Tag Archives: COVID-19

James Gunn-Wilkerson, CMX
Retail Food Safety Forum

The Future Is Now: AI Takes Journey from Supply Chain to Today’s Restaurant Kitchens

By James Gunn-Wilkerson
No Comments
James Gunn-Wilkerson, CMX

Futurist Ross Dawson has said that AI and automation will shape the future of work, and it also promises to transform our lives beyond the office. According to the World Economic Forum, when AI, which provides the ability to “enable devices to learn, reason and process information like humans,” is combined with Internet of Things (IoT) devices and systems, it creates AIoT. This super duo has the potential to power smart homes, smart cities, smart industries and even our smartwatches and fitness trackers, a market estimated by Gartner to be worth $87 billion by 2023. More importantly, this “interconnectedness” will change the way we interact with our devices as well as the way we will live and work in the future.

In the restaurant industry, we’re already seeing glimpses of this interconnectedness take shape, and in the past year, we’ve experienced major technological advancements that have transformed every facet of the way food establishments work. Reflecting on those advancements, I want to take a moment to share three areas of AI impact that are bubbling up in the restaurant sector in 2021.

1: AI-powered Intelligent Kitchens

From ghost kitchens to traditional kitchens, the “back of the house” continues to be a prime target for AI and automation. While great progress has been made, in many ways it seems like we’ve only scratched the surface when it comes to how far AI can take today’s restaurants. But every now and then, we hear examples of AI powering the future of our industry. For example, Nala Robotics, Inc. will be opening what it calls “the world’s first state-of-the-art intelligent restaurant” in Naperville, Illinois this year. The company says the AI-based robotic kitchen “can create dishes from any cuisine around the world, using authentic recipes from celebrated chefs”. A press release from Nala Robotics states that its flagship restaurant is taking “the first step in the food service industry with AI-powered service, addressing many of the issues affecting restaurant owners during COVID-19,” and it will “provide consumers an endless variety of cuisine without potential contamination from human contact.” This is the new frontier in intelligent kitchens, and it couldn’t have come at a better time, with the pandemic forcing restaurants to reimagine the way they do business.

2: AI-Driven Labor Shifts.

You can’t talk about AI in the restaurant industry without also having a conversation about the implications for the modern workforce. With AI in restaurant kitchens and beyond, the impact on the labor force is undeniable. By 2024, Gartner predicts “that these technologies will replace almost 69% of the manager’s workload.” But that’s not entirely a bad thing. Instead of manually filling out forms and updating records, managers can turn to AI to automate these and other tedious tasks. “By using AI…they can spend less time managing transactions and can invest more time on learning, performance management and goal setting,” Gartner adds.Managers can also use the extra time to focus more effort on the customer and employee experience. And indeed they should: In a recent Deloitte report, 60% of guests surveyed indicated that a positive experience would influence them to dine at a restaurant more frequently.

Looking at the impact of AI on labor at all levels, from the CEO to the entry-level wage earner, the shift, at its best, will be a transition to more meaningful—and less mundane—work. The evolution of humanity has taken us to the point we’re now at now, with food production and delivery processes becoming increasingly automated. This has been an evolution generations in the making. In an ideal world, everyone at every level of the organization should benefit from this new wave of technology. For example, automation can and should be used to open the door to new training and new opportunities for low-wage earners to learn new skills that elevate career paths, increase income and improve quality of life.

3: AI and Global Supply Chain Transformation

From the farm all the way to the table, AI is now poised to transform the global supply chain. From my perspective, the biggest impact will be around driving sustainability efforts. Restaurant and grocery brands are already beginning to leverage AI to forecast their food supply needs based on customer demand, leading to less over-ordering and less food waste to support sustainability initiatives. One company in this space, FourKites, is creating what it calls “the digital supply chain of the future.” Using real-time visibility and machine learning, FourKites powers and optimizes global supply chains, making them “automated, interconnected and collaborative—spanning transportation, warehouses, stores, trucks and more.”

In addition to predictive planning, more and more brands will start to use AI to create incident risk management models to identify trends and risks in the supply chain to determine whether bad or recalled products are originating from a specific supplier, distributor, or due to an environmental variable.With all of these changes, the need for comprehensive data standards will multiply as suppliers and distributors around the world work together to bring us produce and packaged food from all corners of the globe. Data standards will be critical to traceability and the exchange of critical tracking events and key data elements, and advances in data standards will power the meta-data needed to provide better insight for food quality and regulatory compliance, crisis management, and recalls—at scale.

Research firm Forrester states that, in the end, the greatest impact resulting from an investment in robotics and other technologies that automate operational tasks is improved customer experience (CX). “Most companies believe that investment in AI, automation, and robotics for engagement will decrease operational costs. While this is true, our research shows that the revenue upside from delivering better CX could deliver a greater impact on the bottom line over time,” Forrester states.

As a business engaged in digitizing and transforming supply chain operations, our team couldn’t agree with Forrester more. But we believe it will take striking the right balance between technology and the human touch to not only drive stronger CX, but to also create a world in which AI is implemented for the greater good—a world in which people, processes, business and technology all win.

Dollar

Quantifying the ROI of Environmental Monitoring Program Automation

By Joseph Heinzelmann
No Comments
Dollar

The COVID-19 pandemic heightened the urgency for food brands to adopt technology solutions that support remote management of environmental monitoring programs (EMPs) as they strive to provide safe products to customers. While digital transformation has progressed within the food safety industry, food and beverage manufacturers often have lower profitability as compared to other manufacturing industries, such as pharmaceutical and high-tech equipment, which can lead to smaller IT spend.1 Many companies still rely on manual processes for environmental monitoring and reporting, which are prone to error, fail to provide organizations with visibility into all of their facilities and limit the ability to quickly take corrective actions.

Despite growing recognition of the value of automating testing, diagnostics, corrective actions and analytic workflows to prevent contamination issues in food production environments, barriers to adoption persist. One key obstacle is the recurring mindset that food safety is a necessary compliance cost. Instead, we need to recognize that EMP workflow automation can create real business value. While the downside of food safety issues is easy to quantify, organizations still struggle to understand the upside, such as positive contributions to productivity and a stronger bottom-line achieved by automating certain food safety processes.

To understand how organizations are using workflow automation and analytics to drive quantifiable business ROI, a two-year study that included interviews and anonymized data collection with food safety, operations, and executive leadership at 34 food organizations was conducted.

The respondents represent more than 120 facilities using advanced EMP workflow automation and analytics. Based on the interviews and the shared experience of food organization leaders, two key examples emerged that demonstrate the ROI of EMP automation.

Improved Production Performance

According to those interviewed, one of the primary benefits of EMP automation (and driver of ROI) is minimizing production disruptions. A temporary conveyor shutdown, unplanned cleaning, or extensive investigatory testing can add up to an astounding 500 hours annually at a multi-facility organization, and cost on average $20,000 to $30,000 per hour.2 So, it’s obvious that eliminating costly disruptions and downtime has a direct impact on ROI from this perspective.

But organizations with systems where information collected through the EMP is highly accessible have another advantage. They are able to take corrective actions to reduce production impacts very quickly. In some cases, even before a disruption happens.
By automatically feeding EMP data into an analytics program, organizations can rapidly detect the root cause of issues and implement corrective actions BEFORE issues cause production delays or shutdowns.

In one example, over the course of several months, a large dairy company with manual EMP processes automated its food safety workflows, improved efficiencies, reduced pathogen positives and improved its bottom line. At the start of the study, the company increased systematic pathogen testing schedules to identify where issues existed and understand the effectiveness of current sanitation efforts. With improved access to data on testing, test types and correlated sanitation procedures, the company was able to implement a revamped remediation program with more effective corrective action steps.

Ultimately, the automated workflows and analytics led to reduced positive results and more efficient EMP operations for the company as compared to the “crisis-mode” approach of the past. The associated costs of waste, rework, delayed production starts, and downtime caused by food safety issues were significantly reduced as illustrated in Figure 1.

EMP automation
Figure 1: Reduction of food safety testing costs through EMP automation. Customer Study 2016-2018. All figures courtesy of Corvium, Inc.

Quantifying the ROI of Production Performance Improvements

The financial impact of reducing production downtime by just 90 minutes per week can be dramatic when looked at by cumulative results over multiple weeks. In fact, eliminating just a few delayed starts or unplanned re-cleaning can have significant financial gains.

Figure 2 shows the business impact of gaining 90 minutes of production up-time per week by automating food safety operations. For the purposes of this analysis, the “sample organization” depicted operates two facilities where there are assumptions that down-time equates to a cost value of $30,000 per hour, and that both plants experience an average of 90 minutes of downtime per week that can be re-gained.

Production Performance Improvement ROI Calculation
Figure 2: Sample Production Performance Improvement ROI Calculation.

Reduced Food Waste

The second key insight uncovered in the two-year study was the impact that automating the EMP process had on waste. An estimated 30–40% of all food produced in the United States is wasted, and preventable food safety and quality issues account for a substantial portion of this waste.3

A key challenge shared by study participants was detecting food safety issues early enough to avoid wasting an entire production run. Clearly, the later in a processing or manufacturing run that issues are discovered, the greater the potential waste. To limit this, organizations needed near real-time visibility into relevant food safety and EMP data.

By automating EMP workflows, they solved this issue and created value. By tracking and analyzing data in near real time, production teams were able to keep up with ever-moving production schedules. They could define rules to trigger the system to automatically analyze diagnostic results data and alert stakeholders to outliers. Impacted food product could be quickly identified and quarantined when needed before an entire production run was wasted.

Companies included in the study realized substantial benefits from the increased efficiencies in their testing program. According to a food safety quality assurance manager at a large U.S. protein manufacturer, “Our environmental monitoring program has reached new heights in terms of accuracy, communication, visibility and efficiency. Manual, time-intensive tasks have been automated and optimized, such as the ability to search individual sample or submittal IDs, locate them quickly and make any necessary changes.”

Quantifying the ROI of Food Waste Reductions

Figure 3 shows how measuring the business impact of gaining back just 10% of scrapped food per week. For the purposes of this analysis, the “sample organization” depicted operates two facilities where there are 500 lbs. of finished product scrapped each week, and the value per pound of finished product is valued at a cost of $1 per pound.

Sample Waste Reduction ROI Calculation
Figure 3. Sample Waste Reduction ROI Calculation.

Conclusion

Automating EMP workflows decreases the time required to receive and analyze critical EMP data, helping food manufacturers achieve significant improvements in production performance, waste reduction and overall testing efficiency. By using these same ROI calculations, food brands can better illustrate how improved food safety processes can build value, and help leaders see food safety as a brand imperative rather than a cost center. As food organizations progress through each stage of digital transformation, studies like this can show real-world examples of business challenges and how other organizations uncovered value in adoption of new technologies and tools.

References

  1. CSIMarket, Inc. (2021). Total Market Profitability.
  2. Senkbeil, T. (2014). Built to Last: Maintaining Reliability and Uptime of Critical Connected Systems in Industrial Settings. Anixter.
  3. USDA. Food Waste FAQs.
GFSI, The Consumer Goods Forum

Reimagining Food Safety Through Transparency and Open Dialogue

By Maria Fontanazza
No Comments
GFSI, The Consumer Goods Forum

Last year’s annual GFSI Conference was held in Seattle just weeks before the World Health Organization (WHO) declared COVID-19 a pandemic. This year’s event looked very different, as it joined the virtual event circuit—with hundreds of attendees gathering from across the globe, but from the comfort of their homes and offices. The 2021 GFSI Conference reflected on lessons learned over the past year, the fundamentals of building a better food system, and the idea that food safety is a collaborative effort that also encompasses training programs, effectively leveraging data and capacity building.

The pandemic provided the opportunity to reimagine safer, more resilient and sustainable food systems, said Dr. Naoki Yamamoto, universal health coverage, assistant director-general, UHC, Healthier populations at WHO. She also offered three clear messages that came out of the pandemic:

  • Food safety is a public health priority and a basic human right. Safe food is not a luxury.
  • Food safety is a shared responsibility. Everyone in the food chain must understand this responsibility and work towards a common goal.
  • Good public private partnership can bring new opportunities and innovative solutions for food safety. We need to seek more collaborative approaches when working across sectors to achieve foods safety.

During the session “Ready for Anything: How Resiliency and Technology Will Build Consumer Trust and Help Us Mitigate Disruption in the 21st Century”, industry leaders discussed how the pandemic reminded us that a crisis can come in many forms, and how applying the right strategy and technology can help us remain resilient and equipped to address the challenges, said Erica Sheward, GFSI director.

“When you think about business resiliency—it’s about our own, but most importantly, it’s about helping our customers become more resilient to those disruptions,” said Christophe Beck, president and CEO of Ecolab. He added that being able to predict disruptions, help customers respond to those disruptions, and provide real-time control to learn and prepare for the next pandemic or serious crisis is critical. Companies need to ensure their technology systems and contingency plans are ready to go, advised David Maclennan, chairman and CEO of Cargill. The key to a resilient food supply chain system is access and the ability to keep food moving across borders. And above all, whether dealing with a health crisis or a food safety crisis, consumers must always be front and center, said Natasa Matyasova, head of quality management at Nestle. “In short term, [it’s] first people, then business contingency, and then help the community as needed,” she said.

Hussain Suleman, Sigfox
Retail Food Safety Forum

How to Use the IoT to Keep Your Restaurant Clean and Safe

By Hussain Suleman
No Comments
Hussain Suleman, Sigfox

The COVID-19 pandemic has brought challenges to all industries, and many restaurants have been forced to close their doors permanently. Restaurant owners have struggled due to COVID-19 restrictions that have drastically cut the number of customers they can serve—whether as a result of an indoor dining ban or capacity limits. Those that have been allowed to re-open are being stretched to meet new guidelines to keep guests safe and comfortable while dining. Not only do restaurant owners need to make sure their restaurants are COVID-safe, but they also need to ensure they are providing the quality service and meals their customers have come to know and love. The Internet of Things (IoT) can not only ease the burden of implementing new protocols while also ensuring a clean and safe environment for both employees and patrons, but also help restaurants enhance efficiency.

The following are some points on how the IoT can help restaurants not only survive, but thrive amid the pandemic.

Monitoring Cleaning

Easy-to-deploy IoT-enabled devices provide several benefits to QSRs, including the monitoring of employee hand washing stations, dishwashing water temperatures, sanitizer solution concentrations and customer bathroom usage frequency to ensure constant compliance with cleanliness standards.

By placing sensors on tables and work lines, restaurant owners can collect valuable data and insights in real time. For example, the sensors can share information about how often tables are being cleaned. This information will help owners trust that tables are being cleaned thoroughly in between each use.

Sensors can also be placed on washbasins to monitor employee hand washing. Sensors on the sinks will not only confirm that employees’ hands have been washed, but they will also share exactly how long employees washed their hands. That way, owners can have peace of mind knowing employees’ hands and restaurant surfaces are properly sanitized before customers sit down to eat. With door sensors monitoring customer bathrooms, store owners can ensure adequate cleaning is allocated based on frequency of usage.

Rodent Detection

Owners can also have peace of mind knowing their restaurant is rodent free by using IoT monitored sensors. Rodents are especially dangerous to be found lurking in restaurants because they carry diseases and can cause electrical fires. Devices can be placed throughout the restaurant to detect any motion that occurs. When the devices detect a motion, restaurant owners will receive notifications and will be immediately aware of any rodents that may have snuck into the restaurant.

These sensors give restaurant owners a chance to proactively address a rodent issue before it causes damage to their business.

Routine Monitoring

In addition to monitoring sanitation and detecting motion, restaurant owners can leverage the IoT many other ways. For example, IoT devices can be placed on trash bins to alert when they are full and ready to be taken out. They can also be placed near pipes to detect a leak. Sensors can also be placed on all refrigerators to detect temperature. With accurate updates on refrigerators’ temperatures, restaurant owners can easily monitor and ensure that food is stored at the appropriate temperature around the clock—and be immediately alerted if a power issue causes temperatures to change.

IoT devices can offer restaurant owners insights to help them change their operations and behavior for the better. While everyone is eager to go back to “normal” and want our favorite restaurants to re-open as soon as possible, it is important that restaurant owners have the tools needed to reopen safely—and create efficiencies that can help recoup lost income due to COVID-19 restrictions. Restaurant owners looking to receive real-time, accurate data and insights to help run their restaurants more efficiently and ensure a safe and comfortable experience for customers can turn to the IoT to achieve their goals.

GFSI, The Consumer Goods Forum

Reset, Rethink, Recharge: First Virtual GFSI Conference to Address Urgent Topics in Food Safety

By Food Safety Tech Staff
No Comments
GFSI, The Consumer Goods Forum

This year’s GFSI Conference will take place March 23–25 and bring together experts, decision makers and innovators in the food industry. With the theme of “rethink, reset, recharge”, the three-day virtual program includes online networking features to allow attendees to connect with professionals across the globe, and sessions that explore COVID-19; supply chain disruption and public health; building consumer trust and transparency; sharing best practices; and technologies shaping the future of food safety.

“Collaboration to ensure safe food for consumers everywhere and sustainable food systems has never been more critical – and this event provides a major opportunity to learn from an unprecedented period and move forwards in the best possible way. We’re excited by the chance to help colleagues across the industry build on the ingenuity, resilience and dedication shown by the food industry over the past 12 months,” said Erica Sheward, director of GFSI, in a press release. “With the conference taking place virtually for the first time, it’s easier than ever before for food industry professionals to get involved—and we’re urging people from all corners of the globe to ensure they’re part of this unique and collaborative forum. Food safety is everyone’s business, and we must continue to work together to build consumers’ trust in the food they buy.”

More information about the GFSI conference, along with registration, agenda and partner details, can be found on the event website.

GFSI is a partner organization for the 2021 Food Safety Consortium Virtual Conference Series.

Nicole Lang, igus
Retail Food Safety Forum

Robots Serve Up Safety in Restaurants

By Nicole Lang
No Comments
Nicole Lang, igus

Perhaps the top takeaway from the worldwide COVID-19 pandemic is that people the world over realize how easily viruses can spread. Even with social distancing, masks and zealous, frequent handwashing, everyone has learned contagions can cycle through the atmosphere and put a person at risk of serious, and sometimes deadly, health complications. In reality, there are no safe spaces when proper protocols are not followed.

The primary culprit in transmission of norovirus, according to the CDC, is contaminated food. “The virus can easily contaminate food because it is very tiny and spreads easily,” the CDC says in a fact sheet for food workers posted on its website. “It only takes a very small amount of virus to make someone sick.”

The CDC numbers are alarming. The agency reports about 20 million people get sick from norovirus each year, most from close contact with infected people or by eating contaminated food. Norovirus is the leading cause of disease outbreaks from contaminated food in the United States, and infected food workers cause about 70% of reported norovirus outbreaks from contaminated food.

The solution to reducing the transmission of unhealthy particles could be starting to take shape through automation. While robots have been used for the past few years in food manufacturing and processing, new solutions take food handling to a new level. Robots are no longer in the back of the house in the food industry, isolated in packaging and manufacturing plants. They are now front and center. The next time you see a salad prepared for you at a favorite haunt, you may be watching a robot.

“The global pandemic has altered the way that we eat,” said Justin Rooney, of Dexai Robotics, a company that developed a food service robotic device. Reducing human contact with food via hands-free ordering and autonomous food serving capabilities has the potential to reduce the spread of pathogens and viruses, and could help keep food fresh for a longer period of time.

Painful Pandemic

Increased use of automation in the foodservice industry might be one of the salvations of the COVID-19 pandemic. In an industry searching for good news, that might be the silver lining in an otherwise gloomful crisis.

Job losses in the restaurant industry have been brutal. By the end of November, nearly 110,000 restaurants in the United States had closed. A report by the National Restaurant Association said restaurants lost three times more jobs than any other industry since the beginning of the pandemic. In December, reports said nearly 17% of U.S. restaurants had closed. Some restaurants clung to life by offering outdoor dining, but as winter set in, that option evaporated. Some governors even demanded restaurant closures as the pandemic escalated in late fall.

Restaurants have faced a chronic labor shortage for years. Despite layoffs during the pandemic, many former foodservice employees are electing to leave the industry.

Teenagers, for instance, and some older workers are staying away for health and safety reasons. Some former workers are also finding out that they can make more money on unemployment benefits than by returning to work. Restaurant chains have hiked wages, but filling positions still remains a challenge.

Automated Solutions

Restaurants began dancing with the idea of robots nearly 50 years ago. The trend started slowly, with customers ordering food directly through kiosks. As of 2011, McDonald’s installed nearly 7,000 touchscreen kiosks to handle cashiering responsibilities at restaurants throughout Europe.

As technology has advanced, so has the presence of robots in restaurants. In 2019 Seattle-based Picnic unveiled a robot that can prepare 300 pizzas in an hour. In January, Nala Robotics announced it would open the world’s first “intelligent” restaurant. The robotic kitchen can create dishes from any cuisine in the world. The kitchen, which is expected to open in April in Naperville, Illinois, will have the capability to create an endless variety of cuisine without potential contamination from human contact.

Dexai designed a new robotic unit that allows for hands-free ordering that can be placed through any device with an Internet connection. The robot also includes a new subsystem for utensils, which are stored in a food bin to keep them temperature controlled. This ensures that robot is compliant with ServSafe regulations. The company is working on improving robot system’s reliability, robustness, safety and user friendliness. The robot has two areas to hold tools, a kitchen display system, bowl passing arm, an enclosure for electronics and two refrigeration units. It has the unique ability to swap utensils to comply with food service standards and prevent contamination as a result of allergens, for example.

Why Automation

Many industries have been impacted by advancements in automation, and the foodservice industry is no different. While initially expensive, the benefits over time can provide to be worth the investment.

One of the most significant advantages, particularly important in the post-COVID era, is better quality control. Automated units can detect issues much earlier in the supply chain, and address those issues.

Automation can also help improve worker safety by executing some of the more repetitive and dangerous tasks. Robots can also boost efficiency (i.e., a robot used for making pizza that can press out dough five times faster than humans and place them into ovens) and eliminate the risk of injury. Robots are also being used to make coffee, manage orders and billing, and prepare the food. Robots can also collect data that will help foodservice owners regarding output, quantity, speed and other factors.

“Alfred’s actions are powered by artificial intelligence,” according to Rooney. “Each time Alfred performs an action, the associated data gets fed into a machine learning model. Consequently, each individual Alfred learns from the accumulated success and failures of every other Alfred that has existed.” Dexai plans to teach the robot to operate other commonly found pieces of kitchen equipment such as grills, fryers, espresso machines, ice cream cabinets and smoothie makers.

Unrelenting Trend

Automated solutions might have come along too late to save many restaurants, but the path forward is clear. While they are not yet everywhere, robots are now in play at significant number of restaurants, and there is no turning back. Any way you slice it, robots in restaurants, clearly, is an idea whose time has come.

Select Subcommittee on the Coronavirus Crisis

OSHA, Tyson, Smithfield and JBS Under Investigation for COVID Outbreaks

By Food Safety Tech Staff
No Comments
Select Subcommittee on the Coronavirus Crisis

Last week U.S. Congressman and chairman of the Select Subcommittee on the Coronavirus Crisis James E. Clyburn (D-SC) launched an investigation into OSHA, Tyson Foods, Smithfield Foods and JBS USA over the nationwide coronavirus outbreaks at meatpacking plants that have led to the deaths of at least 270 employees. Nearly 54,000 workers at 569 U.S. meatpacking plants have tested positive for COVID-19, according to the Subcommittee and media reports.

Select Subcommittee on the Coronavirus Crisis“Public reports indicate that under the Trump Administration, the Occupational Safety and Health Administration (OSHA) failed to adequately carry out its responsibility for enforcing worker safety laws at meatpacking plants across the country, resulting in preventable infections and deaths. It is imperative that the previous Administration’s shortcomings are swiftly identified and rectified to save lives in the months before coronavirus vaccinations are available for all Americans,” the letter to James Frederick, deputy assistant secretary of labor for OSHA stated. “The Select Subcommittee strongly encourages you to take all necessary steps, including under President Biden’s Executive Order on Protecting Worker Health and Safety1and your other existing statutory authorities, to protect workers from the risks of the coronavirus by issuing clear guidance to employers, enacting an emergency temporary standard, and enhancing enforcement efforts.”

Clyburn and the Subcommittee issued a letter to Dean Banks, president and CEO of Tyson Foods, Dennis Organ, president and CEO of Smithfield Foods, and Andre Nogueira, president and CEO of JBS USA. Each letter pointed out the shortcomings of each company in adequately addressing the outbreaks that occurred among its workers.

“Public reports indicate that meatpacking companies … have refused to take basic precautions to protect their workers, many of whom earn extremely low wages and lack adequate paid leave, and have shown a callous disregard for workers’ health,” Clyburn stated in the letter. “These actions appear to have resulted in thousands of meatpacking workers getting infected with the virus and hundreds dying. Outbreaks at meatpacking plants have also spread to surrounding communities, killing many more Americans.”

The Subcommittee has asked OSHA and each company for documentation related to the COVID infections and deaths, as well as their enforcement of worker protections under the Trump administration.

Jason Chester, InfinityQS
FST Soapbox

Resilience for Tomorrow Begins with Digital Transformation Today

By Jason Chester
1 Comment
Jason Chester, InfinityQS

COVID-19 has been a sharp wake-up call for many food manufacturers in the need for resilient production environments that can readily respond to large and sudden changes, including fluctuations in demand and disruptive external events. This means being able to optimize operations for the following:

  • Efficiency: Where you can achieve constant output even when given fewer inputs—such as in workforce availability or resources. This was especially important when the pandemic caused widespread supply shortages, as well as staffing shortages due to social distancing measures.
  • Productivity: When you can ensure that, given the amount of available input (i.e., raw ingredients, manpower, equipment availability), you can maintain a consistent output to meet demand in the marketplace.
  • Flexibility: Where you can rapidly and intelligently adapt your processes in the face of change, in ways that are in the best interest of your business, the supply chain, and the consumers who purchase and trust in your products.

That trust is paramount, as manufacturers must continue to uphold quality and safety standards—especially during a time when public health is of the upmost importance. But between operational challenges and managing product quality, that’s a lot for manufacturers to wade through during a crisis.

To navigate the current COVID reality and improve response to future events, more organizations are looking to harness the power of data to enable agile decision-making and, in turn, build more resilient production environments.

Harnessing the Power of Data

The key to harnessing data for agile decisions is to aggregate end-to-end process information and make it available in real time. When you can achieve that, it’s possible to run analytics and derive timely insights into every facet of production. Those insights can be used to increase efficiency, productivity and flexibility—as well as ensure product quality and safety—even amidst upheaval.

When looking at solutions to aggregate data from a single site—or better yet, multiple sites—all roads lead to the cloud. Namely, cloud-based quality intelligence solutions can decouple the data from physical locations—such as paper checklists, forms, or supervisory control and data acquisition (SCADA) and human-machine interfaces (HMI) systems—and centralize what’s collected digitally in a unified repository. The data can then be accessed, analyzed, and consumed by those who need actionable insights from anywhere, at any time, and on any device, making cloud an ideal solution for connecting on-site operators and remote employees.

Digital transformation
When process and quality data are centralized and standardized on the cloud, they can be leveraged for real-time monitoring and timely response to issues—from anywhere and at any time. (Image courtesy of InfinityQS)

An Opportunity for Broader Transformation

In migrating to the cloud, manufacturers open the opportunity to break away from the legacy, manual processes of yesterday and transition to more nimble, digitally enabled environments of tomorrow. For example, manual processes are often highly dependent on individual operator knowledge, experience and judgement. As the pandemic has shown, such institutional knowledge can be lost when employees become ill, or are unavailable due to self-isolation or travel restrictions, presenting a risk to operational efficiency and productivity. But if that valuable institutional knowledge were captured and codified in a quality intelligence solution as predefined workflows and prescriptive instructions, then a manufacturer could more easily move their resources and personnel around as necessary and find comfort knowing that processes will be executed according to best practices.

For many organizations, this would be a remarkable transformation in the ways of working, where data and digital technologies can augment human capacity and flexibility. Take for instance, in traditional production environments, a lot of human effort is spent on monitoring lines to catch process deviations or events like machine anomalies or quality issues. Using real-time data, next-generation solutions can take on that burden and continuously monitor what’s happening on the plant floor—only alerting relevant teams when an issue arises and they need to intervene. Manufacturers can thereby redeploy people to other tasks, while minimizing the amount of resources necessary to manage product quality and safety during daily production and in the event of disruption.

Ensuring Quality Upstream and Downstream

One company that has succeeded in digital transformation is King & Prince, a manufacturer of breaded, battered and seasoned seafood. When the company digitized its manufacturing processes, it centralized the quality data from all points of origin in a single database. The resulting real-time visibility enables King & Prince to monitor quality on more than 100 processes across three U.S. plants, as well as throughout a widespread network of global suppliers.

With this type of real-time visibility, a company can work with suppliers to correct any quality issues before raw materials are shipped to the United States, which directly translates to a better final product. This insight also helps plant-based procurement managers determine which suppliers to use. Within its own plants, operators receive alerts during production if there are any variations in the data that may indicate inconsistencies. They can thereby stop the process, make necessary adjustments, and use the data again to confirm when everything is back on track.

During finished product inspections, the company can also review the captured data to determine if they need to finetune any processes upstream and respond sooner to prevent issues from making it downstream to the consumer level. Overall, the company is able to better uphold its quality and safety standards, with the number of customer complaints regarding its seafood products dropping to less than one per million pounds sold year over year—and that’s all thanks to the harnessing of data in a digitally enabled production environment.

There’s No Time Like the Present

In truth, technologies like the cloud and quality intelligence solutions, and even the concept of digital transformation, aren’t new. They’ve been on many company agendas for some time, but just haven’t been a high priority. But when the pandemic hit, organizations were suddenly faced with the vulnerabilities of their long-held operational processes and legacy technologies. Now, with the urgency surrounding the need for resilient production environments, these same companies are thinking about how to tactically achieve digital transformation in the span of a few weeks or months rather than years.

Yet while digital transformation may sound like a tremendous initiative with high risks and expenses, it’s more tangible than some may think. For example, cloud-based Software-as-a-Service (SaaS) solutions offer flexible subscription-based models that keep costs low on top of rapid scalability. Digital transformation doesn’t have to be an all-or-nothing endeavor either. In fact, it can be better to progress incrementally, starting first with the manufacturing areas that are most in need or have the most issues. This minimizes unnecessary risk, makes digital transformation more achievable and realistic over short timeframes, and avoids overwhelming already maxed out operational and IT teams.

All things must pass. The pandemic will eventually be over. But in its wake will be a permanent legacy on not just society, but also on the manufacturing sector. In my opinion, digital transformation is a fundamental basis for building resilience into the modern food production environment. Now, more than ever, is the time to address that opportunity head on.

FDA

FDA to Test Yuma-Grown Romaine Lettuce for E. Coli and Salmonella

By Food Safety Tech Staff
No Comments
FDA

Today the FDA announced a new plan to collect samples of romaine lettuce as part of its ongoing surveillance after the spring 2018 multistate outbreak of E. coli O157:H7. The samples, which will be tested for Shiga toxin-producing Escherichia coli (STEC) and Salmonella, will be collected from commercial coolers in Yuma County, Arizona during the current harvest season.

FDA plans to collect and test about 500 samples (each of which will consist of 10 subsamples), beginning in February and continuing through the end of the harvest season. In order to reduce the time between sample collection and reporting results, an independent lab close to the collection sites in Arizona will be testing the samples. FDA expects to receive test results within 24 hours.

“Helping to ensure the safety of leafy greens continues to be a priority of the FDA. This assignment adds to other work underway in collaboration with stakeholders in the Yuma agricultural region to implement actions identified in the Leafy Greens Action Plan, including a multi-year study to assess the environmental factors that impact the presence of foodborne pathogens in this region. Consistent with the action plan, the agency will engage with industry on conducting root cause analyses for any positive samples found during this assignment. Root cause analyses are important in that they seek to identify potential sources and routes of contamination, inform what preventive measures are needed, and help prevent outbreaks of foodborne illness,” FDA stated in a release.

COVID-19 precautions will be taken during the sampling plan. Agency investigators will preannounce visits and wear PPE while conducting the work.

2021 Food Safety Consortium

2021 Food Safety Consortium Virtual Conference Spring and Fall Series Announced

By Food Safety Tech Staff
No Comments
2021 Food Safety Consortium

Over the past 9 years, the Food Safety Consortium Conference & Expo has built a reputation for delivering perspectives and insights from the most knowledgeable and influential experts in food safety. As a result of the COVID-19 pandemic, last year’s event was converted from an in-person event into a 14-week series of virtual themed-episodes during the fall. Continuing the momentum from 2020, the 2021 Food Safety Consortium Virtual Conference Series will take place as a four-week Spring and five-week Fall program. Both the Spring and Fall programs will feature critical thinking topics that are for industry veterans and knowledgeable newcomers.

“As you know, the online experience is very different than in-person, so last year we deconstructed our in-person program and re-engineered it for virtual. Instead of having a virtual conference for three straight days, we set up our program in short 2.5-hour themed episodes that ran every Thursday in the fall. We received great feedback from attendees, speakers and sponsors. I think we were one of the few conferences that successfully pulled off the pivot to virtual,” says Rick Biros, president of Innovative Publishing and director of the Food Safety Consortium.

Building on the strong success of the 2020 Food Safety Virtual Conference Series, the 2021 Consortium will be presented into two seasonal programs. “This will allow us to continue the conversation throughout the year, while also taking into consideration the busy lives of food safety professionals,” Biros adds.

Food Safety Tech is the media sponsor and will feature exclusive content from the event.

Read the Top 10 from the 2020 Food Safety Consortium Virtual Conference Series

The Spring Program will run every Thursday in May, with each episode starting at 12 pm ET. The weekly episodes will tackle a range of critical topics in foods safety, including FSMA and traceability, food protection strategies, COVID-19’s lasting impact on the food industry by segment, audits and supply chain management. Frank Yiannas, FDA deputy commissioner for food policy and response, is the confirmed keynote speaker for Thursday, May 6.

The Fall Program will run every Thursday beginning on October 7 at 12 pm ET through November 4. Episode topics include food safety hazards (emerging threats and new technologies), food defense strategies, an FDA update, and personal development, training and mentorship.

Registration for the 2021 Food Safety Consortium Spring and Fall Virtual Conference Series is open now.

TechTalk Sponsorship

Companies that are interested in sponsoring a 10-minute technical presentation during the series can contact Sales Director RJ Palermo for more details.

About Food Safety Tech

Food Safety Tech is a digital media community for food industry professionals interested in food safety and quality. We inform, educate and connect food manufacturers and processors, retail & food service, food laboratories, growers, suppliers and vendors, and regulatory agencies with original, in-depth features and reports, curated industry news and user-contributed content, and live and virtual events that offer knowledge, perspectives, strategies and resources to facilitate an environment that fosters safer food for consumers.

Since 2012, Food Safety Tech audiences have learned to respect and expect our high-quality content—via FoodSafetyTech.com, our weekly newsletter and by attending our educational programs. Food Safety Tech keeps professionals current with the latest information about technology, best practices and regulations, and how innovative solutions and approaches can be leveraged to further advance food safety across the globe.

About the Food Safety Consortium Conference

The Food Safety Consortium is an educational and networking event for Food Protection that has food safety, food integrity and food defense as the foundation of the educational content of the program. With a unique focus on science, technology and compliance, the “Consortium” enables attendees to engage in sessions that are critical for advancing careers and organizations alike. Over the past 9 years the Food Safety Consortium has built a reputation for delivering the most knowledgeable and influential perspectives in food safety. The speaker line-up has driven key food safety decision-makers to the event (both in-person and virtually)—facilitating an environment for vendors, suppliers, food industry professionals, and consultants to network and build long-lasting business relationships.

Due to COVID-19, the 2020 Food Safety Consortium was converted to a virtual conference series that featured specific topics in a weekly episode series. The 2021 Food Safety Consortium Virtual Conference Series will feature a Spring and Fall program, running in May and October, respectively.