Tag Archives: crops

Salim Al Babili, Ph.D., KAUST
Food Genomics

To Boost Crop Resilience, We Need to Read Our Plants’ Genetic Codes

By Salim Al Babili, Ph.D.
No Comments
Salim Al Babili, Ph.D., KAUST

In just 30 years, worldwide food production will need to nearly double to feed the projected population of 9 billion people. Challenges to achieving food security for the future include increasing pressures of global warming and shifting climatic belts, a lack of viable agricultural land, and the substantial burdens on freshwater resources. With the United Nations reporting nearly one billion people facing food insecurity today, our work must begin now.

A key research area to meet this crisis is in developing crops resilient enough to grow in a depleting environment. That’s why we need to search for ways to improve crop resilience, boost plant stress resistance and combat emerging diseases. Researchers around the world, including many of my colleagues at Saudi Arabia-based King Abdullah University of Science and Technology (KAUST), are exploring latest genome editing technologies to develop enough nutritious, high-quality food to feed the world’s growing population.1

Where We’ve Been, and Where We Need to Go

Farmers have been genetically selecting crop plants for thousands of years, choosing superior-looking plants (based on their appearance or phenotype) for breeding. From the early 20th century, following breakthroughs in understanding of genetic inheritance, plant breeders have deliberately cross-bred crop cultivars to make improvements. In fact, it was only a few decades ago that Dr. Norman Borlaug’s development of dwarf wheat saved a billion lives from starvation.

However, this phenotypic selection is time-consuming and often expensive—obstacles that today’s global environment and economy don’t have the luxury of withstanding.

Because phenotypic selection relies on traits that are already present within the crop’s genome, it misses the opportunity to introduce resilient features that may not be native to the plant. Features like salt tolerance for saltwater irrigation or disease resistance to protect against infections could yield far larger harvests to feed more people. This is why we need to explore genome editing methods like CRISPR, made popular in fighting human diseases, to understand its uses for agriculture.

What Our Research Shows

We can break down these issues into the specific challenges crops face. For instance, salt stress can have a huge impact on plant performance, ultimately affecting overall crop yields. An excess of salt can impede water uptake, reduce nutrient absorption and result in cellular imbalances in plant tissues. Plants have a systemic response to salt stress ranging from sensing and signaling to metabolic regulation. However, these responses differ widely within and between species, and so pinpointing associated genes and alleles is incredibly complex.2

Researchers must also disentangle other factors influencing genetic traits, such as local climate and different cultivation practices.

Genome-wide association studies, commonly used to scan genomes for genetic variants associated with specific traits, will help to determine the genes and mutations responsible for individual plant responses.3 Additionally, technology like drone-mounted cameras could capture and scan large areas of plants to measure their characteristics, reducing the time that manual phenotyping requires. All of these steps can help us systematically increase crops’ resilience to salt.

Real-world Examples

“Quinoa was the staple ‘Mother Grain’ that fueled the ancient Andean civilizations, but the crop was marginalized when the Spanish arrived in South America and has only recently been revived as a new crop of global interest,” says Mark Tester, a professor of plant science at KAUST and a colleague of mine at the Center for Desert Agriculture (CDA). “This means quinoa has never been fully domesticated or bred to its full potential even though it provides a more balanced source of nutrients for humans than cereals.”

In order to further understand how quinoa grows, matures and produces seeds, the KAUST team combined several methods, including cutting-edge sequencing technologies and genetic mapping, to piece together full chromosomes of C. quinoa. The resulting genome is the highest-quality quinoa sequence to date, and it is producing information about the plant’s traits and growth mechanisms.4,5

The accumulation of certain compounds in quinoa produces naturally bitter-tasting seeds. By pinpointing and inhibiting the genes that control the production of these compounds, we could produce a sweeter and more desirable crop to feed the world.

And so, complexity of science in food security increases when we consider that different threats affect different parts of the world. Another example is Striga, a parasitic purple witchweed, which threatens food security across sub-Saharan Africa due to its invasive spread. Scientists, including my team, are focused on expanding methods to protect the production of pearl millet, an essential food crop in Africa and India, through hormone-based strategies for cleansing soils infested with Striga.6

Other scientists with noteworthy work in the area of crop resilience include that of KAUST researchers Simon Krattinger, Rod Wing, Ikram Blilou and Heribert Hirt; with work spanning from leaf rust resistance in barley to global date fruit production.

Looking Ahead

Magdy Mahfouz, an associate professor of bioengineering at KAUST and another CDA colleague, is looking to accelerate and expand the scope of next-generation plant genome engineering, with a specific focus on crops and plant responses to abiotic stresses. His team recently developed a CRISPR platform that allows them to efficiently engineer traits of agricultural value across diverse crop species. Their primary goal is to breed crops that perform well under climate-related stresses.

“We also want to unlock the potential of wild plants, and we are working on CRISPR-guided domestication of wild plants that are tolerant of hostile environments, including arid regions and saline soils,” says Mahfouz.

As climate change and population growth drastically alters our approach to farming, no singular tool may meet the urgent need of feeding the world on its own. By employing a variety of scientific and agricultural approaches, we can make our crops more resilient, their cultivation more efficient, and their yield more plentiful for stomachs in need worldwide. Just as technology guided Dr. Bourlag to feed an entire population, technology will be the key to a food secure 21st century.

References

  1. Zaidi, SS. et al. (2019). New plant breeding technologies for food security. Science. 363:1390-91.
  2. Morton, M. et al. (2018). Salt stress under the scalpel – dissecting the genetics of salt tolerance. Plant J. 2018;97:148-63.
  3. Al-Tamimi, N. et al. (2016). Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nature Communicat. 7:13342.
  4. Jarvis, D.E., et.al. (2017). The genome of Chenopodium quinoa. Nature. 542:307-12.
  5. Saade. S., et. al. (2016). Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Sci Reports. 6:32586.
  6. Kountche, B.A., et.al. (2019). Suicidal germination as a control strategy for Striga hermonthica (Benth.) in smallholder farms of sub‐Saharan Africa. Plants, People, Planet. 1: 107– 118. https://doi.org/10.1002/ppp3.32
Bob Bentley, Crisp
FST Soapbox

Predictions: Planning for Increased Demand with Limited Supply

By Bob Bentley
No Comments
Bob Bentley, Crisp

We are seeing the beginning of a limited supply of certain products as containment of the COVID-19 pandemic keeps manufacturers, processing plants, and other suppliers in global stasis. But what does that mean for these manufacturers and other members of the supply chain? It means continued planning of master resources such as demand management, sales and operations planning and production scheduling, but with a greater focus on efficiency.

This process of master resource planning results in a detailed blueprint for manufacturing products to meet anticipated demand, accounting for various constraints such as limited supply of raw materials and purchase parts.

So what should manufacturers do if they run into serious shortages of raw materials or purchase parts? What can retailers do to cover operating expenses if they don’t have enough products to sell? We’ll take a look at these anticipated complications and possible methods for solving them.

Limited Supply

The current COVID-19 crisis has led to mandatory business closures that have already caused a shortage of supply. So far, we’ve gotten by with inventories that had already been sitting in various places up and down supply chains prior to the shutdowns, not just on warehouse and retail store shelves. Once all inventories within supply chains are depleted, we will start to notice more stockouts.

Some businesses can endure long-term production cessations without stockouts. For example, manufacturers in critical industries such as pharmaceuticals have a policy of stockpiling inventory in case of unforeseen events. Most businesses, however, cannot afford to miss months of production time because the lean manufacturing principles they adhere to include keeping minimal inventory.

For instance, automobile manufacturers and retailers do not hold excess inventory due to the expected annual product line changes from the previous year’s models, which are typically sold at a large profit reduction at the turn of the year. Clothing and other fashion-related businesses also keep inventory minimal due to a yearly change in styles.

Another source of upcoming shortages will be the sell-off of supplier facilities due to the downturn in revenue caused by emergency closures. Food is a particularly interesting case. Farmers are reconstructing the way their supply chains work to better serve their new target consumers—grocery retail. Some farmers may run into issues with transporting livestock or may need to repurpose crops that are nearing their harvest. Many of those that are pushing to endure and come out of the pandemic disruption with minimal casualties are starting to get creative by creating small farmers’ markets (pop-ups) or marketing directly to the consumer via direct subscription boxes.

It will take some time to re-establish farms, manufacturing plants, and other suppliers who were hit hardest during the months without revenue. However, refocusing on demand planning and forecasting could aid in spurring a regeneration of these industries.

Demand Management

Demand management is the first of three steps taken during the master resources planning process. Demand management includes demand forecasting, distribution channel planning and customer demand management.

Both suppliers and retailers need to know what demand they can expect, especially during uncertain times. After COVID-19, consumer demand will be high, supplies will be limited, and accurate demand forecasting will be especially important to getting businesses back on their feet.

Inaccurate forecasting will cause waste when businesses overestimate future demand for items that have a short shelf life. For instance, a grocery store that overestimates how much produce they will be able to sell within a certain time frame will end up throwing some of that produce away due to spoilage.

Consumer behavior during a crisis can complicate demand forecasting, though. In an earlier phase of the COVID-19 pandemic, worried customers over-purchased toilet paper and paper towels. This caused a shortage for everyone else, and the demand for those items was much higher than anticipated/forecasted. More recently, the same buyers bought up meat when they heard about the disruption in the food supply chain, and they expected the prices for meat to go up. Demand spikes like these cause lost sales for stores that don’t anticipate them.

Demand forecasting will remain tricky in the short-term for both suppliers and retailers whenever a retailer re-opens to the public with the imposed 25% capacity constraint. Overhead expenses will likely remain relatively the same, but 25% of the normal revenue may not cover expenses. Whether a full 25% of a retailer’s former customer base would return during a pandemic is also an unknown factor.

Companies will see high demand when the world opens their doors for business. The most efficient way for companies to plan during these times is by utilizing high-performance, demand forecasting software that will offer the best information available to deal with volatile demands, given the various known and predicted factors.

Sales and Operations Planning

After demand management is performed, manufacturers go through a sales and operations planning process that integrates sourcing, manufacturing, sales, marketing and financial plans, and resource planning. This process results in the creation of an approved production plan (at the product family level), purchase plan, sales plan and backlog plan that satisfies the anticipated level of demand within supply constraints.

In the early days following the end of the pandemic, some manufacturers won’t have the initial supply to meet the high demand for their goods. Some may find contingencies for creating their goods and products, while others may run into supplier issues when it comes to recreating their products and goods post-closure.

Getting manufacturers back up to speed will depend on building up the supplies of raw materials and purchase parts. Sometimes out-of-the-box solutions such as part designs can eliminate the need for some unavailable purchase parts and dependency on some suppliers. Additionally, accurate demand planning information will enable manufacturers to accommodate their retailer customers as much as possible without overpromising incoming goods.

Master Scheduling

In the master scheduling phase, the production and purchasing plans are taken from the family level into a specific product level. This process involves a computer repeatedly simulating production and purchasing as planned during the S & OP step until optimal bills of materials are created. This process includes testing of the plans against constraints of critical resources (rough-cut capacity planning) until a master production schedule is derived.

Fortunately for the retailers, manufacturers who have done accurate demand planning and have taken their production plans through the master scheduling stage will know the maximum number of goods they can ensure without overreaching.

Conclusion

The current COVID-19 pandemic required many business closures to help contain the spread of the virus. As a result, many consumer goods are in limited supply. When the crisis ends, the demand may very well overtake the supply. Businesses will need to practice patience while supplies build back up. Thinking outside the box, using accurate demand forecasting, preventing waste, and executing good demand planning will be crucial steps in reinstating a synergistic supply chain model.

Karen Everstine, Decernis
Food Fraud Quick Bites

COVID-19 and Food Fraud Risk

By Karen Everstine, Ph.D.
No Comments
Karen Everstine, Decernis

While foodborne transmission of the novel coronavirus is unlikely , the virus has significantly affected all aspects of food production, food manufacturing, retail sales, and foodservice. The food and agriculture sector has been designated as a “critical infrastructure,” meaning that everyone from farm workers to pest control companies to grocery store employees has been deemed essential during this public health crisis.* As a society, we need the food and agriculture sector to continue to operate during a time when severe illnesses, stay-at-home orders and widespread economic impacts are occurring. Reports of fraudulent COVID-19 test kits and healthcare scams reinforce that “crime tends to survive and prosper in a crisis.” What does all of this mean for food integrity? Let’s look at some of the major effects on food systems and what they can tell us about the risk of food fraud.

Supply chains have seen major disruptions. Primary food production has generally continued, but there have been challenges within the food supply chain that have led to empty store shelves. Recent reports have noted shortages of people to harvest crops, multiple large meat processing facilities shut down due to COVID-19 cases, and recommendations for employee distancing measures that reduce processing rates. One large U.S. meat processor warned of the need to depopulate millions of animals and stated “the food supply chain is breaking.” (An Executive Order was subsequently issued to keep meat processing plants open).

Equally concerning are reports of supply disruptions in commodities coming out of major producing regions. Rice exports out of India have been delayed or stopped due to labor shortages and lockdown measures. Vietnam, which had halted rice exports entirely in March, has now agreed to resume exports that are capped at much lower levels than last year. Other countries have enacted similar protectionist measures. One group has predicted possible food riots in countries like India, South Africa and Brazil that may experience major food disruption coupled with high population density and poverty.

Supply chain complexity, transparency and strong and established supplier relationships are key aspects to consider as part of a food fraud prevention program. Safety or authenticity problems in one ingredient shipment can have a huge effect on the market if they are not identified before products get to retail (see Figure 1). Widespread supply chain disruptions, and the inevitable supplier adjustments that will need to be made by producers, increase the overall risk of fraud.

Reconstructed supply chain
Figure 1. Reconstructed supply chain based on recall data following the identification of Sudan I in the chili powder supply chain in 2005. Data source: Food Standards Agency of the U.K. National Archives and The Guardian. Figure from: Everstine, K. Supply Chain Complexity and Economically Motivated Adulteration. In: Food Protection and Security – Preventing and Mitigating Contamination during Food Processing and Production. Shaun Kennedy (Ed.) Woodhead Publishing: 26th October 2016. Available at: https://www.elsevier.com/books/food-protection-and-security/kennedy/978-1-78242-251-8

Regulatory oversight and audit programs have been modified. The combination of the public health risk that COVID-19 presents with the fact that food and agriculture system workers have been deemed “critical” has led to adjustments on the part of government and regulatory agencies (and private food safety programs) with respect to inspections, labeling requirements, audits, and other routine activities. The FDA has taken measures including providing flexibility in labeling for certain menus and food products, temporarily conducting remote inspections of food importers, and generally limiting domestic inspections to those that are most critical. USDA FSIS has also indicated they are “exercising enforcement discretion” to provide labeling flexibilities. The Canadian Food Inspection Agency (CFIA) announced they are prioritizing certain regulatory activities and temporarily suspending those activities determined to be “low risk.” GFSI has also taken measures to allow Certification Program Owners to provide certificate extensions due to the inability to conduct in-person audits.

While these organizations have assured stakeholders and the public that food safety is of primary importance, the level of direct regulatory and auditing oversight has been reduced to reduce the risk of virus transmission during in-person activities. Strong auditing programs with an anti-fraud component are an important aspect of food fraud prevention. Adjustments to regulatory and auditing oversight, as necessary as they may be, increase the risk of fraud in the food system.

There is a focus on safety and sustainability of foods. The food industry and regulatory agencies are understandably focused on basic food safety and food sustainability and less focused on non-critical issues such as quality and labeling. However, there is a general sense among some in industry that the risk of food fraud is heightened right now. Many of the effects on the industry due to COVID-19 are factors that are known to increase fraud risk: Supply chain disruptions, changes in commodity prices, supplier relationships (which may need to be changed in response to shortages), and a lack of strong auditing and oversight. However, as of yet, we have not seen a sharp increase in public reports of food fraud.

This may be due to the fact that we are still in the relatively early stages of the supply chain disruptions. India reported recently that the Food Safety Department of Kerala seized thousands of kilograms of “stale” and “toxic” fish and shrimp illegally brought in to replace supply shortages resulting from the halt in fishing that occurred due to lockdown measures.

High-value products may be particularly at risk. Certain high-value products, such as botanical ingredients used in foods and dietary supplements, may be especially at risk due to supply chain disruptions. Historical data indicate that high-value products such as extra virgin olive oil, honey, spices, and liquors, are perpetual targets for fraudulent activity. Turmeric, which we have discussed previously, was particularly cited as being at high risk for fraud due to “‘exploding’ demand ‘amidst supply chain disruptions.’”

How can we ensure food sufficiency, safety, and integrity? FAO has recommended that food banks be mobilized, the health of workers in the food and agriculture sector be prioritized, that governments support small food producers, and that trade and tax policies keep global food trade open. They go on to say, “by keeping the gears of the supply chains moving and actively seeking international cooperation to keep trade open, countries can prevent food shortages and protect the most vulnerable populations.” FAO and WHO also published interim guidance for national food safety control systems, which noted the increased risk of food fraud. They stated “during this pandemic, competent authorities should investigate reported incidences involving food fraud and work closely with food businesses to assess the vulnerability of supply chains…”.

From a food industry perspective, some important considerations include whether businesses have multiple approved suppliers for essential ingredients and the availability of commodities that may affect your upstream suppliers. The Acheson Group recommends increasing supply chain surveillance during this time. The Food Chemicals Codex group recommends testing early and testing often and maintaining clear and accurate communication along the supply chain.1 The nonprofit American Botanical Council, in a memo from its Botanical Adulterants Prevention Program, stated “responsible buyers, even those with relatively robust quality control programs, may need to double- or even triple-down on QC measures that deal with ingredient identity and authenticity.”

Measures to ensure the sufficiency, sustainability, safety and integrity of foods are more closely linked than ever before. In this time when sufficiency is critical, it is important to avoid preventable food recalls due to authenticity concerns. We also need to stay alert for situations where illegal and possibly hazardous food products enter the market due to shortages created by secondary effects of the virus. The best practices industry uses to reduce the risk of food fraud are now important for also ensuring the sufficiency, sustainability and safety of the global food supply.

Reference

  1. Food Safety Tech. (April 24, 2020). “COVID-19 in the Food Industry: Mitigating and Preparing for Supply Chain Disruptions “. On-Demand Webinar. Registration page retrieved from https://register.gotowebinar.com/recording/1172058910950755596

*Foodborne transmission is, according to the Food Standards Agency in the U.K., “unlikely” and, according to the U.S. FDA, “currently there is no evidence of food or food packaging being associated with transmission of COVID-19.”

Roelof Koopmans, Semtech
Retail Food Safety Forum

How Technology Simplifies Food Safety Operations

By Roelof Koopmans
No Comments
Roelof Koopmans, Semtech

To get to the restaurant table, food must travel great lengths to preserve that farm fresh quality and in many cases, IoT-enabled sensors are being used to do this. This is especially important as the World Health Organization estimates that one in 10 people fall ill every year from eating contaminated food.

When we think of our favorite dish, we often associate it with delicious flavors, pleasant scents and even memories of a night out with friends. What we likely don’t consider is technology, something that’s critical in ensuring the meal on our plate is safe to consume. Technology plays an essential role in guaranteeing that restaurants are serving fresh food to customers. From identifying operational deficiencies to protecting the overall brand of an organization, there are certain measures restaurants are taking—whether local or country-wide chains—to ensure food quality remains a top priority.

Restaurants are perhaps held to an even higher standard than your local supermarket when it comes to the quality of food on the table. Therefore, it’s imperative that perishables are cared for properly throughout the entirety of the food supply chain and that starts well before the food ever enters the restaurant’s front door. With long-range, low-power wireless IoT technology, farmers can get insights into a number of variables that may impact the growth of their crops. Armed with that knowledge, they can make real-time decisions to optimize crop growth and ultimately produce a greater yield. For example, farmers today can set up a series of sensors throughout their farm to measure real-time soil conditions, including humidity and pH levels. If they notice an especially high pH, for example, they can immediately remedy the situation and provide the crop with the proper nutrients or conditions it needs to grow.

For food safely to arrive at restaurants, it must be kept in a controlled environment during its journey from the farm or warehouse, and carefully monitored during that time. The temperature of refrigerated shipping units or storage facilities is an incredibly important factor, as bacteria growth can increase even by simply opening the refrigerator door or with a slight temperature shift, and employees are often tasked with managing this. With large facilities comes increased labor for employees, which can lead to inefficient temperature monitoring. To eliminate food waste and contamination, IoT sensors deployed throughout facilities can eliminate human error, and deliver more consistent monitoring, via real-time updates when temperatures enter unsafe territories.

Numerous international food handling and food safety laws have been implemented to reduce the risk of foodborne illness resulting from bacterial growth. A major component of most “farm-to-fork” regulations is the ability to track, report and maintain appropriate temperature conditions inside refrigeration and freezer units throughout the entire cold chain—including when the food finally makes it the restaurant.

This is a universal priority for restaurants around the world, including Hattie B’s Hot Chicken, a southern-style food chain, which started in Nashville and now has locations nationwide. To successfully do this, the restaurant turned to technology. They used a supplier of wireless connectivity solutions with integrated long range, low power technology for temperature monitoring sensors. The sensors, which are capable of penetrating stainless steel doors and concrete walls, can monitor temperatures in refrigerators and freezers. This is essential, as the technology eliminates possible human error in manually checking temps and other food safety procedures. In instances where refrigerator temperatures shift out of range, the technology remotely notifies restaurant managers in real-time, allowing them to act quickly, ensuring their perishables remain fresh and safe for customers at all times.

Food waste in restaurants is closely tied to food safety. In the United States alone, food waste is estimated to be between 30–40% of the food supply, according to the USDA. In the restaurant industry in particular, human error is one of the most notable reasons for food waste. To eliminate the human error when handling food and monitoring storage, an IoT solution provider for the industrial, smart city and smart energy segments, integrated long-range low power technology into smart refrigeration solutions for restaurant applications. This IoT solution is designed for humidity and temperature monitoring, delivering real-time updates to managers to ensure the shelf life of food is maximized and it remains safe to consume, ultimately leading to a decrease in food waste.

From farm to table, technology plays an essential role in ensuring restaurants are delivering the highest quality of fresh, safe food. It allows organizations to identify operational deficiencies and reduce overall food safety risk, which is imperative when maintaining a strong business in a competitive industry.