Tag Archives: dan testing

InstantLabs Launches DNA-based Atlantic and Coho Salmon SpeciesID Test Kits to Combat Seafood Mislabeling

The company has broadened species identification product line created in partnership with University of Guelph and plans to release additional test kits during the year.

InstantLabs announced today the expansion of its SpeciesID product line by offering DNA-based tests for Atlantic and Coho salmon. InstantLabs SpeciesID™ tests provide accurate DNA verification in under two hours.

The launch of the salmon test kits highlights InstantLabs’ efforts to meet market demand by expanding the affordable, simple-to-use InstantID™ product line. The company already offers kits to identify Atlantic Blue Crab, pork and horse meat. The InstantLabs’ system gives food wholesalers, processors and inspectors a fast and reliable option for product tests.

The two new products were created in partnership with the University of Guelph, an international leader in agricultural and food science. The InstantID test kits for Atlantic (Salmo salar) and Coho salmon (Oncorhynchus kisutch) are the first of four salmon assays planned for release during 2015. InstantLabs will launch InstantID™ for Chinook (Oncorhynchus tshawytscha) and Sockeye (Oncorhynchus nerka) salmon later this year.

Expanding its presence in the high-demand seafood market, the Baltimore-based manufacturer of the Hunter® system expects to also release InstantID™ kits for snapper, catfish, grouper, and tilapia.

“Producers, wholesalers and government entities needs robust tools to combat seafood fraud,” said Steven Guterman, chief executive officer of InstantLabs. “InstantLabs’ real-time PCR testing systems and reagent kits can become an integral part in a testing program to verify labeling accuracy.”

InstantLabs’ Hunter® Real-Time PCR instrument combines accuracy, speed, and ease-of-operation into a compact portable system. The Hunter system is designed for use at points-of-need to detect and analyze a wide variety of food samples by targeting DNA. Results delivered quickly allow seamless integration into food industry firms’ processes and facilities.

Dr. Robert Hanner, Ph. D., has directed the University of Guelph’s research in conjunction with InstantLabs. “This collaboration has been essential in commercializing DNA-based food authentication tests for the seafood industry,” said Dr. Hanner, associate professor at the Center of Biodiversity Genomics. “This technology will help safeguard against existing supply chain vulnerabilities, protecting both businesses and consumers from food fraud.”

InstantLabs identification tests are designed for use on the Hunter, a real-time PCR system developed by the company, and are also available for use with other PCR instruments.

Seafood industry reports continue to highlight concerns about fraud, species substitution and consumer preferences to use sustainable fish stocks. Approximately one-third of all fish sold in the U.S. was mislabeled, reported a recent survey from Oceana. The U.S. Food and Drug Administration identifies a range of lower valued fish regularly substituted for 20 higher-priced species. InstantLabs will provide critical tool sets needed by the industry to ensure the integrity of the supply chain.

ABOUT INSTANTLABS:

InstantLabs, a molecular diagnostic device company, developed and markets the Hunter® Accelerated-PCR system, a fully-integrated, easy-to-use, portable and affordable real-time polymerase chain reaction (RT-PCR) platform for rapid, accurate pathogen detection. InstantLabs Medical Diagnostics Corp., the legal entity, offers the Hunter® system for use with several food-borne pathogen test kits for the global food industry. The Hunter® system is especially well suited for use at points-of-care and points-of-need to detect and analyze a wide variety of common and problematic pathogens. InstantLabs’ growing worldwide customer base includes some of the world’s leading food companies. InstantLabs is also developing products for additional markets, including medical diagnostics where gold-standard accuracy, combined with Ease-of-use and rapid results, are critical. Founded in 2008, InstantLabs is located in Baltimore, MD. For more information please visit www.instantlabs.com.

ABOUT THE UNIVERSITY OF GUELPH:

Acknowledged as one of the leading public research universities, the University has 39 Canada Research chairs in natural sciences, energy, health services and social sciences. With a commitment to student learning and innovative research, University leaders are dedicated to cultivating the essentials for our quality of life – water, food, environment, animal and human health, community, commerce, culture and learning. The University community also shares a profound sense of social responsibility, an obligation to address global issues and a concern for international development. Learn more at www.uoguelph.ca.

Additional resources on seafood fraud:

Sangita Viswanathan, Former Editor-in-Chief, FoodSafetyTech

Is that Red Snapper on your Plate Really a Red Snapper?

By Sangita Viswanathan
No Comments
Sangita Viswanathan, Former Editor-in-Chief, FoodSafetyTech

Over the past few years, several consumer and news organizations have researched and tested seafood available in supermarkets and restaurants. The findings:

  • Some 35 percent of seafood samples in the U.S. were found mislabeled; 
  • Of the fish that were most commonly mislabeled, 
  • Red Snapper topped the list (at 86 percent being mislabeled);  
  • Nearly 16 percent of grouper was mislabeled; 
  • In one out of five cases, Atlantic or farmed salmon was substituted for wild or King salmon; and
  • “White tuna” was mislabeled 100 percent of the time. 

A more recent investigation into fish labeling fraud carried out in Europe revealed that 32 percent of seafood in Italy, 30 percent of all hake in Spain and 19 percent of cod in Ireland were mislabeled. Repeated studies have shown that these results are not one-off, but seafood fraud is consistent and not showing signs of any improvement.

E. Pearce Smith, Laboratory manager, GeneScan, at Eurofins talks about the challenges in testing seafood authenticity. There are a couple of issues with regards to seafood fraud, Smith says: “From an economic standpoint, you could be buying a cheaper fish (for instance a breaded tilapia fillet instead of a breaded grouper fillet) for more money. Also, from a quality point of view, you lose out.”

More importantly, Smith adds, from a food safety perspective, if you are unknowingly processing a wild grouper sandwich, you are not considering the right safety, microbiological and decomposition markers for the wild fish. Or if it is a farmed tilapia product, you are not looking at prohibited veterinary drugs in farmed fish.

The horsemeat scandal that rocked large regions of Europe in 2013 was the basis for this focus, Smith says. “With horsemeat being sold as beef, producers were not testing their beef products for bute or phenylbutazone, an anti-inflammatory used by vets mainly to treat pain and fever in horses.”

When testing is an art as well as a science

So far, seafood species authentication depended on tests that were developed many years ago. FDA published a protein method known as isoelectric focusing, in which you take a piece of a tissue, digest it into a slurry and run it out into a gel. By comparing the banding pattern to known references, you can conclude what kind of fish it is. The problem with this technique, Smith says, is that it is often inconclusive, or at least open to interpretation in many cases.

So, about three years ago, FDA decided to abandon this 1950s technology for a more modern technology – DNA barcoding.  So now, instead of using a protein pattern, the test involves isolating the DNA and amplifying a specific section of it for analysis. 

“In a relatively short sequence, of about 700 base pairs, it’s very easy to distinguish one species of fish from another,” Smith says, adding that now food companies want to drive the switch from the protein testing to the DNA method.  Testing for the protein requires a lot more hands-on time and testing one sample can take several hours, Smith explains. “With the DNA method, you can automate the testing to a much higher degree to handle hundreds of sample a day. And with the cost of sequencing dropping, such testing is no longer cost-prohibitive,” he adds.

Robust methodology

The new methodology is robust because DNA is a very stable molecule, according to Smith. “You can test raw or cooked fish with this method, while the protein test was not as good at spanning the pre- to post-processed product. You can also test a finished product such as a frozen fish dinner.”

What are the limitations? Smith lists a few examples: Testing a food product that could have multiple types of fish, such as a fish cake or Surimi, which are ground up into a paste, and could have multiple seafood products in them. Canned tuna is not suitable for testing, because the high pressure process involved is very destructive and you may not be able to get a nice clean read of the DNA. FDA has identified about 150 unique species as targets for substitution, or of high commercial value at risk of being substituted for monetary gains.

“The samples that we get from food producers usually turn out to be what we expect them to be, but sometimes, they don’t. When we get samples from consumer groups, about 30 percent are mislabeled. Also, variations in regional names for that particular fish also contribute to confusion and mislabeling,” Smith explains.

FDA is now publishing the reference sequences for the different species of fish to make identification quicker and easier. Earlier people had to rely on private databases and some of these, while good, weren’t easily accessible. 

Smith sees a lot of demand for testing species such as salmon (differentiating pink salmon Oncorhynchus gorbuscha, Chinook salmon Oncorhynchus tshawytscha, or Coho salmon Oncorhynchus kisutch); and red snapper (which faces high demand but is low in supply, and is commonly substituted with other fish of the same size or color). He says that the importance for this testing is growing increasingly as companies are importing seafood product, and it is critical that the species be correctly identified on the packaging. Imports are the source of as much as 90 percent of the fish consumed in the U.S., and only about 2 percent of those products are inspected, he adds.