Tag Archives: contamination

X-ray systems

Production and Inspection: What to Do When Contamination Occurs

By Chris Keith
No Comments
X-ray systems

As much as food manufacturers take precautions to avoid all types of contaminants, there can still come a moment when you realize that your best efforts have failed. Maybe you find a broken blade or a missing wire during a sanitation break, but the product has already gone through your inline inspection machines—and nothing was detected.

This is the freak-out moment that no plant manager or quality assurance manager wants to have. Knowing that there’s possible contamination of your food product (and not knowing where that contaminant might be) creates a hailstorm of possibilities that your plant works hard to avoid. And you’re probably wondering how this could have happened in the first place.

X-ray systems
In addition to metal, X-ray systems can find glass, plastic, stone, bone, rubber/gasket material, product clumps, container defects, wood and missing components at 0.8 mm or smaller.

Understanding How Contaminants Get Past Detection

To prevent physical contamination from occurring, it’s important to understand the reasons why it happens. In-house inspection systems often fail to detect contaminants for the following reasons:

  • The equipment isn’t calibrated to detect contaminants to a small enough degree, or the contaminants are materials that aren’t easily detected by the in-house machinery (glass, rubber, plastic, etc.)
  • The machines aren’t constantly monitored
  • The speed of the production line doesn’t allow for detecting small particles

Metal detectors are the most commonly used inline inspection devices in food manufacturing, and they depend on an interference in the signal to indicate there is metal contamination in the product.
Despite the fact that technology has progressed to deliver fewer false positives, the machines can still be deceived by moisture, high salt contents and dense products that could provide interference in the signal. When that continues to occur, it’s common for manufacturers to recalibrate the machine to get fewer false positives—but that also decreases its effectiveness.

Another limitation of the metal detector is that, as the name indicates, it can only find metal. That means contaminants like plastic, glass, rubber and bone won’t be found through a metal detector, but will hopefully be discovered through some other means before the product is shipped out.

Oftentimes, contamination or suspected physical contamination is discovered when a product, such as cheese or yogurt, goes through a filtration system, or when a piece of machinery is inspected during a sanitation break.
If the machinery is found to be missing a part, such as a bolt or a rubber gasket, the manufacturer then has to backtrack to the machinery’s last inspection and determine how much, if any, of the product manufactured during that time has been contaminated.

X-ray inspection
X-ray inspection can find what other forms of inspection cannot, because it’s based on the density of the product, as well as the density of the physical contaminant. In this image, you can see foreign material detected in canned goods.

What To Do When Contamination Occurs

Once a food manufacturer discovers that it may have a physical contamination problem, it must make a decision on how to handle the situation. Options come down to four basic choices, each of which comes with its own risks and benefits.

Option 1: Dispose of the full production run

The one advantage of disposing of a full production run is that it entirely eliminates the possibility of the contaminated product reaching consumers.

However, this is an expensive solution, as the manufacturer has to pay for the cost of disposal in a certified landfill and absorbs the cost of packaging, labor and ingredients. It also presents the risk of lost revenue by having a product temporarily out of stock.

Option 2: Shut down your production lines for re-inspection/re-work

Running the product through inline inspections a second time may result in finding the physical contaminant, but there’s also a risk that the contaminant won’t be found—and now the company has lost money through overtime pay and lost productivity.

If the inspection equipment was not sensitive enough to find the contaminant the first time around, it may not find it the second time, which puts the manufacturer back at square one. The advantage to this method is that the manufacturer maintains complete accountability and control over the process, although it may not yield the desired results.

Option 3: Risk it and ship the product to retailers

There’s always a chance that a missing bolt didn’t make its way into the product. Sometimes, if a metal detector goes off and the manufacturer can’t find any contaminants upon closer examination, they will choose to ship the product and take their chances.

The advantage for them is that, on the front end, this is the least expensive option—or it could be the costliest choice of all if a consumer finds a physical contaminant in their food. In fact, the average cost of a food recall is estimated at $10 million; lawsuits may push that cost even higher and result in a business being closed for good.

Option 4: Use third-party X-ray inspection

X-ray inspection is the most effective way to find physical contaminants. In addition to metal, X-ray systems can find glass, plastic, stone, bone, rubber/gasket material, product clumps, container defects, wood and missing components at 0.8 mm or smaller.

When a food manufacturer has a contamination issue, it can have the bracketed product inspected by a third-party X-ray inspection company and only dispose the affected food, allowing the rest of the product to be distributed. This option allows the manufacturer to maintain inventory and keep food deliveries on schedule while still eliminating the problem of contamination.

X-ray inspection can find what other forms of inspection cannot, because it’s based on the density of the product, as well as the density of the physical contaminant. When X-ray beams are directed through a food product, the rays lose some of their energy, but will lose even more energy in areas that have a physical contaminant. So when those images are interpreted on a monitor, the areas that have a physical contaminant in them will show up as a darker shade of gray.
This allows the workers monitoring machines to immediately identify any foreign particles that are in the food, regardless of the type of material.

Detection is Key to Avoiding Contamination Issues

Handling contamination properly is vital to every food manufacturing company. It affects the bottom line and the future of the company, and just one case of a physical contaminant reaching the consumer is enough to sideline food companies of any size. As X-ray technology continues to evolve, it remains an effective and efficient form of food inspection.

Educating plant managers and quality managers on what to do if inline inspection machines fail to detect contaminants should include information on how X-ray technology can be a food company’s first line of defense. While physical contaminants can’t always be avoided, they can be detected—and the future of your company may depend on it.

Eggs

Rose Acres Recalls Eggs, FDA Investigating Salmonella Link

By Food Safety Tech Staff
No Comments
Eggs

Rose Acre Farms has voluntarily recalled eggs from its farm in Hyde County, North Carolina following an investigation by FDA, CDC and other agencies involving Salmonella illnesses. FDA testing determined that eggs produced from this farm are connected to 22 cases of Salmonella Braenderup infections; the CDC is confirming illness information with state health departments.

The exact amount of eggs recalled totals 206,749,248.

The eggs are sold under several brand names, including Coburn Farms, Country Daybreak, Food Lion, Glenview, Great Value, Nelms, and Sunshine Farms, as well as restaurants.

FDA is advising restaurants and retailers that they should not sell or use any recalled shell eggs. In addition, they should take measures to avoid cross-contamination of the food processing environment and equipment by washing and sanitizing display cases and refrigerators regularly, washing and sanitizing cutting boards, surfaces and utensils, and washing hands with hot water and soap after any cleaning or sanitation process. Consumers are advised not to eat the recalled eggs.

A full list of the recalled eggs are available on FDA’s website.

Francine Shaw, Savvy Food Safety, Inc.
FST Soapbox

Foodborne Illnesses and Recalls on the Rise

By Francine L. Shaw
3 Comments
Francine Shaw, Savvy Food Safety, Inc.

The last word a manufacturer wants to hear is “recall”. During 2017, recalls involved everything from salad mix contaminated with a dead bat to hash browns infused with shredded golf balls.

Not all recalls are created equal. Both the USDA and the FDA have three classifications of recalls to indicate the relative degree of health hazard presented by the product being recalled:

  • Class I: A Class I recall is the most serious classification, involving a health hazard situation in which there is a reasonable probability that eating the food will cause health problems or death.
  • Class II: A Class II recall involves a potential health hazard situation in which there is a remote probability of adverse health consequences from eating the food.
  • Class III: A Class III recall involves a situation in which eating the food will not cause adverse health consequences.

During 2017, there were 456 recalls recorded in the United States. The number one reason for those recalls was undeclared allergens.

Identify the weak links in your supply chain: Attend the Food Safety Supply Chain Conference | June 12–13, 2018 | Rockville, MD | Learn moreFoodborne illnesses continue to be widespread, as well. In 2017, we saw Robin Hood flour contaminated with E.coli, Soygo yogurt with Listeria, tomatoes, cantaloupe, and ground turkey tainted with Salmonella, and even shredded coconut was responsible for causing a Salmonella outbreak in the United States and Canada. Foodborne illness outbreaks can happen at restaurants, corporate events, private parties, schools and cruise ships—anywhere and everywhere food is served.

Recalls and foodborne illnesses are 100% preventable. Incidents occur because of human error, and all it takes is one weak link to cause serious—and potentially fatal—problems. That’s it. One weak link can cause the traumatic deaths and/or illnesses of customers, and cost your company billions of dollars, loss of sales, plummeting stocks, negative media coverage and a severely damaged reputation.

When there’s a recall or a foodborne illness, products must be destroyed, which is lost revenue for manufacturers, retailers, restaurants, etc. Finding the source of the contamination can be a massive undertaking. The manufacturer may need to close all of their plants for cleaning until the source is identified, which adds up to a tremendous financial burden, and also requires significant time and effort. Class 1 recalls can cost hundreds of millions of dollars or more, to identify the source of contamination, recall products, sanitize facilities, and keep consumers safe.

It takes years for companies to establish a solid reputation, and food recalls and foodborne illness outbreaks can obliterate a brand’s reputation overnight. Consumers lose confidence much faster than they gain it, and bad news travels fast (especially in this time of social media where news spreads instantly and widely). And on top of that, there may be litigation as a result of the recall, incident or outbreak, which will result in attorney fees and potential settlements that could be very significant. If the risk of massive expense and bankruptcy isn’t enough, for the past few years, the U.S. District of Justice has been issuing fines and prison terms to company leaders involved in foodborne illnesses outbreaks and food recalls.

The government, media and general public are holding companies (and their leadership) accountable now, so you’d think that recalls and foodborne illness incidents would be on the decline but, unfortunately, that’s not the case. And with advancements in technology, why are we still having so many issues surrounding the safety of our food?

Many media outlets report that foodborne illnesses have been rising considerably in the past few years. However, according to the CDC, a study showed that the six most common foodborne illnesses have actually declined in frequency by 25% over the last two decades. Having said that, though, the severity of foodborne illness outbreaks seems to be increasing, and the number of outbreaks connected to produce has risen, as well. Some experts believe the increases may be due to better reporting processes rather than an actual increase in the number of foodborne illnesses.

There are various theories as to why foodborne illnesses may be getting worse. Some government agencies indicate it has to do with farming policies. The CDC disagrees. More widely accepted beliefs are the increase in popularity of organic produce—grown with manure rather than chemical fertilizer—which can transfer bacteria to the produce. Additionally, there’s debate that the use of antibiotics can cause bacteria that causes foodborne illnesses to become resistant.

Recalls may occur for a variety of reasons. Products may be pushed beyond their shelf life by the manufacturer, or maybe the design and development around the product was insufficient (equipment, building, etc.). Is the manufacturing facility designed in a manner that can prevent contamination—structurally and hygienically? Maybe the production quality control checks failed. Did the manufacturer conduct an adequate food safety risk assessment prior to launching the new product? Profit margins are often thin—did financial incentives prevent the company from implementing a thorough food safety program?

Getting back to the basics of food safety would reduce recalls and foodborne illnesses significantly. Manufacturers must be certain about food safety as well as the integrity of the ingredients they use. They need to be honest with themselves and understand the risks of the ingredients, processes and finished products that they are handling.

Human error is a given. It’s the corporation’s responsibility to minimize the risk. Implement ongoing food safety education and training for all employees, explaining the proper food safety protocols and processes. Develop internal auditing systems, using innovative digital tools. Get rid of the pen and paper forms, where it’s more likely for errors to occur and for pencil whipping to happen. Digital solutions provide more effective internal auditing, meticulousness in corrective action systems including root cause analysis, allergen management, and controls relating to packing product into the correct packaging format—all fundamental to keeping foods, consumers and businesses healthy and safe.

Glen Ramsey, Orkin
Bug Bytes

Using Monitoring Devices to Protect Products from Pests

By Glen Ramsey
No Comments
Glen Ramsey, Orkin

They’re sneaking in through your windows, crawling through your front door when nobody is looking and squeezing through tiny openings to steal your food. They’re tough to catch, and even tougher to spot.

Naturally, we’re talking about pests. They come in all shapes and sizes, but have the same goal: To find a reliable, safe place to call home where they have abundant access to food, water and shelter. Unfortunately, food processing facilities offer pests all three of these things, making them susceptible to infestations that can compromise products and hurt the bottom line.

You probably already have an integrated pest management (IPM) program in place to mitigate the risk of pests inside your facility. While these programs are great for offering proactive, preventive solutions that use chemical solutions as a last resort, they shouldn’t be the beginning and end of your pest management efforts.

First and foremost, facility staff should always be familiar with the warning signs of pest issues and what to do if they spot something crawling around the building. Most pest management companies will offer complimentary training sessions for you and your staff, which is a great first step. Then, during your weekly/monthly staff meetings, let your employees know which pests are most likely to cause a problem and include some images of warning signs. Empower them to call out problems, explain the risks of pest damage to your products, and you’ll have a better chance of catching pest problems early.

But your staff can’t be expected to spot everything, and there are always pests that slip through the cracks.

That’s why pest management professionals frequently recommend using a variety of tools to closely watch pest activity and detect emerging hot spots around facilities. Tools like IR thermometers, moisture meters and telescoping cameras help pest management professionals identify these high-risk areas. Once these areas have been identified, your pest management professional can take the next step in advanced detection using monitoring devices to paint the picture of pest activity around your facility.

Monitoring devices make it easier to see where pests are traveling and give an idea for how many may be present. These devices capture pests for identification, assist in early detection and will help to mitigate the risk of infestation through early warning. If you’re particularly worried about an upcoming audit or the recent enforcement deadlines for FSMA, these devices will give you a better chance of scoring well and can help you demonstrate compliance by shifting your pest management plan to a more proactive approach as mandated by these new regulations.

There could be quite a few of these monitoring devices you’d like to start using around your facility today.

Fly Lights

A popular device found in many food processing facilities, fly lights attract flying pests by emitting strong UV lights that draws insects in, at which point they become trapped on a sticky glue board in the back of the light—out of sight and away from your products. They work best when placed inside near doorways and windows where pests might be able to squeeze inside, but they’re effective just about anywhere. Discuss placement with your pest management provider.

Why does it work?

The leading theory on why flying pests are attracted to lights has to do with their reliance on the sun and moon as navigational guides. In the past, insects could use the sun and moon as a guide because it stayed at a constant angle, allowing them to move in a consistent direction. However, artificial light confuses them and causes them to circle around the light source. Insects that move towards light in this way are called positively phototactic, while pests like cockroaches who move away from light are called negatively phototactic.

Mechanical Traps

Most commonly used for rodents, mechanical traps can allow for the humane capture and removal of rats and mice. These traps sound simple, and that’s because it is; the concept hasn’t changed for years. Why? Because it’s effective! Rodent curiosity or bait can draw the rodent inside one of these stations, which have a mechanical door ready to close as soon as it enters. There is also new technology on the way that will instantly notify both customer and pest management professional when this occurs, so the creature can be removed immediately. These stations are most frequently used around the interior perimeter of a facility to keep rodents from getting further than the exterior walls.

Why does it work?
Simply put, rodents will often run along walls. They’re extremely athletic and very clever, which is why it’s never recommended to try to place traps yourself. They can learn from close calls with unsuccessful trapping techniques, which is why it isn’t worth the risk to handle rodent issues alone. With proper knowledge and placement, they can be outsmarted.

Sticky Traps and Glue Boards

Perhaps the simplest tools in the pest professional’s shed, sticky traps and glue boards are meant to reduce the population of crawling insects around a facility. Because they’re not very large, they can be used just about anywhere inside a facility.

Why does it work?

These are usually used for small population control in areas where crawling pests are already present. Sticky traps and glue boards are generally coated with a substance that attract pests, which then ensnares them when they step on the surface of the trap. These are great for catching pests like cockroaches, and give you a sense of how many pests are coming through an area over a period of time. Over time, you’ll be able to see if the population is trending downwards or if the problem is getting worse based on the number of pests captured.

Pheromone Traps

Great for combating the stored product pests that pose a huge threat to food processing facilities with large inventories, pheromone traps trick pests into getting trapped. While sticky traps can be used all over, pheromone traps are more effectively used by placing them strategically around storage areas to help monitor for any stored product pests.

Why does it work?

This type of trap uses synthetically replicated versions of insect pheromones, which are secreted chemicals that insects put out to communicate with each other. In this case, the pheromone traps lure pests out from their hiding/feeding areas. There are also probe-type pheromone traps that are best used in bulk grain storage if necessary.

Now this isn’t an exclusive list of all the monitoring devices a pest management professional can recommend around your facility, but it does give you an idea of the most common, effective devices out there. Keep in mind that sanitation and exclusion must also be a big part of any IPM program, but monitoring devices (along with detailed documentation) can take your program to the next level and give you a better feel for the pest issues your facility deals with the most.

Any time you’re using these tools and devices to detect pest hot spots, it’s important to record the results over time. Your pest management professional will keep a logbook of findings on site, and you should reference that regularly. Also, consider requesting or creating a trend map of pest activity over time to help you see which pests are plaguing your facility the most. That way, it will be easy to work towards improving the pest management program you have in place, which in turn will help protect your products from contamination and protect your bottom line.

Martin Easter, Hygiena
In the Food Lab

The New Normal: Pinpointing Unusual Sources of Food Contamination

By Martin Easter, Ph.D.
No Comments
Martin Easter, Hygiena

Shiga toxin-producing E. coli in dry flour, and then romaine lettuce. E. coli O104 in fenugreek sprout seeds. Recent announcements of foodborne illness outbreaks have begun involving unusual combinations of bacteria and foods. These out-of-the-ordinary outbreaks and recalls are a small but growing part of the 600 million documented food poisonings that occur worldwide every year according to the World Health Organization. Preventing outbreaks from these new combinations of pathogen and food demand a range of accurate tests that can quickly identify these bacteria. Over the past several years, outbreaks from unusual sources included:

  • E. coli O121 (STEC) in flour: Last summer, at least 29 cases of a E. coli O121 infection were announced in six Canadian provinces. The source arose from uncooked flour, a rare source of such infections because typically flour is baked into final products. Eight people were hospitalized, and public health officials have now included raw, uncooked flour as well as raw batter and dough as a source of this type of infection.
  • E. coli O104:H4 in fenugreek sprouts: One of Europe’s biggest recent outbreaks (affecting more than 4,000 people in Germany in 2011, and killing more than 50 worldwide) was originally thought to be caused by a hemorrhagic (EHEC) E. coli strain that from cucumbers, but was but was later found to be from an enteroaggregative E. coli (EAEC) strain in imported fenugreek seeds—the strain had acquired the genes to produce Shiga toxins.
  • Mycoplasma in New Zealand dairy cows: While not unusual in cattle, the incident reported in August marks the pathogen’s first appearance in cows in New Zealand, a country known for strict standards on agricultural hygiene. The microorganism is not harmful to people, but can drastically impact livestock herds.
  • Listeria monocytogenes in food sources: Listeria monocytogenes causes fewer but more serious incidence of food poisoning due to a higher death rate compared to Salmonella and Campylobacter. Whereas Listeria has been historically associated with dairy and ready to eat cooked meat products, recent outbreaks have been associated with fruit, and the FDA, CDC and USDA are conducting a joint investigation of outbreaks in frozen as well as in fresh produce.
  • Listeria in cantaloupe: In 2011, one of the worst foodborne illnesses recorded in the United States killed 20 and sickened 147, from Listeria monocytogenes that was found in contaminated cantaloupes from a farm in Colorado. The outbreak bloomed when normal background levels of the bacteria grew to deadly concentrations in multiple locations, from transport trucks to a produce washer that was instead designed for potatoes.

The outbreaks underscore the fundamental need to have a robust food safety program. Bacteria can colonize many different locations and the opportunity is created by a change in processing methods and/or consumer use or misuse of products. So robust risk assessment and preventative QA procedures need to be frequently reviewed and supported by appropriate surveillance methods.

Food safety and public health agencies like the European Food Safety Authority (EFSA) or the CDC have employed a wide range of detection and identification tests, ranging from pulse field gel electrophoresis (PFGE), traditional cell culture, enzyme immunoassay, and the polymerase chain reaction (PCR). In the case of Germany’s fenugreek-based E. coli outbreak, the CDC and EFSA used all these techniques to verify the source of the contamination.

These tests have certain advantages and disadvantages. Cell culture can be very accurate, but it depends on good technique and usually takes a long time to present results. PFGE provides an accurate DNA fingerprint of a target bacteria, but cannot identify all strains of certain microorganisms. Enzyme immunoassays are precise, but can produce false-positive results in certain circumstances and require microbiological laboratory expertise. PCR is very quick and accurate, but doesn’t preserve an isolate for physicians to test further for pathogenic properties.

Identification of the pathogens behind foodborne contamination is crucial for determining treatment of victims of the outbreak, and helps public health officials decide what tools are necessary to pinpoint the outbreak’s cause and prevent a recurrence. Rapid methods such as the polymerase chain reaction (PCR), which can quickly and accurately amplify DNA from a pathogen and make specific detection easier, are powerful tools in our efforts to maintain a safe food supply.

Recently, scientists and a third-party laboratory showed that real-time PCR assays for STEC and E. coli O157:H7 could detect E. coli O121, O26 and O157:H7 in 25-g samples of flour at levels satisfying AOAC method validation requirements. The results of the study demonstrated that real-time PCR could accurately detect stx, eae and the appropriate E. coli serotype (O121, O26 or O157:H7) with no statistical difference from the FDA’s Bacteriological Analytical Manual (BAM) cell culture method.

Agencies like the World Health Organization and CDC have repeatedly stated that historical records of food poisoning represent a very small percentage of true incidents occurring every year worldwide. Many of today’s most common food pathogens, like Listeria monocytogenes, E. coli O157:H7 or Campylobacter jejuni, were unknown 30 years ago. It’s not clear yet if unusual sources of contamination arise from increasing vigilance and food safety testing, or from an increasingly interdependent, globally complex food supply. No matter the reason, food producers, processors, manufacturers, distributors and retailers need to keep their guard up, using the optimum combination of tools to protect the public and fend off food pathogens.

USDA Logo

Pilgrim’s Pride Recalls More than 101,000 Pounds of RTE Breaded Chicken Patties

By Food Safety Tech Staff
No Comments
USDA Logo

Pilgrim’s Pride Corp. has recalled about 101,310 pounds of its ready-to-eat breaded chicken patties as a result of potential contamination with rubber. The Class I recall involves patties that were produced and packed on September 6, 2017. The issue was discovered following a customer complaint on February 13.

Specifically, the products are 30-lb boxes with five-pound clear bags that contain Gold Kist Farms, Fully Cooked Whole Grain Home-Style Breaded Chicken Patties. Distribution of the product included schools.

An alert issued by the USDA points to equipment failure at a Pilgrim’s Pride facility as the culprit in introducing the foreign material.

Alert

Pathogenic Contamination Among Top Food Safety Hazards for Cannabis

By Steven Burton
No Comments
Alert

“As more people gain access to and ingest cannabis products, it’s only a matter of time before food safety becomes a primary concern for producers and regulators,” says Steven Burton, CEO and founder of Icicle Technologies, Inc. Without federal regulation, there are so many questions about the food safety hazards associated with the use of cannabis in food products. In an article published in Food Safety Tech’s sister publication, Cannabis Industry Journal, Burton discusses the Top Four Safety Hazards for the Cannabis Industry, which includes pathogenic contamination from pests and improper handling.

Alert

FDA Inspections: Top Five Violations for FY2017

By Food Safety Tech Staff
No Comments
Alert

FDA’s Office of Regulatory Affairs has released the most frequently cited inspectional observations for fiscal year 2017. Among the items on the spreadsheet are food safety hazards, failure to clean, sanitation records, corrective action plan, and lack of sanitation.

“These observations, are listed on an FDA Form 483 when, in an investigator’s judgment, the observed conditions or practices indicate that an FDA-regulated product may be in violation of FDA’s requirements.” – FDA

The following are the top five (most frequent) observations.

  • 5. Contamination: Cleaning and sanitizing operations for utensils and equipment not conducted in a manner that protects against contamination of food, food contact surfaces and food packaging materials.
  • 4. Failure to implement HACCP plan procedures.
  • 3. Facility not constructed in a way that enables floors, walls and ceilings to be adequately cleaned; buildings, fixtures and other physical facilities not kept in sanitary condition.
  • 2. Sanitation monitoring: Sanitation conditions and practices not monitored with enough frequency to be in conformance with CGMP.
  • 1. Pests: Lack of effective pest exclusion from processing areas and contamination of foods, and failure to provide adequate screen against pests.
Cara Pahoyo

5 Burning Questions About The Rise In Foodborne Illness

By Cara Pahoyo
1 Comment
Cara Pahoyo

The food industry has been one of the most celebrated and fastest-growing industries over the last decade or so. Which is no surprise, considering how much food is now being consumed, or posted on Instagram, on a daily basis. Pop-up food carts and hole-in-the-wall food places have been a huge hit too and even inspired a number of Hollywood films about the tough competition and revolutionary marketing tactics that have taken over the food industry (see: Jon Favreau’s Chef and Bradley Cooper’s Burnt). It’s good times, for sure. Well, for the most part, I mean.

When did foodborne illness become a major concern in the US?

Unfortunately, it’s not just the revenue that’s on the rise, because food borne illnesses too are making the headlines as of late. Talk about spoiling (no pun intended) the fun, eh? Well, according to the US Centers for Disease Control and Prevention (CDC) in Atlanta, Georgia, the number of foodborne disease outbreaks resulting from imported foods increased during surveillance years 2005 to 2010.

Where are the numbers coming from?

Dr. L. Hannah Gould, Ph.D., a senior epidemiologist at the CDC, revealed those findings during an oral presentation here at the International Conference on Emerging Infectious Diseases in 2012. According to the CDC, 39 foodborne disease outbreaks were reported in which the implicated food had been imported into the United States. These outbreaks resulted in 2348 illnesses, 434 hospitalizations and 3 deaths.

How many are affected?

Though foodborne illnesses are often never formally reported, about 48 million Americans, or one in six, get sick each year from food, the CDC estimates, with 128,000 hospitalizations and 3,000 deaths. In fact, in 2014, 19,542 cases of infection were traced from 15% of the US population being surveyed by CDC.

Why is it on the rise?

The culprits? Chances are, you’ve been storing them somewhere inside your establishment: packaged caramel-coated apples, frozen ice cream sandwiches, fresh peaches and nectarines, frozen meet, etc. Not exactly the answers you were expecting, perhaps?

According to experts, the growing popularity of packaged foods such as pre-cut fruit and prepared sandwiches has heightened the risk of spreading foodborne illnesses. Furthermore, they have identified that contamination can occur between preparation and packaging, or in high-tech processing plants, after heating to destroy harmful bacteria and before packaging. Which means, somewhere in the last decade, we lost our way (or something like that).

What can we do to stop foodborne disease from spreading?

The whole fiasco regarding foodborne illness is a public safety concern and must be addressed by everyone. However, while adjusting individually may not be a problem for most of us, the same cannot be said for food places and restaurants. Just imagine the public relations horror for restaurant managers if any of their customers get sick while dining at their place?

Restaurants must be more strict and thorough when addressing food safety concerns. The entire crew must be trained when it comes to food handling and a food safety manager must also take charge in overseeing procedures in the kitchen. In fact, proper storage and disposal must also be adequately done at all times. With those safety measures in play, establishments will be able to showcase their commitment to adhere with local food standards and basic food handling procedures. That’s a step in the right direction, for sure.

Summing up, foodborne illness is definitely a manageable concern and will likely not become a factor that will hinder the overall growth of the food industry. However, the fact that it can be controlled and yet still recurring means that there’s still a fair amount of work needed to be done to improve the industry in other aspects—and that isn’t necessarily a bad thing (at least not yet).

Randy Fields, Repositrak
FST Soapbox

Technology’s Role In The Future Of Food Safety

By Randy Fields
1 Comment
Randy Fields, Repositrak

As we have all read in the media, when a food safety emergency occurs, a company’s reputation stands to take a significant hit that may be unrecoverable. This phenomenon isn’t going away soon, nor are compliance requirements that pose a threat to the personal freedom of executives. If these aren’t enough reasons to get busy automating your food safety programs, read on.

Learn more about the future of food safety and technology at this year’s Food Safety Consortium, November 12–16 in Schaumburg, IL

The trends toward social and health-related product claims, like organic, the ‘free-froms’ and locally-grown, have had the impact of adding dozens if not hundreds of new suppliers to a retailer’s procurement list. And, it’s important to note, that these generally smaller suppliers are just now approaching their compliance deadlines for FSMA, and if they are very small, still have another year. New trends appear every year, and they will compound the challenge for retailers and wholesalers of knowing exactly who all of their suppliers are, which in turn will worsen compliance issues.

Our studies show that at least 12% of documents that certify organic, ‘free-froms’ and other product label claims have some level of discrepancy or inaccuracy making them invalid, and rendering the systems that rely on vendor self-disclosure near useless. With sales expected to skyrocket within these categories during the next few years, companies need to leverage technology to protect the supply chain, and consider having the system hold purchase orders generated for vendors who are not compliant with requirements.

An alternative is to have the system add a compliance fee to the purchase order that escalates over time or swiftly replace suppliers if they are not willing or not able to comply. That also speeds compliance as news travels quickly if there is a hard-hitting consequence for non-compliance. Either way, it’s important to be able to substantiate any claims to the consumer, since if those assertions are deemed unreliable, retailers and their suppliers risk a breach in consumer confidence and will suffer economically when shoppers turn away from them at the shelf.

And while retailers and wholesalers have begun to turn the Titanic on regulatory and business compliance, they need to continue to diligently find the risks in their supply chain, working even more aggressively to automate their current food safety and quality programs using new technology and procedures. Otherwise, their reputation and their existence are in jeopardy.

Cloud-based compliance management solutions that help retailers, wholesalers and suppliers meet the new food safety requirements can be configured to manage documentation requirements by supplier type vs. requiring the same documents from all suppliers. These systems also go beyond just storing digital copies of documents, and actually manage any form of compliance by reading inside the document to confirm it meets requirements. The benefits of these compliance management tools extend to streamlining new vendor approvals, which can save time and enable the redeployment of resources to more productive business-building activities.

Make no mistake: business and regulatory compliance will continue to be a focal point in the future. This includes addressing potential safety, certification and quality challenges throughout the extended supply chain as nearly one-third of all recalls are due to ingredient suppliers. We believe that in less than three years, retailers will require supply chain visibility from the shelf all the way back to “dirt”. It’s been proven too risky not to have that kind of visibility for ultimately everyone’s customer – the consumer. And now technology companies are on the hook to deliver it.