Tag Archives: contaminants

Alex Kinne, Thermo Fisher Scientific
FST Soapbox

The Importance of Metal Detection in Preventing Food Contamination

By Alex Kinne
2 Comments
Alex Kinne, Thermo Fisher Scientific

Foreign object detection is a critical step for food processors, with inspection personnel experiencing increased pressure to ensure food safety regulatory compliance without hindering productivity. This pressure has only increased as food processors are faced with accelerated timelines to meet changing supply chain demands for more at-home meals, including frozen and processed, shelf-stable foods as buying habits have changed during the COVID-19 crisis.

Identifying and Understanding Contaminants

Among foreign objects, metals such as ferrous, nonferrous and stainless-steel shavings or broken pieces from equipment are among the most common foreign objects of concern in food processing plants. As part of their HACCP assessment, food processors must identify where these foreign objects could enter the process and ensure that control, such as a metal detector, is in place to reduce escapes into food products.

Overcoming Detection Challenges

Metal detection has long been used as a tool for finding foreign metal objects in food. However, until recently, metal detection had shortcomings. Mineral-rich foods like fresh salad greens, or high-salt content foods, including meat, cheese and fresh-baked bread, are highly conductive and can mimic metal signals. Metal detectors were also susceptible to environmental conditions like temperature swings and electromagnetic interference from nearby equipment in the processing plant. They also pose an ongoing challenge to avoid excessive false rejects, which increase the potential for costly scrap or rework, impacting operational efficiency.

For bread, there is a further complication from the varying densities, air bubbles and other physical characteristics of each loaf since no two are exactly the same. The variations can “confuse” metal detectors into thinking a contaminant is present when it is not, and consequently rejecting good products.

Recent Advancements in Metal Detection

Recent technological advancements are designed to overcome these challenges. Newer technology enables the operator to quickly and easily fine-tune up to five frequencies to achieve the optimal sensitivity settings to find only the metal and ignore the host product. Advancements in software have enabled the automated set-up of detection parameters, saving time. And tracking features allow the metal detector to adjust on the fly without intervention by an operator. Less-skilled line workers are able to perform these tasks versus highly skilled labor required in the past. What used to take hours can be accomplished in minutes, resulting in maximum food safety and operational efficiency.

One of the new technologies scans up to five user-selectable frequencies at a time from 50 to 1000 kHz. It enables users to identify contaminants that are up to 70% smaller in volume than previous single-frequency technology. It reduces the probability of escapes to near zero.

Providing a high probability of detection, safety and operational efficiency allows for a higher level of food safety and brand protection while meeting user processing demands. Keeping the food supply free from foreign objects is always crucial for consumer safety and brand protection. Current events and accompanying demands on food processors underscore the importance. The right technology solution for a specific application depends on application-specific requirements. Given the many factors that can impact detection results, it is prudent to request a complimentary product test performed by the inspection equipment manufacturer(s) under consideration. A product test provides a real-world performance estimate and any technical recommendations for improving contaminant prevention, helping to set up food processors for success.

Megan Nichols
FST Soapbox

How to Prevent Foodborne Pathogens in Your Production Plant

By Megan Ray Nichols
No Comments
Megan Nichols

Foodborne pathogens, such as bacteria and parasites in consumable goods, can result in illnesses and deaths, wreaking havoc on residents of states and countries. The companies at fault often face severe damage to their reputation as people fear that continuing to do business with a brand is not safe. Moreover, if the affected enterprises do not take decisive steps to prevent the problem from happening again, they may receive substantial fines or closure orders.

Statistics from the U.S. federal government indicate that there are approximately 48 million cases of foodborne illnesses in the American food supply each year. Fortunately, there are proven steps that production plant managers can take to minimize the risk of foodborne pathogens. Being familiar with the preventative measures, and taking steps to implement them prevents catastrophes.

Engage with Suppliers about Their Efforts to Kill or Reduce Foodborne Pathogens

Foodborne pathogens can enter a production plant on items like fresh produce received from farm suppliers. Agricultural professionals commonly use chlorine to decontaminate goods before shipping them. However, researchers used a chlorine solution on spinach leaves to assess its effectiveness in killing common types of bacteria. The team discovered that, even after chlorine exposure, some bacteria remained viable but undetectable by industrial methods.

Foodborne pathogens can originate at farms for other reasons, too. Failing to take the proper precautions during animal slaughter can introduce contaminants into meats that end up in food production facilities. Water impurities can also pose dangers.

All production plants should regularly communicate with suppliers about the actions they take against foodborne pathogens. Food safety is a collective effort. Practicing it means following all current guidance, plus updating methods if new research justifies doing so. If suppliers resist doing what’s in their power to stop foodborne pathogens, they must realize they’re at risk for severing profitable relationships with production plants that need raw goods.

Consider Using Sensors to Maintain Safe Conditions

The Internet of Things (IoT) encompasses a massive assortment of connected products that benefit industries and consumers alike. One practical solution to enhance food safety in a production plant involves installing smart sensors that detect characteristics that humans may miss.

For example, the USDA published a temperature safety chart that explains what to do with food after a power outage. Most items that people typically keep in refrigerators become dangerous to eat if kept above 40o F for more than two hours.

Food production plants typically have resources like backup power to assist if outages occur. But, imagine a cooler that appears to work as expected but has an internal malfunction that keeps the contents at incorrect temperatures. IoT sensors can help production plant staff members become immediately aware of such issues. Without that kind of information, they risk sending spoiled food into the marketplace and getting people sick.

Researchers also developed a sensor-equipped device that detects the effectiveness of hand washing efforts. In a pilot program involving 20 locations, contamination rates decreased by 60% over a month. Most restrooms at food preparation facilities remind people to wash their hands before returning to work. What if a person takes that action, but not thoroughly enough? Specialty sensors could reduce that chance.

Install Germicidal Ultraviolet Lights

With much of the world on lockdown due to the COVID-19 pandemic, many people want to know if germicidal ultraviolet lights could kill the novel coronavirus. Researchers lack enough information to answer that question definitively. They do know, however, that germicidal ultraviolet lights kill up to 99.99% of bacteria and pathogens.

Plus, these lights are particularly useful in food production because they get the job done without harsh chemicals that could make products unsafe. Ultraviolet lights can damage the skin and eyes, so you must only run them when there are no humans in the room. However, it’s immediately safe to enter the environment after switching the lights off.

These specialized light sources do not eliminate the need for other food safety measures. Think about implementing them as another safeguard against adverse consequences.

Teach Workers about Safe Practices

Food contamination risks exist at numerous points along the supply chain. Mishandling is a major culprit that could make several parties partially responsible for a foodborne pathogen problem. For example, if a person does not wear the proper gear when handling food or stores items intended for raw consumption in places where meat juices touch them, either of those things and many others could cause issues with foodborne pathogens.

As you inform employees about which procedures to take to manage the risks, emphasize that everyone has an essential role to play in keeping products free from contaminants. If workers make ready-to-eat foods, such as packaged sandwiches, ensure they understand how to avoid the cross-contamination that happens when reusing cutting boards or utensils without washing them first.

The FDA requires domestic and foreign food facilities to analyze and mitigate risks. Employee training is not the sole aspect of staying in compliance, but it’s a major component. If a person makes a mistake due to improper or nonexistent training, that blunder could have significant financial ramifications for a food production facility.

Widely cited statistics indicate that food recall costs average more than $10 million, which is a staggering figure in itself. It doesn’t include litigation costs incurred when affected individuals and their loved ones sue companies, or the expenses associated with efforts to rejuvenate a brand and restore consumer confidence after people decide to take their business elsewhere.

Ensuring that workers receive the necessary training may be especially tricky if a human resources professional hires a large batch of temporary employees to assist with rising seasonal demands. If a higher-up tells them that time is of the essence and the new workers must be ready to assume their roles on the factory floor as soon as possible, training may get overlooked. When that happens, the outcomes could be devastating. Efficiency should never get prioritized over safety.

Stay Abreast of Emerging Risks

Besides doing your part to curb well-known threats that could introduce foodborne pathogens, spend time learning about new problems that you may not have dealt with before.

For example, scientists have not confirmed the origin of COVID-19. However, since early evidence suggested live animal sales and consumption may have played key roles, Chinese officials cracked down on the wildlife trade and imposed new restrictions on what was largely an unregulated sector cloaked in secrecy.

Much remains unknown about COVID-19, and it’s but one virus for food producers to stay aware of and track as developments occur. The ongoing pandemic is a sobering reminder not to blame specific groups or ethnicities, and to avoid jumping to hasty conclusions. It’s good practice to dedicate yourself to learning about any production risks that could introduce foodborne pathogens. Read reputable sources, and don’t make unfounded assumptions.

A Collective and Constant Effort

There is no single way to combat all sources of foodborne pathogens. Instead, anyone involved in food production or supply must work diligently together and know that their obligation to prevent issues never ceases.

Susanne Kuehne, Decernis
Food Fraud Quick Bites

It Is Natural, So It Is Good For You – Or Not?

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Pills, food fraud
Find records of fraud such as those discussed in this column and more in the Food Fraud Database. Image credit: Susanne Kuehne.

In a large study of nearly 6000 products, more than a quarter (27%) of herbal medicines and foods sold in 37 countries on six continents was found to be deliberately or accidentally adulterated. In this study, the products, which came in a variety of forms such as softgels, tea and more, were analyzed with high throughput DNA sequencing and showed mislabeling, added fillers, substituted ingredients or contaminants. Such fraud can be a harmful to consumer health and safety, and must be monitored and tracked closely.

Resource

  1. Ichim, M.C. (October 24, 2019). “The DNA-Based Authentication of Commercial Herbal Products Reveals Their Globally Widespread Adulteration”. “Stejarul” Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, Piatra Neamt, Romania. Frontiers in Pharmacology. Retrieved from https://www.frontiersin.org/articles/10.3389/fphar.2019.01227/full.

X-Ray Detector Technology Heightens Sensitivity

By Food Safety Tech Staff
No Comments
Safeline X-ray technology. Image courtesy of Mettler Toledo
Safeline X-ray technology. Image courtesy of Mettler Toledo

A new X-ray detector technology features a 0.4-mm high-sensitivity detector that enables the integration of a 100-W X-ray generator. The technology, provided by Mettler Toledo, offers improved detection levels with a 20% power reduction under standard operating conditions.

The Safeline X-ray system includes software that “lends itself especially to ‘difficult’ or ‘busy’ images which contain varied density distribution, and is especially valuable for inspecting multi-textured foods and products that have a tendency to move around inside the packaging, such as boxes of cereal or bags of mixed nuts. In fact, detection sensitivity is unaffected by any type of packaging thus improving false rejection rates,” according to a company press release. The system enables the removal of contaminants before products leave a factory.

Mitigate Food Contamination Risk

Whether mycotoxins or microbiological values, heavy metals or pesticides – independent sampling and testing provide an objective and comprehensive overview of what food products contain and help comply with food safety regulations.

Nuts containing mould, frozen strawberries contaminated with hepatitis pathogens, and pesticide-laden vegetables – more than 3,000 products were objected by EU authorities in 2013. With increasing government, industry and consumer concerns about the hazards of food contaminants, and the risks they pose, food manufacturers, governments and non-governmental agencies, are implementing policies and processes to monitor and reduce contaminants.

Key food contaminants

Food contaminants cover a wide range of potential substances including:

  • Dioxins: Produced as unintentional by-products of industrial processes such as waste incineration, chemical manufacturing and paper bleaching, dioxins can be found in the air, in water and contaminated soil.
  • Allergens: Virtually all of the known food allergens are proteins that can subsist in large quantities and often survive food processing.
  • Genetically modified organisms (GMOs): Banned in a number of countries, controversy still exists with regard to the use of GMOs. Selling food and/or feed that is non-GMO in restricted markets places the burden of proof on the supply chain.
  • Heavy metals: Whilst heavy metals, such as lead (Pb), cadmium (Cd), mercury (Hg) and arsenic (As), can be found in nature, industrial and environmental pollutants have resulted in their increased presence in food and feed.
  • Hormones: Commonly used in animal husbandry to promote growth, hormone residues can be found in the food supply.
  • Melamine: Harmful to animal and human health, melamine is not a permitted food additive.
  • Mycotoxins: Produced by several strains of fungi found on food and feed products, mycotoxins are often invisible, tasteless, and chemically stable both at high temperatures and during long periods of storage.
  • Pesticide residues: Over-use of pesticides can lead to dangerous levels of hazardous chemicals entering the food chain with fresh fruit and vegetables being most susceptible to pesticide residues.
  • Polychlorinated biphenyls (PCBs): Used in many products, some PCBs are toxic and stable enough to resist breaking down even when released into the environment.
  • Radiation contamination: There are three ways that foodstuffs can become contaminated by radiation: surface, ground and water contamination.
  • Veterinary drug residues: Used in the treatment of animals, veterinary drugs can leave residues in animals subsequently sent into the food chain. The impact of contaminants varies. Depending on their toxicity and the level of contamination their effects can range from causing skin allergies, to more serious illnesses (including cancers and neurological impairments) and, in the most extreme cases, death.

To ensure that your food and feed products are fit for consumption, you need to test for specific contaminants throughout the value chain. For example, in concentrated levels, melamine, antibiotics and hormones can be harmful to animals and humans. Only thorough contaminant testing will determine if the above-mentioned impurities, among others, are present. After identification the relevant goods can be eliminated from the production and distribution chain.

Maximum levels and regulations

In order to protect consumers, maximum levels permitted in food products have been set by food safety legislation in many countries. Disappointingly, and despite efforts in some product areas, maximum levels are rarely harmonized across national borders. This inconsistency places responsibility for compliance firmly with the food supply chain. A comprehensive testing program can verify that your products meet maximum levels and the safety standards they represent.

In the European Union (EU), it is the food business operator who carries primary responsibility for food safety and the General Food Law Regulation (EC) 178/20022 is the primary EC legislation on general food safety. More specific directives and regulations compliment this, for example, EU regulations concerning non-GMO/GMO products, include Directive 2001/18/EC and regulations 1829/2003 and 1830/2003.

The U.S. Food and Drugs Administration has overseen the development and signing into law of the Food Safety Modernization Act (FSMA). Within the U.S., state regulators retain the right to apply additional regulations and laws. As result, rules regarding maximum levels, for example, vary from state to state.

In China, the Food Safety Law (FSL) was passed into law by the Chinese government in 2009. It introduced enhanced provision for monitoring and supervision, improved safety standards, recalls for substandard products and dealing with compliance failures.

Brazil’s food safety agency, Anvisa, coordinates, supervises and controls activities to assure health surveillance over food, beverages, water, ingredients, packages, contamination limits, and veterinary residues for import. No specific restrictions have been established yet for export.

Monitoring

Monitoring programs are frequently used to identify any contamination issues. From seeds, through the growing process and harvest, transportation, collection, storing and processing to the market channel, independent monitoring delivers credible and independently collected data on both quality and contaminants.

With so many policies and standards, both nationally and internationally, anyone involved in the food industry needs to be sure of accurate and up-to date information on food contaminant regulations. Whether mycotoxins or microbiological values, heavy metals or pesticides – independent sampling and testing provide an objective and comprehensive overview of what grain and food products contain.

For more information, please visit: www.SGS.com/foodsafety.