through 2019, this figure increased to approximately 50 of the 337 food recalls (14.8%). Each of these recalls may have had a significant negative impact on those brands and their customers, which makes foreign material detection a crucial component of any food safety system.
The FDA notes, “hard or sharp foreign materials found in food may cause traumatic injury, including laceration and perforation of tissues of the mouth, tongue, throat, stomach and intestine, as well as damage to the teeth and gums”. Metal, plastic and glass are by far the most common types of foreign materials. There are many ways foreign materials can be introduced into a product, including raw materials, employee error, maintenance and cleaning procedures, and equipment malfunction or breakage during the manufacturing and packaging processes.
The increasing use of automation and machinery to perform tasks that were once done by hand are likely driving increases in foreign matter contamination. In addition, improved manufacturer capabilities to detect particles in food could be triggering these recalls, as most of the recalls have been voluntary by the manufacturer.
To prevent foreign material recalls, it is key to first prevent foreign materials in food production facilities. A proper food safety/ HACCP plan should be introduced to prevent these contaminants from ending up in the finished food product through prevention, detection and investigation.
Food manufacturers also have a variety of options when it comes to the detection of foreign objects from entering food on production lines. In addition to metal detectors, x-ray systems, optical sorting and camera-based systems, novel methods such as infrared multi-wavelength imaging and nuclear magnetic resonance are in development to resolve the problem of detection of similar foreign materials in a complex background. Such systems are commonly identified as CCPs (Critical Control Points)/preventive controls within our food safety plans.
But what factors should you focus on when deciding between different inspection systems? Product type, flow characteristics, particle size, density and blended components are important factors in foreign material detection. Typically, food manufacturers use metal and/or x-ray inspection for foreign material detection in food production as their CCP/preventive control. While both technologies are commonly used, there are reasons why x-ray inspection is becoming more popular. Foreign objects can vary in size and material, so a detection method like an x-ray that is based on density often provides the best performance.
Regardless of which detection system you choose, keep in mind that FSMA gives FDA the power to scientifically evaluate food safety programs and preventive controls implemented in a food production facility, so validation and verification are crucial elements of any detection system.
It is also important to remember that a key element of any validation system is the equipment validation process. This process ensures that your equipment operates properly and is appropriate for its intended use. This process consists of three steps: Installation qualification, operational qualification and performance qualification.
Installation qualification is the first step of the equipment validation process, designed to ensure that the instrument is properly installed, in a suitable environment free from interference. This process takes into consideration the necessary electrical requirements such as voltage and frequency ratings, as well as other factors related with the environment, such as temperature and humidity. These requirements are generally established by the manufacturer and can be found within the installation manual.
The second step is operational qualification. This ensures that the equipment will operate according to its technical specification. In order to achieve this, the general functions of the equipment must be tested within the specified range limits. Therefore, this step focuses on the overall functionality of the instrument.
The third and last step is the performance qualification, which is focused on providing documented evidence through specific tests that the instrument will performs according to the routine specifications. These requirements could be established by internal and industry standards.
Following these three steps will allow you to provide documented evidence that the equipment will perform adequately within the work environment and for the intended process. After completion of the equipment validation process, monitoring and verification procedures must be established to guarantee the correct operation of the instrument, as well procedures to address deviations and recordkeeping. This will help you effectively control the hazards identified within our operation.
There can be massive consequences if products contaminated with foreign material are purchased and consumed by the public. That’s why the development and implementation of a strong food safety/ HACCP plan, coupled with the selection and validation of your detection equipment, are so important. These steps are each key elements in protecting your customers and your brand.
–UPDATE AUGUST 31, 2020 — Prima Wawona has recalled bagged, bulk and loose peaches that were distributed nationwide to retailers that include ALDI, Food Lion, Hannaford, Kroger, Target, Walmart and Wegmans. As of August 28, the CDC reported the outbreak of Salmonella infections reached 78 cases across 12 states.
In addition, the recall of Prima Wawona peaches has extended to Canada, Singapore and New Zealand. FDA states that the products may have been shipped to Australia, Canada, China, Costa Rica, Ecuador, El Salvador, Guatamala, Honduras, Mexico, Panama, the Philippines, Singapore, Taiwan and the United Arab Emirates.
–END UPDATE–
Do not eat, sell or serve Wawona-brand bagged peaches from ALDI stores, says the FDA. ALDI issued a voluntary recall of two-pound clear plastic bags of peaches from Wawona Packing Company, LLC following a multistate outbreak of Salmonella Enteritidis that has been linked to the product. The peaches were sold in ALDI stores from June 1 until present, and as of August 19, the CDC reported 68 cases of Salmonella infections across nine states, with 14 hospitalizations. No deaths have been reported
“FDA’s traceback investigation is ongoing to identify the source of this outbreak and to determine if potentially contaminated product has been shipped to additional retailers,” the agency stated in an investigation update.
Learn more about food safety supply chain management & traceability during the 2020 Food Safety Consortium Virtual Conference SeriesThe FDA and CDC have been investigating a multistate outbreak ofCyclospora involving bagged salads from Fresh Express since June. Although the products were recalled and should no longer be available in retail locations, the CDC continues to report more cases. As of August 12, 2020, the CDC counted 690 people with laboratory-confirmed Cyclospora infections throughout 13 states. Thirty-seven people have been hospitalized, and no deaths have been reported.
As the FDA conducted its traceback investigation to find the source of the outbreak linked to the Fresh Express products, the agency was able to identify several farms. It analyzed water samples from two public access points along a regional water management canal (C-23) west of Port St. Lucie, Florida. Using the FDA’s validated testing method, the samples tested positive for Cyclospora cayetanensis. However, it is important to note that the Cyclospora found might not be a direct match to the pathogen found in the clinical cases.
According to FDA: “Given the emerging nature of genetic typing methodologies for this parasite, the FDA has been unable to determine if the Cyclospora detected in the canal is a genetic match to the clinical cases, therefore, there is currently not enough evidence to conclusively determine the cause of this outbreak. Nevertheless, the current state of the investigation helps advance what we know about Cyclospora and offers important clues to inform future preventive measures.”
The agency’s traceback investigation is complete, but the cause or source of the outbreak has not been determined. The investigation also revealed that carrots are no longer of interest at as part of the outbreak, but red cabbage and iceberg lettuce are still being investigated. FDA is also working with Florida and the area’s local water district to learn more about the source of Cyclospora in the canal.
Recent food scandals around the world have generated strong public concerns about the safety of the foods being consumed. Severe threats to food safety exist at all stages of the supply chain in the form of physical, chemical and biological contaminants. The current pandemic has escalated the public’s concern about cross contamination between people and food products and packaging. To eliminate food risks, manufacturers need robust technologies that allow for reliable monitoring of key contaminants, while also facilitating compliance with the ISO 17025 standard to prove the technical competence of food testing laboratories.
Without effective data and process management, manufacturers risk erroneous information, compromised product quality and regulatory noncompliance. In this article, we discuss how implementing a LIMS platform enables food manufacturers to meet regulatory requirements and ensure consumer confidence in their products.
Safeguarding Food Quality to Meet Industry Standards
Food testing laboratories are continually updated about foodborne illnesses making headlines. In addition to bacterial contamination in perishable foods and ingredient adulteration for economic gains, chemical contamination is also on the rise due to increased pesticide use. Whether it is Salmonella-contaminated peanut butter or undeclared horsemeat inside beef, each food-related scandal is a strong reminder of the importance of safeguarding food quality.
Food safety requires both preventive activities as well as food quality testing against set quality standards. Establishing standardized systems that address both food safety and quality makes it easier for manufacturers to comply with regulatory requirements, ultimately ensuring the food is safe for public consumption.
In response to food safety concerns, governing bodies have strengthened regulations. Food manufacturers are now required to ensure bacteria, drug residues and contaminant levels fall within published acceptable limits. In 2017, the ISO 17025 standard was updated to provide a risk-based approach, with an increased focus on information technology, such as the use of software systems and maintaining electronic records.
The FDA issued a notice that by February 2022, food testing, in certain circumstances, must be conducted in compliance with the ISO 17025 standard. This means that laboratories performing food safety testing will need to implement processes and systems to achieve and maintain compliance with the standard, confirming the competence, impartiality and consistent operation of the laboratory.
To meet the ISO 17025 standard, food testing laboratories will need a powerful LIMS platform that integrates into existing workflows and is built to drive and demonstrate compliance.
From Hazard Analysis to Record-Keeping: A Data-Led Approach
Incorporating LIMS into the entire workflow at a food manufacturing facility enables the standardization of processes across its laboratories. Laboratories can seamlessly integrate analytical and quality control workflows. Modern LIMS platforms provide out-of-the-box compliance options to set up food safety and quality control requirements as a preconfigured workflow.
The requirements set by the ISO 17025 standard build upon the critical points for food safety outlined in the Hazard Analysis and Critical Control Points (HACCP) methodology. HACCP, a risk-based safety management procedure, requires food manufacturers to identify, evaluate and address all risks associated with food safety.
The systematic HACCP approach involves seven core principles to control food safety hazards. Each of the following seven principles can be directly addressed using LIMS:
Principle 1. Conduct a hazard analysis: Using current and previous data, food safety risks are thoroughly assessed.
Principle 2. Determine the critical control points (CCPs): Each CCP can be entered into LIMS with contamination grades assigned.
Principle 3. Establish critical limits: Based on each CCP specification, analytical critical limits can be set in LIMS.
Principle 4. Establish monitoring procedures: By defining sampling schedules in LIMS and setting other parameters, such as frequency and data visualization, procedures can be closely monitored.
Principle 5. Establish corrective actions: LIMS identifies and reports incidents to drive corrective action. It also enables traceability of contamination and maintains audit trails to review the process.
Principle 6. Establish verification procedures: LIMS verifies procedures and preventive measures at the defined CCPs.
Principle 7. Establish record-keeping and documentation procedures: All data, processes, instrument reports and user details remain secured in LIMS. This information can never be lost or misplaced.
As food manufacturers enforce the safety standards set by HACCP, the process can generate thousands of data points per day. The collected data is only as useful as the system that manages it. Having LIMS manage the laboratory data automates the flow of quality data and simplifies product release.
How LIMS Enable Clear Compliance and Optimal Control
Modern LIMS platforms are built to comply with ISO 17025. Preconfigured processes include instrument and equipment calibration and maintenance management, traceability, record-keeping, validation and reporting, and enable laboratories to achieve compliance, standardize workflows and streamline data management.
The workflow-based functionality in LIMS allows researchers to map laboratory processes, automate decisions and actions based on set criteria, and reduce user intervention. LIMS validate protocols and maintain traceable data records with a clear audit history to remain compliant. Data workflows in LIMS preserve data integrity and provide records, according to the ALCOA+ principles. This framework ensures the data is Attributable, Legible, Contemporaneous, Original and Accurate (ALCOA) as well as complete, consistent and enduring. While the FDA created ALCOA+ for pharmaceutical drug manufacturers, these same principles can be applied to food manufacturers.
Environmental monitoring and quality control (QC) samples can be managed using LIMS and associated with the final product. To plan environmental monitoring, CCPs can be set up in the LIMS for specific locations, such as plants, rooms and laboratories, and the related samples can then be added to the test schedule. Each sample entering the LIMS is associated with the CCP test limits defined in the specification.
Near real-time data visualization and reporting tools can simplify hazard analysis. Managers can display information in different formats to monitor critical points in a process, flag unexpected or out-of-trend numbers, and immediately take corrective action to mitigate the error, meeting the requirements of Principles 4 and 5 of HACCP. LIMS dashboards can be optimized by product and facility to provide visibility into the complete process.
Rules that control sampling procedures are preconfigured in the LIMS along with specific testing rules based on the supplier. If a process is trending out of control, the system will notify laboratory personnel before the product fails specification. If required, incidents can be raised in the LIMS software to track the investigation of the issue while key performance indicators are used to track the overall laboratory performance.
Tasks that were once performed manually, such as maintaining staff training records or equipment calibration schedules, can now be managed directly in LIMS. Using LIMS, analysts can manage instrument maintenance down to its individual component parts. System alerts also ensure timely recalibration and regular servicing to maintain compliance without system downtime or unplanned interruptions. The system can prevent users from executing tests without the proper training records or if the instrument is due for calibration or maintenance work. Operators can approve and sign documents electronically, maintaining a permanent record, according to Principle 7 of HACCP.
LIMS allow seamless collaboration between teams spread across different locations. For instance, users from any facility or even internationally can securely use system dashboards and generate reports. When final testing is complete, Certificates of Analysis (CoAs) can be autogenerated with final results and showing that the product met specifications. All activities in the system are tracked and stored in the audit trail.
With features designed to address the HACCP principles and meet the ISO 17025 compliance requirements, modern LIMS enable manufacturers to optimize workflows and maintain traceability from individual batches of raw materials all the way through to the finished product.
Conclusion
To maintain the highest food quality and safeguard consumer health, laboratories need reliable data management systems. By complying with the ISO 17025 standard before the upcoming mandate by the FDA, food testing laboratories can ensure data integrity and effective process management. LIMS platforms provide laboratories with integrated workflows, automated procedures and electronic record-keeping, making the whole process more efficient and productive.
With even the slightest oversight, food manufacturers not only risk product recalls and lost revenue, but also losing the consumers’ trust. By upholding data integrity, LIMS play an important role in ensuring food safety and quality.
Last week USDA’s FSIS issued a public health alert concerning ready-to-eat meat and poultry products that contain the onions recalled by Thomson International, Inc. (see below news brief). The products have been distributed by retail establishments that include Walmart, Kroger, HEB and Amana Meat Shop & Smokehouse. The USDA has made available the full list of products subject to the public health alert.
–END UPDATE–
A multistate outbreak of Salmonella Newport has been traced back to red onions from Thomson International, Inc. a company based in Bakersfield, CA. As of July 31, 396 illnesses were reported in the United States, with 59 hospitalized across 34 states. In Canada, 120 cases have been confirmed, according to the Public Health Agency of Canada.
As a result, Thomson International is recalling all varieties of its onions (red, white, yellow and sweet) that “could have come in contact with potentially contaminated red onions”, according to an FDA alert.
The FDA, CDC, state and local agencies, as well as the Public Health Agency of Canada are investigating the outbreak. FDA recommends that consumers, restaurants and retailers refrain from eating, selling or serving any onions from Thomson International. The agency also states that any surfaces, containers or storage areas that may have come into contact with these products be cleaned and sanitized.
On October 1, Frank Yiannas will be the keynote speaker for the 2020 Food Safety Consortium Virtual Series || The series takes place during the weeks of September 3 through December 17Expect the much-anticipated blueprint for FDA’s New Era of Food Safetyto be released soon. The agency has not provided an exact date but in an update prior to the July 4th holiday, FDA stated it would be rolled it out “in the coming weeks”.
“The challenges we’ve faced during the pandemic have made it clear that the goals we set forth in the New Era blueprint are more important now than ever. Some of them, like enhanced traceability, are particularly meaningful in light of recent events,” Frank Yiannas, FDA’s Deputy Commissioner for Food Policy and Response, stated in an agency consumer update. “What we have learned from the pandemic is that we’re on the right track with the New Era of Smarter Food Safety. The steps that we’ll take will prepare us to protect the safety of our food supply, no matter what challenges we face.”
In addition to the focus on emerging digital technologies, traceability in the supply chain, ensuring safety in the home delivery of food (e-commerce), and food safety culture, FDA will be including the lessons learned from the COVID-19 pandemic as part of the blueprint structure.
Yesterday Pilgrim’s Pride Corp. recalled about 59,800 pounds of fully cooked chicken breast nuggets over concern that they could be contaminated with flexible rubber. The Class II recall affects frozen ready-to-eat chicken nuggets that were produced on May 6, 2020 and bear the establishment number P-20728. The products were shipped to retail stores in Arizona, Idaho, Oregon and Texas.
The issue was uncovered after a consumer complained about rubber pieces in the chicken nuggets. Thus far there are no reported adverse reactions related to consumption of the nuggets.
Gin usually consists of re-distillation or addition of a myriad of botanical ingredients to alcohol, but should certainly not contain glycerol and hydrogen peroxide like in this mislabeling case in Australia. This product poses a health risk for consumers, and is under recall for a full refund.
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookies should be enabled at all times so that we can save your preferences for these cookie settings.
We use tracking pixels that set your arrival time at our website, this is used as part of our anti-spam and security measures. Disabling this tracking pixel would disable some of our security measures, and is therefore considered necessary for the safe operation of the website. This tracking pixel is cleared from your system when you delete files in your history.
We also use cookies to store your preferences regarding the setting of 3rd Party Cookies.
If you visit and/or use the FST Training Calendar, cookies are used to store your search terms, and keep track of which records you have seen already. Without these cookies, the Training Calendar would not work.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.
Cookie Policy
A browser cookie is a small piece of data that is stored on your device to help websites and mobile apps remember things about you. Other technologies, including Web storage and identifiers associated with your device, may be used for similar purposes. In this policy, we say “cookies” to discuss all of these technologies.
Our Privacy Policy explains how we collect and use information from and about you when you use This website and certain other Innovative Publishing Co LLC services. This policy explains more about how we use cookies and your related choices.
How We Use Cookies
Data generated from cookies and other behavioral tracking technology is not made available to any outside parties, and is only used in the aggregate to make editorial decisions for the websites. Most browsers are initially set up to accept cookies, but you can reset your browser to refuse all cookies or to indicate when a cookie is being sent by visiting this Cookies Policy page. If your cookies are disabled in the browser, neither the tracking cookie nor the preference cookie is set, and you are in effect opted-out.
In other cases, our advertisers request to use third-party tracking to verify our ad delivery, or to remarket their products and/or services to you on other websites. You may opt-out of these tracking pixels by adjusting the Do Not Track settings in your browser, or by visiting the Network Advertising Initiative Opt Out page.
You have control over whether, how, and when cookies and other tracking technologies are installed on your devices. Although each browser is different, most browsers enable their users to access and edit their cookie preferences in their browser settings. The rejection or disabling of some cookies may impact certain features of the site or to cause some of the website’s services not to function properly.
Individuals may opt-out of 3rd Party Cookies used on IPC websites by adjusting your cookie preferences through this Cookie Preferences tool, or by setting web browser settings to refuse cookies and similar tracking mechanisms. Please note that web browsers operate using different identifiers. As such, you must adjust your settings in each web browser and for each computer or device on which you would like to opt-out on. Further, if you simply delete your cookies, you will need to remove cookies from your device after every visit to the websites. You may download a browser plugin that will help you maintain your opt-out choices by visiting www.aboutads.info/pmc. You may block cookies entirely by disabling cookie use in your browser or by setting your browser to ask for your permission before setting a cookie. Blocking cookies entirely may cause some websites to work incorrectly or less effectively.
The use of online tracking mechanisms by third parties is subject to those third parties’ own privacy policies, and not this Policy. If you prefer to prevent third parties from setting and accessing cookies on your computer, you may set your browser to block all cookies. Additionally, you may remove yourself from the targeted advertising of companies within the Network Advertising Initiative by opting out here, or of companies participating in the Digital Advertising Alliance program by opting out here.