Tag Archives: corrective actions

Earl Arnold, AIB International
FST Soapbox

HACCP is the Past, Present and a Building Block for the Future

By Earl Arnold
No Comments
Earl Arnold, AIB International

“Food safety plan” is a term often used in the food industry to define an operation’s plan to prevent or reduce potential food safety issues that can lead to a serious adverse health consequence or death to humans and animals to an acceptable level. However, depending on the facility, their customers, and or regulatory requirements, the definition and specific requirements for food safety plans can be very different. To ensure food safety, it’s important that the industry finds consensus in a plan that is vetted and has worked for decades.

One of the first true food safety plans was HACCP. Developed in 1959 for NASA with the assistance of the food industry, its goal was to ensure food produced for astronauts was safe and would not create illness or injury while they were in space. This type of food safety plan requires twelve steps, the first five of which are considered the preliminary tasks.

  1. Assemble a HACCP team
  2. Describe the finished product
  3. Define intended use and consumer
  4. Create process and flow diagram
  5. Verify process and flow diagrams

This is followed by the seven principles of HACCP.

  1. Conduct the hazard analysis
  2. Identify critical control points
  3. Establish critical limits
  4. Establish monitoring requirements
  5. Establish corrective actions for deviations
  6. Procedures for verification of the HACCP plan
  7. Record keeping documenting the HACCP system

HACCP is accompanied by several prerequisites that support the food safety plan, which can include a chemical control program, glass and brittle plastics program, Good Manufacturing Practices (GMPs), allergen control program, and many others. With these requirements and support, HACCP is the most utilized form of a food safety plan in the world.

When conducting the hazard analysis (the first principle of HACCP), facilities are required to assess all products and processing steps to identify known or potential biological, chemical and physical hazards. Once identified, if it is determined that the hazard has a likelihood of occurring and the severity of the hazard would be great, then facilities are required to implement Critical Control Points (CCP) to eliminate or significantly reduce that identified hazard. Once a CCP is implemented, it must be monitored, corrective actions developed if a deviation in the CCP is identified and each of these are required to be verified. Records then also need to be maintained to demonstrate the plan is being followed and that food safety issues are minimized and controlled.

HACCP is, for the most part, the standard food safety plan used to meet the Global Food Safety Initiative (GFSI) standards. This is utilized in various third-party audit and customer requirements such as FSSC 22000, SQF, BRC, IFS and others. These audit standards that many facilities use and comply with also require the development of a food safety management system, which includes a food safety plan.

Further, HACCP is often used to demonstrate that potential food safety issues are identified and addressed. FDA has adopted and requires a regulated HACCP plan for both 100% juice and seafood processing facilities. USDA also requires the regulated development of HACCP for meat processing and other types of facilities to minimize potential food safety issues.

For facilities required to register with the FDA—unless that facility is exempt or required to comply with regulated HACCP—there is a new type of food safety plan that is required. This type of plan builds upon HACCP principles and its steps but goes beyond what HACCP requires. Under 21 CFR 117, specific additions assist in identifying and controlling additional food safety hazards that are on the rise. This includes undeclared allergen recalls, which constituted 47% of recalls in the last reportable food registry report published by FDA.

Prior to developing this plan, FDA provided recommendations for preliminary steps that can be completed and are essential in development of a robust food safety plan but are not a regulatory requirement. The steps are very similar to the preliminary tasks required by HACCP, including the following:

  1. Assemble a food safety team
  2. Describe the product and its distribution
  3. Describe the intended use and consumers of the food
  4. Develop a flow diagram and describe the process
  5. Verify the flow diagram on-site

Their recommended plan also requires a number of additional steps, including:

  1. A written hazard analysis. Conducted by or overseen by a Preventive Controls Qualified Individual (PCQI). However, this hazard analysis requires assessing for any known or reasonably foreseeable biological, chemical, physical, radiological, or economically motivated adulteration (food fraud that historically leads to a food safety issue only). You may note that two additional hazards—radiological and EMA—have been added to what HACCP calls for in the assessment.
  2. Written preventive controls if significant hazards are identified. However, similar preventive controls are different than a CCP. There are potentially four types of preventive controls that may be utilized for potential hazards, including Process Preventive Controls (the same as CCP), Allergen Preventive Controls, Sanitation Preventive Controls, Supply Chain Preventive Controls and Others if identified.
  3. A written supply chain program if a Supply Chain Preventive Control is identified. This includes having an approved supplier program and verification process for that program.
  4. A written recall plan if a facility identified a Preventive Control.
  5. Written monitoring procedures for any identified Preventive Control that includes the frequency of the monitoring what is required to do and documenting that monitoring event.
  6. Written corrective actions for identified Preventive Controls in case of deviations during monitoring. Corrective actions must be documented if they occur.
  7. Written verification procedures as required. This could include how monitoring and corrective actions are verified, procedures themselves are verified, and calibration of equipment as required. Also required is training, including a Preventive Control Qualified Individual. Additional training is required for those individuals responsible for performing monitoring, implementing corrective actions, and verification of Preventive Controls. Further, all personnel need to have basic food safety training and all training needs to be documented.

While the term “food safety plan” is used widely, it’s important that operations don’t just use the term, but enact a plan that is vetted, proven to work, and encompasses the principles of HACCP. Doing so will help ensure that their facility is producing foods that customers and consumers will know is safe.

LIMS, Laboratory information management system, food safety

How Advanced LIMS Brings Control, Consistency and Compliance to Food Safety

By Ed Ingalls
No Comments
LIMS, Laboratory information management system, food safety

Recent food scandals around the world have generated strong public concerns about the safety of the foods being consumed. Severe threats to food safety exist at all stages of the supply chain in the form of physical, chemical and biological contaminants. The current pandemic has escalated the public’s concern about cross contamination between people and food products and packaging. To eliminate food risks, manufacturers need robust technologies that allow for reliable monitoring of key contaminants, while also facilitating compliance with the ISO 17025 standard to prove the technical competence of food testing laboratories.

Without effective data and process management, manufacturers risk erroneous information, compromised product quality and regulatory noncompliance. In this article, we discuss how implementing a LIMS platform enables food manufacturers to meet regulatory requirements and ensure consumer confidence in their products.

Safeguarding Food Quality to Meet Industry Standards

Food testing laboratories are continually updated about foodborne illnesses making headlines. In addition to bacterial contamination in perishable foods and ingredient adulteration for economic gains, chemical contamination is also on the rise due to increased pesticide use. Whether it is Salmonella-contaminated peanut butter or undeclared horsemeat inside beef, each food-related scandal is a strong reminder of the importance of safeguarding food quality.

Food safety requires both preventive activities as well as food quality testing against set quality standards. Establishing standardized systems that address both food safety and quality makes it easier for manufacturers to comply with regulatory requirements, ultimately ensuring the food is safe for public consumption.

In response to food safety concerns, governing bodies have strengthened regulations. Food manufacturers are now required to ensure bacteria, drug residues and contaminant levels fall within published acceptable limits. In 2017, the ISO 17025 standard was updated to provide a risk-based approach, with an increased focus on information technology, such as the use of software systems and maintaining electronic records.

The FDA issued a notice that by February 2022, food testing, in certain circumstances, must be conducted in compliance with the ISO 17025 standard. This means that laboratories performing food safety testing will need to implement processes and systems to achieve and maintain compliance with the standard, confirming the competence, impartiality and consistent operation of the laboratory.

To meet the ISO 17025 standard, food testing laboratories will need a powerful LIMS platform that integrates into existing workflows and is built to drive and demonstrate compliance.

From Hazard Analysis to Record-Keeping: A Data-Led Approach

Incorporating LIMS into the entire workflow at a food manufacturing facility enables the standardization of processes across its laboratories. Laboratories can seamlessly integrate analytical and quality control workflows. Modern LIMS platforms provide out-of-the-box compliance options to set up food safety and quality control requirements as a preconfigured workflow.

The requirements set by the ISO 17025 standard build upon the critical points for food safety outlined in the Hazard Analysis and Critical Control Points (HACCP) methodology. HACCP, a risk-based safety management procedure, requires food manufacturers to identify, evaluate and address all risks associated with food safety.

LIMS, laboratory information management system
LIMS can be used to visualize control points for HACCP analysis according to set limits. Graphic courtesy of Thermo Fisher Scientific.

The systematic HACCP approach involves seven core principles to control food safety hazards. Each of the following seven principles can be directly addressed using LIMS:

  • Principle 1. Conduct a hazard analysis: Using current and previous data, food safety risks are thoroughly assessed.
  • Principle 2. Determine the critical control points (CCPs): Each CCP can be entered into LIMS with contamination grades assigned.
  • Principle 3. Establish critical limits: Based on each CCP specification, analytical critical limits can be set in LIMS.
  • Principle 4. Establish monitoring procedures: By defining sampling schedules in LIMS and setting other parameters, such as frequency and data visualization, procedures can be closely monitored.
  • Principle 5. Establish corrective actions: LIMS identifies and reports incidents to drive corrective action. It also enables traceability of contamination and maintains audit trails to review the process.
  • Principle 6. Establish verification procedures: LIMS verifies procedures and preventive measures at the defined CCPs.
  • Principle 7. Establish record-keeping and documentation procedures: All data, processes, instrument reports and user details remain secured in LIMS. This information can never be lost or misplaced.

As food manufacturers enforce the safety standards set by HACCP, the process can generate thousands of data points per day. The collected data is only as useful as the system that manages it. Having LIMS manage the laboratory data automates the flow of quality data and simplifies product release.

How LIMS Enable Clear Compliance and Optimal Control

Modern LIMS platforms are built to comply with ISO 17025. Preconfigured processes include instrument and equipment calibration and maintenance management, traceability, record-keeping, validation and reporting, and enable laboratories to achieve compliance, standardize workflows and streamline data management.

The workflow-based functionality in LIMS allows researchers to map laboratory processes, automate decisions and actions based on set criteria, and reduce user intervention. LIMS validate protocols and maintain traceable data records with a clear audit history to remain compliant. Data workflows in LIMS preserve data integrity and provide records, according to the ALCOA+ principles. This framework ensures the data is Attributable, Legible, Contemporaneous, Original and Accurate (ALCOA) as well as complete, consistent and enduring. While the FDA created ALCOA+ for pharmaceutical drug manufacturers, these same principles can be applied to food manufacturers.

Environmental monitoring and quality control (QC) samples can be managed using LIMS and associated with the final product. To plan environmental monitoring, CCPs can be set up in the LIMS for specific locations, such as plants, rooms and laboratories, and the related samples can then be added to the test schedule. Each sample entering the LIMS is associated with the CCP test limits defined in the specification.

Near real-time data visualization and reporting tools can simplify hazard analysis. Managers can display information in different formats to monitor critical points in a process, flag unexpected or out-of-trend numbers, and immediately take corrective action to mitigate the error, meeting the requirements of Principles 4 and 5 of HACCP. LIMS dashboards can be optimized by product and facility to provide visibility into the complete process.

Rules that control sampling procedures are preconfigured in the LIMS along with specific testing rules based on the supplier. If a process is trending out of control, the system will notify laboratory personnel before the product fails specification. If required, incidents can be raised in the LIMS software to track the investigation of the issue while key performance indicators are used to track the overall laboratory performance.

Tasks that were once performed manually, such as maintaining staff training records or equipment calibration schedules, can now be managed directly in LIMS. Using LIMS, analysts can manage instrument maintenance down to its individual component parts. System alerts also ensure timely recalibration and regular servicing to maintain compliance without system downtime or unplanned interruptions. The system can prevent users from executing tests without the proper training records or if the instrument is due for calibration or maintenance work. Operators can approve and sign documents electronically, maintaining a permanent record, according to Principle 7 of HACCP.

LIMS allow seamless collaboration between teams spread across different locations. For instance, users from any facility or even internationally can securely use system dashboards and generate reports. When final testing is complete, Certificates of Analysis (CoAs) can be autogenerated with final results and showing that the product met specifications. All activities in the system are tracked and stored in the audit trail.

With features designed to address the HACCP principles and meet the ISO 17025 compliance requirements, modern LIMS enable manufacturers to optimize workflows and maintain traceability from individual batches of raw materials all the way through to the finished product.

Conclusion

To maintain the highest food quality and safeguard consumer health, laboratories need reliable data management systems. By complying with the ISO 17025 standard before the upcoming mandate by the FDA, food testing laboratories can ensure data integrity and effective process management. LIMS platforms provide laboratories with integrated workflows, automated procedures and electronic record-keeping, making the whole process more efficient and productive.

With even the slightest oversight, food manufacturers not only risk product recalls and lost revenue, but also losing the consumers’ trust. By upholding data integrity, LIMS play an important role in ensuring food safety and quality.

Technical Writing Workshop Focuses on Key Skills Needed for Writing Up Non-Conformances and CAPAs

By Food Safety Tech Staff
No Comments

Technical writing is not as simple as it sounds—especially as it relates to writing non-conformances and CAPAs. Innovative Publishing is offering a Technical Writing Virtual Workshop that takes place over two two-hour sessions on March 3 and 10. The event is being hosted by Food Safety Tech’s sister publication, MedTech Intelligence, but the content is applicable to the food industry as well.

The course will be instructed by world-class, international quality and regulatory consultant Mark Proulx, president of MLB Consulting Services. Proulx has more than 25 years of direct manufacturing, auditing, and FDA experience and is a certified quality auditor and Six Sigma Black Belt.

The workshop was developed for the following industry professionals:

  • Engineers responsible for writing up investigations and reports
  • Tech writers who must communicate the results of testing in reports, write up papers, produce arguments for or against an issue
  • Middle-level managers who are attempting to make arguments or show results
  • Laboratory staff who document results and write reports
  • Technicians who must write up test protocols, non-conformance reports, corrective actions, reports to upper management, etc.
  • Quality Assurance/Quality Control and Regulatory Compliance people who must document clearly the purpose of investigations and produce final reports that clearly state actions to be performed or the results of testing

Learn more about this special Technical Writing Virtual Workshop now! Register by February 11 for a special discount.

Melody Ge, Kestrel Management
FST Soapbox

Still Have Questions about FSMA Preventive Controls?

By Melody Ge
No Comments
Melody Ge, Kestrel Management

In September 2015, the FSMA Preventive Controls for Human Food Rule was published, requiring affected companies to comply with all FDA timelines. The last of these deadlines required that all very small businesses (less than $1 million per year) be in compliance with the FSMA rule by September 17, 2018.

With most companies having implemented FSMA preventive controls at this point, what have we learned? What’s still not clear? What major challenges remain? This article shares some questions that could help more companies on their journey to FSMA compliance.

What Is the Preventive Controls (PC) for Human Food Rule?

In plain language, under FSMA’s preventive controls for human food, FDA asks companies to identify any known and foreseeable potential hazards to finished products, and then apply control measures to prevent those hazards from happening and to ensure companies produce safe products. This rule changes the mentality from reactive to proactive.

Let’s break the term preventive control apart:

  1. What are we preventing? We are preventing any potential hazards that could occur. FDA identified four major categories of hazards. Food companies must look at their production processes and identify any foreseeable hazards within these categories:
    • Physical
    • Chemical
    • Biological
    • Intentional adulteration for economic gain
  2. What are we controlling? We are controlling the risks from all those hazards identified. Control measures should be identified for each risk from a particular hazard identified so they can be effectively applied.

Melody Ge will close out the 2018 Food Safety Consortium with the Plenary Session, “What Have We Learned After FSMA Implementation?” | November 15Where Do We Start?

A logical starting point involves understanding all hazards at your production facility. How can you ensure all hazards are assessed and evaluated? Consider mapping out the process line as one effective way. It is important to thoroughly understand your processes, as well as all raw materials, equipment, and personnel associated with each processing step. The more details gathered at the beginning, the easier it is to understand the hazards and risks as a foundation. A hazard can always be eliminated later if it is not applicable nor likely to occur.

Are All Control Measure or PRPs Considered Preventive Controls?

The short answer is not necessarily. Only those associated with a potential hazard will be considered a preventive control. For example, for an approved supplier program controlling incoming goods and suppliers, if an allergen is identified as a potential foreseeable hazard, the approved supplier program at the receiving step will be identified as a preventive control. Once a preventive control is determined, it must be evaluated to ensure it is proper and applicable to control and minimize the risks (117.420).

The same mentality should be applied for other control measures. Is there is a hazard and, if so, can this control measure actually control the risk? Once preventive controls are determined and identified, monitoring and validation are the next steps to ensure preventive controls are functioning effectively to control the risks as expected. If not, proper corrective actions should be identified.

Are Corrective Actions Always Required?

Not always—it depends! It is important to remember the intent of FSMA’s preventive controls, which is to prevent any potential hazards and control the risks to ensure safe products are produced. Per 117. 150, corrective action is a must when:

  • There is a potential pathogen threat in RTE products
  • There is a potential pathogen threat from the environmental monitoring program
  • A preventive control is not properly implemented and a corrective action procedure has not been established
  • A preventive control(s) or the food safety plan as a whole is not effective
  • Records are not completed after review

Other than the above-mentioned, corrections can be applied to address minor and isolated problems in a timely manner. As with all other food safety management systems (FSMS), once a corrective action is determined and implemented, a verification of its effectiveness shall be conducted. In addition, everything should be documented, as records are a vital component of the preventive control rule.

The FSMA Preventive Controls Rule is not scary. It is simply a series of requirements to assist the industry in proactively identifying the best control measure for operations. Foreseeable hazards must be controlled. As with all other management systems, knowledgeable and experienced personnel can help develop a valid food safety plan, including preventive controls, and ensure it is effectively implemented and maintained onsite.

FSMA Preventive Controls Corrective Action Requirements

Shawn K. Stevens, Food Industry Counsel
Food Safety Attorney

Are You Ready for an FDA Inspection?

By Shawn K. Stevens
1 Comment
Shawn K. Stevens, Food Industry Counsel

Don’t miss the Plenary Mock Food Safety Trial: Sam I Am who made Green Eggs and Ham is represented by Shawn Stevens vs. Food Safety victims represented by Bill Marler. Judged by Steve Sklare | November 30 at the 2017 Food Safety Consortium | Learn moreWith FSMA regulations coming into effect, food companies must prepare for the arrival of FDA investigators, as the agency has made it a priority to inspect U.S. food facilities, and they won’t always show up announced. Prior to an investigator’s arrival, it’s important to iron out several details in order to be adequately prepared. The following are 10 questions that every company should add to its pre-inspection checklist and make sure they are addressed before the inspection.

  1. Where will you meet? Pinpoint a place where you will host the FDA investigators. It should be a space that has enough room for them to review records, but it should not provide access to records (paper or digital) that could be viewed unsupervised.
  2. Who are the Designated Individuals? Assign a primary and secondary Designated Individual (DI) for each facility. This person serves as the liaison with the FDA investigators and should coordinate vacation time to ensure that one DI will always be available if FDA arrives. Although not required, the DI should also complete Preventive Control Qualified Individual Training.
  3. Has the written food safety plan been finalized? And, do the primary and secondary DIs know its components (i.e., GMPs, Sanitation Programs, Preventive Control Plan, Recall Plan, Environmental Monitoring Program, Foreign Supplier Verification Plan, Sanitary Transportation Plan, Food DefensePlan, and Produce Safety Plan)?
  4. Are records readily accessible? The DI should be able to immediately access any supporting records from the past three months for FDA review (FDA requires that most records are maintained for at least two years, but investigators usually ask to review the preceding three months).
  5. Have corrective actions been documented? When a deviation occurs, you must document all corrective actions. These actions should identify the deviation’s root cause and actions to prevent recurrence. If product safety is not affected, this should include a written conclusion that the deviation “does not create an immediate or direct food safety issue.”
  6. Have you conducted environmental monitoring and environmental sampling? If your company processes ready- to-eat food products that are exposed to the environment prior to packaging, FDA will require you to have an environmental monitoring program. In addition, the agency will collect 100–200 microbiological samples from your facility, so you need to know exactly what FDA will find before it arrives. By conducting your own FDA-style facility swabbing, you’ll be able to identify and immediately correct any hidden problems. It’s also important to develop your swabbing and testing plan with the help of legal counsel so that  the final testing results are confidential.
  7. Do you have a “No Photographs” policy? If not, you should. FDA Investigators will often insist on taking photographs while inspecting the processing environment. If your corporate policy prohibits visitors from taking photographs, you may in some cases be able to prevent FDA from taking pictures as well.
  8. Do you have a “Do Not Sign” policy? Sometimes, FDA Investigators will insist that a company representative sign a statement or affidavit during an inspection. You’re not legally obligated to do sign such a document. You should develop a policy stating you will neither sign nor acknowledge any written statements presented by FDA Investigators.
  9. Have you identified a suitable “on call” food industry lawyer? Add a food industry lawyer familiar with the inspection process to the company’s emergency contact list. This lawyer should be notified and remain “on call” during the inspection and serve as a resource to help answer any regulatory or investigator-related questions that arise during the process.
  10. Did you conduct a mock FDA inspection? One of the most effective ways to prepare for an FDA visit is to conduct a mock inspection. Food industry consultants and/or lawyers can visit your facility and play the role of the Investigator. Ask them to review your programs to identify possible regulatory shortfalls, and work with you to implement strategies that will strengthen your programs and reduce your regulatory exposure.

There are several more points to add to your pre-inspection checklist. To get the rest, attend the webinar, FDA Inspection Readiness Checklists, on March 28.

Listeria

How One Company Eliminated Listeria Using Chlorine Dioxide Gas

By Kevin Lorcheim
No Comments
Listeria

The previous article discussed the various decontamination options available to eliminate Listeria. It was explained why the physical properties of gaseous chlorine dioxide make it so effective. This article focuses on one company’s use of chlorine dioxide gas decontamination for both contamination response and for preventive control.

The summer of 2015 saw multiple ice cream manufacturers affected by Listeria monocytogenes. The ice cream facility detailed in this article never had a supply outage, but ceased production for a short amount of time in order to investigate and correct their contamination. After a plant-wide review of procedures, workflows, equipment design and product testing, multiple corrective actions were put into place to eliminate Listeria from the facility and help prevent it from returning. One such corrective action was to decontaminate the production area and cold storage rooms using chlorine dioxide gas. This process took place after the rest of the corrective actions, so as to decontaminate the entire facility immediately before production was set to resume.

Responsive Decontamination

The initial decontamination was in response to the Listeria monocytogenes found at various locations throughout the facility. A food safety investigation and microbiological review took place to find the source of the contamination within the facility in order to create a corrective action plan in place. Listeria was found in a number of locations including the dairy brick flooring that ran throughout the production area. A decision was made to replace the flooring, among other equipment upgrades and procedural changes in order to provide a safer food manufacturing environment once production resumed. Once the lengthy repair and upgrade list was completed, the chlorine dioxide gas decontamination was initiated.

The facility in question was approximately 620,000 cubic feet in volume, spanning multiple rooms as well as a tank alley located on a different floor. The timeline to complete the decontamination was 2.5 days. The first half-day consisted of safety training, a plant orientation tour, a meeting with plant supervisors, and the unpacking of equipment. The second day involved the setup of all equipment, which included chlorine dioxide gas generators, air distribution blowers, and a chlorine dioxide gas concentration monitor. Gas injection tubing was run from the chlorine dioxide gas generators throughout the facility to approximately 30 locations within the production area. The injection points were selected to aid its natural gaseous distribution by placing them apart from one another. Gas sample tubing was run to various points throughout the facility in locations away from the injection locations to sample gas concentrations furthest away from injection points where concentrations would be higher. Sample locations were also placed in locations known to be positive for Listeria monocytogenes to provide a more complete record of treatment for those locations. In total, 14 sample locations were selected between plant supervisors and the decontamination team. Throughout the entire decontamination, the gas concentration monitor would be used to continuously pull samples from those locations to monitor the concentration of chlorine dioxide gas and ensure that the proper dosage is reached.

As a final means of process control, 61 biological indicators were brought to validate that the decontamination process was effective at achieving a 6-log sporicidal reduction. 60 would be placed at various challenging locations within the facility, while one would be randomly selected to act as a positive control that would not be exposed to chlorine dioxide gas. Biological indicators provide a reliable method to validate decontamination, as they are produced in a laboratory to be highly consistent and contain more than a million bacterial spores impregnated on a paper substrate and wrapped in a Tyvek pouch. Bacterial spores are considered to be the hardest microorganism to kill, so validating that the process was able to kill all million spores on the biological indicator in effect also proves the process was able to eliminate Listeria from surfaces. The biological indicators were placed at locations known to be positive for Listeria, as well as other hard-to-reach locations such as the interior of production equipment, underneath equipment and inside some piping systems.

In order to prepare the facility for decontamination, all doors, air handling systems, and penetrations into the space were sealed off to keep the gas within the production area. After a safety sweep for personnel, the decontamination was performed to eliminate Listeria from all locations within the production area.

Click page 2 to continue reading.