Tag Archives: data

Jason Chester, InfinityQS
FST Soapbox

Resilience for Tomorrow Begins with Digital Transformation Today

By Jason Chester
1 Comment
Jason Chester, InfinityQS

COVID-19 has been a sharp wake-up call for many food manufacturers in the need for resilient production environments that can readily respond to large and sudden changes, including fluctuations in demand and disruptive external events. This means being able to optimize operations for the following:

  • Efficiency: Where you can achieve constant output even when given fewer inputs—such as in workforce availability or resources. This was especially important when the pandemic caused widespread supply shortages, as well as staffing shortages due to social distancing measures.
  • Productivity: When you can ensure that, given the amount of available input (i.e., raw ingredients, manpower, equipment availability), you can maintain a consistent output to meet demand in the marketplace.
  • Flexibility: Where you can rapidly and intelligently adapt your processes in the face of change, in ways that are in the best interest of your business, the supply chain, and the consumers who purchase and trust in your products.

That trust is paramount, as manufacturers must continue to uphold quality and safety standards—especially during a time when public health is of the upmost importance. But between operational challenges and managing product quality, that’s a lot for manufacturers to wade through during a crisis.

To navigate the current COVID reality and improve response to future events, more organizations are looking to harness the power of data to enable agile decision-making and, in turn, build more resilient production environments.

Harnessing the Power of Data

The key to harnessing data for agile decisions is to aggregate end-to-end process information and make it available in real time. When you can achieve that, it’s possible to run analytics and derive timely insights into every facet of production. Those insights can be used to increase efficiency, productivity and flexibility—as well as ensure product quality and safety—even amidst upheaval.

When looking at solutions to aggregate data from a single site—or better yet, multiple sites—all roads lead to the cloud. Namely, cloud-based quality intelligence solutions can decouple the data from physical locations—such as paper checklists, forms, or supervisory control and data acquisition (SCADA) and human-machine interfaces (HMI) systems—and centralize what’s collected digitally in a unified repository. The data can then be accessed, analyzed, and consumed by those who need actionable insights from anywhere, at any time, and on any device, making cloud an ideal solution for connecting on-site operators and remote employees.

Digital transformation
When process and quality data are centralized and standardized on the cloud, they can be leveraged for real-time monitoring and timely response to issues—from anywhere and at any time. (Image courtesy of InfinityQS)

An Opportunity for Broader Transformation

In migrating to the cloud, manufacturers open the opportunity to break away from the legacy, manual processes of yesterday and transition to more nimble, digitally enabled environments of tomorrow. For example, manual processes are often highly dependent on individual operator knowledge, experience and judgement. As the pandemic has shown, such institutional knowledge can be lost when employees become ill, or are unavailable due to self-isolation or travel restrictions, presenting a risk to operational efficiency and productivity. But if that valuable institutional knowledge were captured and codified in a quality intelligence solution as predefined workflows and prescriptive instructions, then a manufacturer could more easily move their resources and personnel around as necessary and find comfort knowing that processes will be executed according to best practices.

For many organizations, this would be a remarkable transformation in the ways of working, where data and digital technologies can augment human capacity and flexibility. Take for instance, in traditional production environments, a lot of human effort is spent on monitoring lines to catch process deviations or events like machine anomalies or quality issues. Using real-time data, next-generation solutions can take on that burden and continuously monitor what’s happening on the plant floor—only alerting relevant teams when an issue arises and they need to intervene. Manufacturers can thereby redeploy people to other tasks, while minimizing the amount of resources necessary to manage product quality and safety during daily production and in the event of disruption.

Ensuring Quality Upstream and Downstream

One company that has succeeded in digital transformation is King & Prince, a manufacturer of breaded, battered and seasoned seafood. When the company digitized its manufacturing processes, it centralized the quality data from all points of origin in a single database. The resulting real-time visibility enables King & Prince to monitor quality on more than 100 processes across three U.S. plants, as well as throughout a widespread network of global suppliers.

With this type of real-time visibility, a company can work with suppliers to correct any quality issues before raw materials are shipped to the United States, which directly translates to a better final product. This insight also helps plant-based procurement managers determine which suppliers to use. Within its own plants, operators receive alerts during production if there are any variations in the data that may indicate inconsistencies. They can thereby stop the process, make necessary adjustments, and use the data again to confirm when everything is back on track.

During finished product inspections, the company can also review the captured data to determine if they need to finetune any processes upstream and respond sooner to prevent issues from making it downstream to the consumer level. Overall, the company is able to better uphold its quality and safety standards, with the number of customer complaints regarding its seafood products dropping to less than one per million pounds sold year over year—and that’s all thanks to the harnessing of data in a digitally enabled production environment.

There’s No Time Like the Present

In truth, technologies like the cloud and quality intelligence solutions, and even the concept of digital transformation, aren’t new. They’ve been on many company agendas for some time, but just haven’t been a high priority. But when the pandemic hit, organizations were suddenly faced with the vulnerabilities of their long-held operational processes and legacy technologies. Now, with the urgency surrounding the need for resilient production environments, these same companies are thinking about how to tactically achieve digital transformation in the span of a few weeks or months rather than years.

Yet while digital transformation may sound like a tremendous initiative with high risks and expenses, it’s more tangible than some may think. For example, cloud-based Software-as-a-Service (SaaS) solutions offer flexible subscription-based models that keep costs low on top of rapid scalability. Digital transformation doesn’t have to be an all-or-nothing endeavor either. In fact, it can be better to progress incrementally, starting first with the manufacturing areas that are most in need or have the most issues. This minimizes unnecessary risk, makes digital transformation more achievable and realistic over short timeframes, and avoids overwhelming already maxed out operational and IT teams.

All things must pass. The pandemic will eventually be over. But in its wake will be a permanent legacy on not just society, but also on the manufacturing sector. In my opinion, digital transformation is a fundamental basis for building resilience into the modern food production environment. Now, more than ever, is the time to address that opportunity head on.

Karen Everstine, Decernis
Food Fraud Quick Bites

Food Authenticity: 2020 in Review

By Karen Everstine, Ph.D.
No Comments
Karen Everstine, Decernis

It is fair to say that 2020 was a challenging year with wide-ranging effects, including significant effects on our ongoing efforts to ensure food integrity and prevent fraud in the food system. COVID-19 caused major supply chain disruptions for foods and many other consumer products. It also highlighted challenges in effective tracking and standardization of food fraud-related data.

Let’s take a look at some of the notable food fraud occurrences in 2020:

  • Organic Products. The Spanish Guardia Civil investigated an organized crime group that sold pistachios with pesticide residues that were fraudulently labeled as organic, reportedly yielding €6 million in profit. USDA reported fraudulent organic certificates for products including winter squash, leafy greens, collagen peptides powder, blackberries, and avocados. Counterfeit wines with fraudulent DOG, PGI, and organic labels were discovered in Italy.
  • Herbs and Spices. Quite a few reports came out of India and Pakistan about adulteration and fraud in the local spice market. One of the most egregious involved the use of animal dung along with various other substances in the production of fraudulent chili powder, coriander powder, turmeric powder, and garam masala spice mix. Greece issued a notification for a turmeric recall following the detection of lead, chromium, and mercury in a sample of the product. Belgium recalled chili pepper for containing an “unauthorized coloring agent.” Reports of research conducted at Queen’s University Belfast also indicated that 25% of sage samples purchased from e-commerce or independent channels in the U.K. were adulterated with other leafy material.
  • Dairy Products. India and Pakistan have also reported quite a few incidents of fraud in local markets involving dairy products. These have included reports of counterfeit ghee and fraudulent ghee manufactured with animal fats as well as milk adulterated with a variety of fraudulent substances. The Czech Republic issued a report about Edam cheese that contained vegetable fat instead of milk fat.
  • Honey. Greece issued multiple alerts for honey containing sugar syrups and, in one case, caramel colors. Turkey reported a surveillance test that identified foreign sugars in honeycomb.
  • Meat and Fish. This European report concluded that the vulnerability to fraud in animal production networks was particularly high during to the COVID-19 pandemic due to the “most widely spread effects in terms of production, logistics, and demand.” Thousands of pounds of seafood were destroyed in Cambodia because they contained a gelatin-like substance. Fraudulent USDA marks of inspection were discovered on chicken imported to the United States from China. Soy protein far exceeding levels that could be expected from cross contamination were identified in sausage in the Czech Republic. In Colombia, a supplier of food for school children was accused of selling donkey and horse meat as beef. Decades of fraud involving halal beef was recently reported in in Malaysia.
  • Alcoholic Beverages. To date, our system has captured more than 30 separate incidents of fraud involving wine or other alcoholic beverages in 2020. Many of these involved illegally produced products, some of which contained toxic substances such as methanol. There were also multiple reports of counterfeit wines and whisky. Wines were also adulterated with sugar, flavors, colors and water.

We have currently captured about 70% of the number of incidents for 2020 as compared to 2019, although there are always lags in reporting and data capture, so we expect that number to rise over the coming weeks. These numbers do not appear to bear out predictions about the higher risk of food fraud cited by many groups resulting from the effects of COVID-19. This is likely due in part to reduced surveillance and reporting due to the effects of COVID lockdowns on regulatory and auditing programs. However, as noted in a recent article, we should take seriously food fraud reports that occur against this “backdrop of reduced regulatory oversight during the COVID-19 pandemic.” If public reports are just the tip of the iceburg, 2020 numbers that are close to those reported in 2019 may indeed indicate that the iceburg is actually larger.

Unfortunately, tracking food fraud reports and inferring trends is a difficult task. There is currently no globally standardized system for collection and reporting information on food fraud occurrences, or even standardized definitions for food fraud and the ways in which it happens. Media reports of fraud are challenging to verify and there can be many media reports related to one individual incident, which complicates tracking (especially by automated systems). Reports from official sources are not without their own challenges. Government agencies have varying priorities for their surveillance and testing programs, and these priorities have a direct effect on the data that is reported. Therefore, increases in reports for a particular commodity do not necessarily indicate a trend, they may just reflect an ongoing regulatory priority a particular country. Official sources are also not standardized with respect to how they report food safety or fraud incidents. Two RASFF notifications in 2008 following the discovery of melamine adulteration in milk illustrate this point (see Figure 1). In the first notification for a “milk drink” product, the hazard category was listed as “adulteration/fraud.” However, in the second notification for “chocolate and strawberry flavor body pen sets,” the hazard category was listed as “industrial contaminants,” even though the analytical result was higher.1

RASFF

RASFF, melamine detection
Figure 1. RASFF notifications for the detection of melamine in two products.1

What does all of this mean for ensuring food authenticity into 2021? We need to continue efforts to align terminology, track food fraud risk data, and ensure transparency and evaluation of the data that is reported. Alignment and standardization of food fraud reporting would go a long way to improving our understanding of how much food fraud occurs and where. Renewed efforts by global authorities to strengthen food authenticity protections are important. Finally, consumers and industry must continue to demand and ensure authenticity in our food supply. While most food fraud may not have immediate health consequences for consumers, reduced controls can lead to systemic problems and have devastating effects.

Reference

  1. Everstine, K., Popping, B., and Gendel, S.M. (2021). Food fraud mitigation: strategic approaches and tools. In R.S. Hellberg, K. Everstine, & S. Sklare (Eds.) Food Fraud – A Global Threat With Public Health and Economic Consequences (pp. 23-44). Elsevier. doi: 10.1016/B978-0-12-817242-1.00015-4
Stephen Dombroski, QAD
FST Soapbox

Combating Climate Change in the Food Industry Through Regenerative Agriculture

By Stephen Dombroski
No Comments
Stephen Dombroski, QAD

Everybody has to eat. That is the mantra of many companies involved in the food and beverage industry. It sounds so simple. Yet, in recent years, especially this one, it is becoming more challenging than we ever thought it could be. Disruptions from the beginning to the end of the food supply chain are making the task of feeding the masses more difficult. The COVID-19 pandemic has made people in all walks of life question the food supply chain. It is being evaluated in new ways with the goal of ensuring that there is food available in not just crisis times but in normal circumstances, too, as the population continues to grow and more disruptions interrupt the supply chain. Climate change is one disruption that is impacting the food and beverage industry and is possibly the biggest threat to overall food sustainability. When people think about climate change they only think about weather events and global warming, but if you look at the definition of “climate,” other issues need to be considered in addition to looking out the window and checking the thermometer.

Global warming, greenhouse gases, carbon emissions, the earth’s normal evolution and consumer behaviors can all contribute to climate change. Everyone talks about limiting greenhouse gases and carbon emissions but is it really happening? Almost every day, some government agency or industrial company announces policy changes touting the drive to 100% sustainable packaging by this year and that year. “Company X announced today that it will use fully-sustainable packaging by 2035.” Fully sustainable packaging; what does that even mean? And 2035, what’s the hurry?! There are other programs in the works, but the question is, are they quick fixes that are really just Band-Aids on a gunshot wound? Are they actually long-term solutions and are they happening fast enough? The adoption of electric vehicles could have a huge impact on our climate but it is just a small piece of the solution for total carbon emission elimination. Water to be used in non-farming consumption is getting harder to come by due to climate change. Land space is eroding and available farm space is decreasing. The process of raising and harvesting livestock is getting more complex and costly, making plant-based substitution options more attractive. But is that really a long-term solution if we are already running out of traditional farming space? Consumers hope that recycling will help combat the problem but it is barely making a dent and their changing food habits impact the climate as well. The earth itself is constantly going through a geological evolution in spite of what we humans do to the planet.

Global warming is accelerating climate change and causing a number of serious issues. The earth’s poles are warming, which is promoting permafrost, causing glaciers to melt and oceans to rise, which is impacting sea levels, irrigation methods and land temperatures that promote erosion. Higher than average temperatures can potentially impact the growing of certain crops in terms of yields and even where they are grown. Climate change is impacting all areas of agriculture, the environment and the total ecosystem. Insect behaviors are evolving and these changes affect crops. The food manufacturing and farming industries have realized that a “new way” needs to be implemented to grow food in environments that can combat these changes.

Sustainability initiatives call for practices that maintain or improve soil conservation and improve the overall health of soil. Two processes, regenerative agriculture and precision agriculture, working in conjunction, may actually provide a long-term solution by combining environmental and farm science with technology. Regenerative agriculture goes beyond soil conservation. It is a process that looks to reverse the effects of climate change. The regenerative process focuses on restoring soil health, solving water issues, reversing carbon cycles, and creating new topsoils and growing environments.

Precision agriculture focuses on increasing the land used for farming as well as increasing the productivity of that land. It utilizes newly available IoT devices like GPS services, guidance systems, mapping tools and variable rate technologies (VRT) to optimize crop yields. These new management systems collect data that transmit valuable metrics to farmers. Every aspect of farming, from planting to harvesting, can benefit from these emerging technologies. The information about the moisture of soil, for example, is sent to a computer, which then identifies signs of health or stress. Based on these signals, farmers can provide water, pesticide or fertilizer in adequate dosages. As a result, precision farming can help conserve resources and produce healthier crops.

Climate-smart agriculture, which is an approach to dealing with the new realities of climate change, is another smart agricultural method. Climate-smart agriculture improves agricultural systems by enhancing sustainability, which leads to improved food security. Food production has struggled to keep up with erratic weather patterns and natural resources have been stretched alarmingly thin, signaling a call for action. With this new approach, crop yields can adapt accordingly and productivity will increase.

The regenerative food system market has drawn a great deal of interest from investment groups. Initial investments have focused on water and soil reconstitution and development. Restoring soil strength reduces water usage and at the same time produces stronger and more available food sources. Underground and hydroponic versions of regenerative agriculture are also emerging.

Advanced technologies like these are making their way into the food, beverage and agriculture industries. Traditional agricultural methods are being replaced with climate-smart methods. Peripheral areas like streamlining the supply chain and optimizing manufacturing operations can receive “sustainable” benefits from these new agri-methods. The good news is that smart agricultural methods are making progress in counteracting climate change and revolutionizing farming worldwide.

Regenerative and precision agriculture are without question the leading processes and philosophies being used today to help all food industries combat climate change and other disruptors to the total food supply chain. These new technologies will continue to efficiently solve farming practices. In addition, there will be rollover benefits to food processors and manufacturers who will now have improved access to data. This will enable better communication, and improved traceability at all levels of the supply chain and throughout operations, distribution and procurement. This data will allow all involved in growing and producing food to communicate better and enable society to adapt to these changes.

Kari Hensien, RizePoint
FST Soapbox

7 Trends Expediting Modernization in Food Industry

By Kari Hensien
No Comments
Kari Hensien, RizePoint

For a long time, companies could effectively run food safety programs using only manual methods of quality management, such as pen, paper, spreadsheets and emails. Those practices have served the food industry well, but it was only a matter of time before food safety and quality management systems became mostly an exercise of technology.

Even before COVID-19, industry trends and government requirements (e.g., FSMA, the FDA’s New Era of Smarter Food Safety) were setting roadmaps for modernizing food safety and quality management with technology. Additionally, the food industry is thirsty for better performance, more insights and data-based decisions—all things that need more sophistication than manual systems.

As we continue through the throes of the pandemic, it’s abundantly clear that the tech-based future we were planning for five to ten years in the future is happening now. It’s both unavoidable and imperative for the food industry to quickly adapt to the new landscape in front of us. It’s as the CEO of Airbnb, Brain Chesky, recently said: Because of the pandemic, he had to make “10 years’ worth of decisions in 10 weeks.”

From my viewpoint, I see at least seven additional trends that are also expediting modernization in our industry.

1. A shift toward proactive mindset versus reactive habits. Always reacting to what’s happening around you is precarious and makes it difficult to mitigate risks, for you as well as your location employees. The benefits of being more strategic and prepared for different scenarios can shore up your foundation, making you more ready for crises at the corporate and location level. Gathering, combining and analyzing data with technology gives you more insights, so you can make data-based decisions quickly and with more confidence.

Kari Hensien, RizePoint Kari Hensien and Matt Regusci of Rizepoint will be participating in a Q&A with Dr. Darin Detwiler, Assistant Dean, Northeastern University College of Professional Studies, during the final episode of the 2020 Food Safety Consortium Virtual Conference Series on December 17. 

2. Empowerment of employees to act as chief quality officers. This comes down to the difference between training employees versus coaching them. Giving employees rules (training) is one thing but showing them the reason why a rule exists (coaching) is another. In other words, when you add more coaching, you’re empowering employees to identify and act on the right thing to do for themselves—which is chief quality officer behavior.

It is important to reassure employees during coaching that honest assessments will result in managers’ support rather than punishment when things go wrong. When all employees proactively watch for quality and compliance issues and get the right support when bringing up these issues, you’re more likely to catch (and fix) small issues before they become huge liabilities.

3. An increase in virtual audits and self-assessments. I don’t believe the corporate audit will ever go away, but our customer data is showing a marked increase in location self-assessments and virtual audits before the pandemic, and even more since March.

Right now, these audit types are a necessary stopgap while the health and safety of auditors is in question. However, I’m also confident that virtual audits and self-assessments will continue to rise. The reason? These audits can start giving you a continuous view of food safety initiatives instead of a single point-in-time view.

Even though corporate audits are still part of best practices, shorter self-assessments and other evaluations can help you glean more data and gain more visibility on a continual basis, especially if you use technology to store and analyze your data in one place.

4. Continuous quality monitoring is overtaking point-in-time audits. Let’s expand on this trend. Manual processes may provide some valuable data, but it’s impossible to build real-time, integrated views into your business with only a yearly audit. It merely shows you a single (but important) point in time rather than what’s going on at each location right now. Additionally, since everyone is watching every employee at all store locations due to COVID-19, it is critical to have a checks and balances system to continually correct small issues and to find coaching opportunities.

Again, it’s virtually impossible to do this with paper checklists and email blasts because the daily-gathered data can easily be misfiled, deleted or otherwise lost. Many quality management software systems are built to integrate, store and analyze your data in a continuous manner.

5. Consolidation of multiple programs into single software solutions. As you think about updating your programs and systems from manual processes, it is important to remember that you don’t need a different solution for every activity. For example, you don’t necessarily have to invest in an auditing app, an analytics platform, and a document storage solution (and still probably manage many spreadsheets). There are many quality management software companies that have solutions built to combine and streamline all the activities you need to manage food safety or other quality management programs.

6. Innovations to share costs with suppliers. Budgets have not likely increased due to COVID-19, so investing in modernization may seem like a pipe dream. But many companies are offsetting their costs in a new way. They are requiring suppliers to use a specific software system to submit their qualifying documents, and then these companies are charging reasonable fees for suppliers’ use of the software.

Additionally, there more benefits to managing suppliers within your quality management system. First, it can streamline document collection and storage, and second, it gives you an opportunity to communicate and collaborate with your suppliers on a deeper level.

7. Standards bodies are accelerating plans to update requirements. As seen with GLOBAL.G.A.P. this year, some standards bodies are updating their digital submission requirements to streamline certification submissions as well as start building up sharable industry data so certification bodies can do their jobs better. Additionally, GLOBALG.A.P has already partnered with existing quality management software companies to make the integration and submission process even easier, and other standards bodies are sure to follow.

It’s clear to me that these trends are of a long-term nature, and each one requires updating manual food safety and quality programs to quality management system software solutions. Acting on these trends in any number will require modernization and digital transformation to have a lasting impact on your programs and your business. The mode of “just keeping the doors open” is not sustainable and will not last forever, so now is the time to start building a better food safety future.

FDA

FDA Asks for Comments and Evidence to Aid in Labeling of Cultured Seafood Cells

By Food Safety Tech Staff
No Comments
FDA

FDA has issued a Request for Information in an effort to gain information and data about how to properly label foods made with cultured seafood cells. The goal is to help FDA determine next steps in ensuring that products derived from cultured seafood cells are labeled consistently and transparently. The “Request for Information: Labeling of Foods Comprised of or Containing Cultured Seafood Cells” will be published on the Federal Register on October 7, and there is a 150-day comment period.

“The FDA invites comment, particularly data and other evidence, about names or statements of identity for foods made with cultured seafood cells. The agency is also interested in information on consumer understanding of those terms and how to determine material differences between cell cultured and conventionally produced seafood,” FDA stated in an email constituent update.

The labeling of foods derived from cultured seafood cells falls under FDA jurisdiction. In March the USDA and FDA entered into a formal agreement regarding the oversight of human food made from cells of livestock and poultry.

Susanne Kuehne, Decernis
Food Fraud Quick Bites

Hot on Food Fraudsters’ Heels

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Microscope, pepper
Find records of fraud such as those discussed in this column and more in the Food Fraud Database. Image credit Susanne Kuehne.

The Institute of Global Food Security at Queen’s University Belfast successfully identifies food fraud in the ever more complex food supply chain by developing and applying reliable analytical tests. Chris Elliott, professor of food safety and founder of the Institute, points out a two-tier approach of untargeted analysis and targeted analysis. Tier One is low cost and easy-to-use with 80–90% reliability. The second tier of highly sophisticated analytical methods, like mass spectrometry, gas chromatography and others, can identify a food item with a 99.999% certainty. These analytical methods combined with correct data are able to identify even details like type of fish, country of origin of a food item, added ingredients, and much more.

Resource

  1. Professor Chris Elliott. (August 13, 2020). “Reliable targeted analysis solutions to fight food fraud.” The Scientists’ Channel.
Megan Nichols
FST Soapbox

Four Influential Technologies Changing Food Manufacturing

By Megan Ray Nichols
No Comments
Megan Nichols

Some impressive technologies are not only impacting the food industry right now but will also have a huge impact in the future. As their use grows to be more prevalent, the industry will change to be smarter and more efficient, with continued improvements across the board.

1. AI and Advanced Robotics

While artificial intelligence and advanced robotics are two distinct technologies, they are frequently paired together. AI, and the data it digests, is used to command robots, allowing them to be more precise, more intelligent and more aware.

Most robots on their own are capable of completing only repetitive and clearly defined tasks. Throw something unique into the mix and they’ll either fumble or fail. However, when governed by data-based intelligence solutions like AI or machine learning, those robots become something incredibly advanced.

In the food industry, machinery and robots are leveraged to improve operations, further maintaining quality and efficiency, at affordable costs. They often work alongside human laborers to augment or enhance processes. They come with several unexpected benefits as well, such as much-improved safety for workers, faster and higher product output and consistent, reliable quality.

For example, JBS, one of the world’s largest meatpacking firms, deployed robotic butchers within its plants. The robots were used to slice more challenging meats, which reduced workplace injuries.

2. Automation

Automation stands alongside AI and advanced robotics, even incorporating those technologies to create a streamlined system. As of 2017, 73% of surveyed companies in the food and beverage manufacturing industry either had or were in the process of establishing automation within their facilities.

Many systems are designed to replace or enhance repetitive tasks, boosting their speed and accuracy, to significantly improve output, without incurring a loss in quality. It’s not just about hardware, like swapping a human laborer for a robot. It’s also achieved through software. Think supply chain management solutions that help plan for various events and experiences without human input.

When many of these technologies are used side-by-side, it strengthens their application and usability. As is true of advanced robotics, for example, AI can also be used to create more intelligent automation platforms. Instead of carrying out rote or simple tasks, they can be programmed to react and engage through any number of parameters. The system might slow production, for instance, based on a decrease in product demand. Or, it might swap to an alternate component or ingredient because of a shortage somewhere.

With the right controls and support, automation technologies are game-changing. With the global population growing and demands increasing more with each year, food manufacturers will look to streamline their operations and boost output in any way possible, and automation will be a go-to.

3. Digital Twins

Digital twins in food manufacturing are essentially simulated copies or a virtual representation of a physical system. That definition might seem confusing, but think of it as a clone that can be manipulated for testing and analytics.In other words, it is a twin of the actual system and information, in every sense of the word, albeit one that is more versatile and less vulnerable. It allows manufacturers and distributors to run simulations by feeding specific information into the system to identify patterns, recognize outcomes and much more.

As the systems and controls supporting the field become smarter and more digitized, digital twins in food manufacturing will find their way into product development, testing, post-production, distribution and nearly every other facet of the industry. It will become an integral component to not only understand what’s happening in the market but also for keeping up with the ebb and flow of supply and demand.

4. Blockchain

Even well before the pandemic, people had become much more conscious about the foods they consume. They want to know the origin of their goods and whether they’ve been sourced using safe, healthy and environmentally friendly methods. The problem with such demands is that, until recently, there haven’t been many solutions for increased visibility within the food supply chain.

Growing concerns for health are now a priority, and visibility is an absolute must. Blockchain technology is the answer, providing precisely the kind of visibility, efficiency, controls and collaboration that consumers want.

With this food manufacturing technology in place, someone could trace a head of lettuce back to its initial seeding. They can see who grew the plants and where, and which methods they used to mature the crop. Then, they can follow its journey to the store shelf.

How is such a thing possible? It all has to do with the technology. In its simplest form, Blockchain is a digital ledger or complete and digitized record of a particular data set. The data that goes in is added to something called a block, and as more is added, it is tacked on to the end of that block to create a long, linked record. Every bit of information is visible across the entire chain, hence the name blockchain.

Walmart is using the technology to track potential food contamination outbreaks. It empowers them to not just find the source but also find the many branches involved — like where goods might have been shipped and who may have purchased them.

Food Manufacturing Technology for the Future

While each food manufacturing technology discussed here is incredibly influential and will have a direct impact on the future of the industry, they are not the only solutions making waves. Some additional examples include:

  • Drones and automated delivery vehicles
  • 3-D printing for edible goods
  • Smart or precision agriculture
  • High-tech packaging
  • Smarter waste disposal and recycling

The takeaway is that technology is vastly improving the operational efficiency of the food supply chain, from farmers and manufacturers to the retail stores featuring goods on their shelves. There’s no right or wrong buy-in, as any one of these technologies can be used to streamline separate processes. The biggest challenge will be deciding what to upgrade first, especially when it comes to delivering high-quality, fresh goods in a prompt manner.

Checklist

2020 FSC Episode 2 Wrap: Pest Management and How Technology Is Transforming Business

By Maria Fontanazza
No Comments
Checklist

Last week we were joined by experts in pest management for Episode 2 of the 2020 Food Safety Consortium Virtual Conference Series. Although pest management may not be seen as the most exciting topic, all food plants are required to have an integrated pest management program. In addition, the digital transformation fast-tracked by COVID-19 is also driving innovation in the remote monitoring of pests.

Barney Debnam, global agriculture strategy lead at Microsoft kicked off the conversation with some key themes driving change within the global food system, which have also been accelerated by COVID: Geopolitical forces, consumerization, democratized biology, sustainability, shifting economics and food security. As technology continues to evolve and is adopted at a faster pace (think artificial intelligence and how accessible it is now), businesses will be able to transform their outcomes by becoming more predictive. The key technology enablers in the process include:

  • Internet of Things and edge computing
  • Advanced analytics
  • Artificial intelligence and cognitive computing
  • Graph technology
  • Blockchain
  • Digital workplace
  • Mixed reality

The most significant benefit of implementing technology such as remote monitoring into an IPM program is its ability to provide visibility and the data to back up what is happening in a facility.

Get access to the presentations and points discussed during this exclusive session by registering for the 2020 Food Safety Consortium Conference Virtual Series. Attendees will have access to upcoming sessions as well as the recordings of all sessions.

Vitamins

Revamped Liquid Chromatography Enhances Analysis of Vitamins and Beyond

By Maria Grübner
No Comments
Vitamins

Vitamins play a critical role in the regulation of key physiological processes, such as blood clotting, metabolism and maintaining our vision. These biologically important compounds can be divided into two broad classes based on their solubility and differ in the way they are handled in the body—and in food safety laboratories. While excess amounts of water-soluble vitamins (including B1, B2, B3, B6 and B12) are excreted, fat-soluble vitamins (including vitamin A, D, E and K) can be stored in the liver or fatty tissue for later use. The simultaneous analysis of water- and fat-soluble vitamins in traditional liquid chromatography is difficult, and is compounded by the presence of biologically important vitamin isomers, which exist at lower concentrations and demand greater sensitivity from analytical techniques.

Food analysis laboratories support food manufacturers by assessing food safety and authenticity, and have a responsibility to produce precise and reliable data. Vitamins are among a number of compounds assessed in infant formulas, energy drinks and other supplements, and are added to fortify the nutritional value of these products. Given the critical nutritional role of vitamins, especially during early developmental periods, their characterization is highly important. This, along with the challenging and cumbersome nature of vitamin analysis, has spurred the development of innovative high-performance liquid chromatography (HPLC) methods for food safety testing.

Unique Challenges of Vitamin Analysis

The simultaneous analysis of water- and fat-soluble vitamins is difficult to achieve with reversed-phase high-performance liquid chromatography, due to the wide range of hydrophobicity among vitamins. Highly hydrophobic fat-soluble vitamins are retained strongly by chromatography columns and are only eluted with high-strength mobile phases. In contrast, water-soluble vitamins are usually poorly retained, even with very weak mobile phases. As the ideal conditions for chromatographic separation are very different for the two vitamin classes, there have been efforts to explore the possibility of operating two columns sequentially in one system. The early versions of this approach, however, were not well suited to high-throughput food safety laboratories, requiring complex hardware setup and even more complicated chromatography data system programming.

Prior to liquid chromatography analysis, food samples must be purified and concentrated to ensure target analytes can be detected without matrix interference. Liquid-liquid extraction is one purification method used to prepare for the analysis of vitamins and other compounds; it was one of the first methods developed for purification and enables compounds to be separated based on their relative solubilities in two different immiscible liquids.1 It is a simple, flexible and affordable method, yet has several major disadvantages.2 Liquid-liquid extraction consists of multiple tedious steps and requires the use of large volumes, therefore the time for completion is highly dependent on the operator’s skills and experience. Consequently, the duration of sample exposure to unfavorable conditions can vary greatly, which compromises reproducibility and efficiency of the method. This is of concern for vitamins that are particularly prone to degradation and loss when exposed to heat and light, such as vitamin D in milk powder.

Two-Dimensional Liquid Chromatography Enables Deeper and Faster Analysis

Analysts in the food industry are under pressure to process high volumes of samples, and require simple, high-throughput and high-resolution systems. Fortunately, two-dimensional liquid chromatography (2D-LC) systems have evolved markedly in recent years, and are ideally suited for the separation of vitamins and other compounds in food and beverages. There are two main types of systems, known as comprehensive and heart-cutting 2D-LC. In comprehensive 2D-LC, the sample is separated on the first column, as it would be in 1D-LC. The entire eluate is then passed in distinct portions into a second column with a different selectivity, enabling improved separation of closely eluting compounds. In contrast, heart-cutting 2D-LC is more suited to targeted studies as only a selected fraction (heart-cut) of the eluate is transferred to the second-dimension column.

Recently, another novel approach has emerged which utilizes two independent LC flow paths. In dual workflows, each sample is processed by two columns in parallel, which are integrated in a single instrument for ease of use. The columns may offer identical or different analyses to enable a higher throughput or deeper insights on each sample. This approach is highly suited to vitamin analysis, as the two reversed-phase columns enable simultaneous analysis of water- and fat-soluble vitamins. A simple, optimized preparation method is required for each of the two vitamin classes to ensure samples are appropriately filtered and concentrated or diluted, depending on the expected amount of analyte in the sample. The dual approach enables a broad range of ingredients to be assessed concurrently in supplement tablets, energy drinks, and other food and beverages containing both water- and fat-soluble vitamins. For analysts working to validate claims by food vendors, these advances are a welcome change.

Refined Detection and Extraction Methods Create a Boost in Productivity

Analysts in food analysis laboratories now have a better ability to detect a wide range of components in less time, due to improved detection and extraction methods. Modern LC systems utilize a wide range of analytical detectors, including:

  • Mass spectrometry (MS)
  • Diode array detection (DAD)
  • Multi-wavelength detection
  • Charged aerosol detection (CAD)
  • Fluorescence detection (FLD)

The optimal detector technology will depend on the molecular characteristics of the target analyte. Infant formula, for example, can be analyzed by DAD and FLD, with detection and separation powerful enough to accurately quantify the four isomers of vitamin E, and separate vitamin D2 and D3. Highly sensitive 2D-LC methods are also particularly favorable for the trace level quantitation of toxins in food, such as aflatoxins in nuts, grains and spices.

Given the limitations of liquid-liquid extraction, an alternative, simplified approach has been sought for 2D-LC analysis. Liquid-liquid extraction, prior to chromatography analysis, involves many tedious separation steps. In contrast, the use of solid phase extraction for infant formula testing reduces pre-treatment time from three hours to one hour, while improving detection. This is of great significance in the context of enterprise product quality control, where a faster, simpler pre-treatment method translates into a greater capacity of product testing and evaluation.

HPLC Toolkit for Food Safety Analysis Continues to Expand

Several other HPLC approaches have also been utilized in the field of food safety and authentication. For example, ultra-high-performance liquid chromatography (UHPLC) with detection by CAD followed by principal component analysis (PCA) can be used to investigate olive oil purity. In contrast to conventional approaches (fatty acid and sterol analysis), this revised method requires very little time and laboratory resources to complete, enabling companies to significantly reduce costs by implementing in-house purity analysis. With a reduced need for chemicals and solvents compared with fatty acid and sterol analyses, UHPLC-CAD provides a more environmentally friendly alternative.

Analyzing amino acid content in wine is an important aspect of quality control yet requiring derivatization to improve retention and separation of highly hydrophilic amino acids. Derivatization, however, is labor-intensive, error-prone, and involves the handling of toxic chemicals. To overcome these limitations, hydrophilic interaction liquid chromatography (HILIC) combined with mass detection has been identified as an alternative method. While HILIC is an effective technique for the separation of small polar compounds on polar stationary phases, there still may be cases where analytes in complex samples will not be completely separated. The combination of HILIC with MS detection overcomes this challenge, as MS provides another level of selectivity. Modern single quadrupole mass detectors are easy to operate and control, so even users without in-depth MS expertise can enjoy improved accuracy and reproducibility, while skipping derivatization steps.

Conclusion

Recent innovations in 2D- and dual LC technology are well suited to routine vitamin analysis, and the assessment of other components important in food safety evaluation. The concurrent and precise assessment of water- and fat-soluble vitamins, despite their markedly different retention and elution characteristics, is a major step forward for the industry. Drastic improvements in 2D-LC usability, flexibility and sensitivity also allows for biologically important vitamin isomers to be detected at trace levels. A shift towards simpler, high-throughput systems that eliminate complicated assembly processes, derivatization and liquid-liquid extraction saves time and money, while enabling laboratories to produce more reliable results for food manufacturers. In terms of time and solvent savings, solid phase extraction is superior to liquid-liquid extraction and is one of many welcome additions to the food analysis toolkit.

References

  1. Schmidt, A. and Strube, J. (2018). Application and Fundamentals of Liquid-Liquid Extraction Processes: Purification of Biologicals, Botanicals, and Strategic Metals. In John Wiley & Sons, Inc (Ed.), Kirk-Othmer Encyclopedia of Chemical Technology. (pp. 1–52).
  2. Musteata, M. and Musteata, F. (2011). Overview of extraction methods for analysis of vitamin D and its metabolites in biological samples. Bioanalysis, 3(17), 1987–2002.

 

Pratik Soni, Omnichain
Retail Food Safety Forum

Top Three Visibility Challenges in Today’s Food Supply Chain

By Pratik Soni
No Comments
Pratik Soni, Omnichain

To say that COVID-19 has been disruptive would be putting it mildly. The pandemic’s sudden and seismic impact has brought major upheaval across industries—the food industry and its supply chain included.

There was the initial panic buying that drove upticks in consumer demand for which few manufacturers and grocers were prepared, resulting in widespread product shortages. With restaurants closed, distributors and suppliers were left with considerable excess inventory—most of which ended up as waste and losses. Inside production sites and plants, many had to try and maintain their output with a reduced workforce, even as demand continued to climb. Meanwhile, some plants unfortunately have had to shut down operations on account of employees testing positive for COVID-19.

In the time since the outbreak, the food supply chain has stabilized to an extent. Store shelves are continuously being replenished with products. Restaurants have started reopening with new health and safety measures. Yet even as the industry takes gradual steps toward recovery, the underlying problem that led to the magnitude of COVID-19’s impact persists: Lack of visibility. There was lack of visibility into supply and demand and what was happening upstream and downstream across the supply chain, which prevented timely, proactive action to optimize operations in face of disruption.

Looking ahead, participants across the food supply chain will need enhanced end-to-end visibility so that they can work together to get ahead of the curve. As part of gaining this visibility, they will need the transparent exchange of information and cohesive collaboration to adapt especially as the food industry continues to see shifts in consumer behavior and the marketplace in the wake of COVID-19—particularly in the following three key areas.

Food Distribution

While food producers have been working tirelessly to keep grocery store shelves and restaurant kitchens well stocked, there continues to be fluctuating availability on certain products, such as eggs, dairy, poultry and meat. This has led distributors and suppliers to increase their prices when selling these goods to stores and restaurants, who have had to then pass the additional costs on to consumers through their own price increases and surcharges, respectively. One report from CoBank, a cooperative bank part of the Farm Credit System, notes there could be as much as a 20% increase in the price of pork and beef this year due to supply issues.1 Many grocers have also implemented purchase limitations on consumers to combat shortages.

These downstream implications stem largely to uncertainty in the supply chain, with stores and restaurants unsure about available supply upstream and when they can expect to receive shipments. But if there was clearer visibility and transparency between production, distribution, transportation, food service and retail, then all parties could better anticipate and plan for supply shortages or delays. For instance, if a meat processing plant has to temporarily close due to cases of COVID-19, they can immediately communicate to the rest of the supply chain so that parties downstream can readily find alternative sources and minimize any necessary price inflations or other implications to consumers.

Consumer Demand

Even with the reopening of restaurants, people will likely choose to cook more of their meals at home. It was a trend that began with restaurant closures and will continue for the foreseeable future as consumers remain cautious of dining out. While this may bring tough times ahead for the food service industry, the grocery sector is seeing a huge lift in business. Research from restaurant management platform Crunchtime shows that, towards the end of June, restaurants were only seeing 64.5% of their pre-COVID-19 sales levels.2 At the same time, a study by Brick Meets Click and Mercatus reveals U.S. online grocery sales reached a record $7.2 billion in June, up nearly 10% over May.3

For food companies and brands, growth in the grocery sector has presented a challenge in the way of demand planning and forecasting. I’ve personally spoken with several company executives who have seen significant upticks in orders from their grocery channel partners—an increase for which they didn’t forecast—and are now struggling to adjust production levels accordingly to avoid the risk of excess production that would lead to unnecessary costs, wastes and losses. In such instances, real-time visibility into transactional activity and stock levels at the retail level would help production planners improve the accuracy of their forecasts and enable them to think steps ahead before orders come in and thereby optimally balance supply with demand. Stores would remain well stocked and the supply chain could flow in a more efficient and profitable way for all participants.

Food Handling

Without question, public health is the number one priority right now. Participants at each point in the food supply chain today need to communicate with each other, as well as to consumers, that they’re following best practices for social distancing, disinfecting and other precautions. It’s not to prevent the possible transfer of the virus via actual products, as the FDA notes there is currently no evidence of transmission through food or packaging. But rather, it’s to build greater confidence in the food supply chain—that everyone is doing their part to support individual and collective health and safety, which in turn prevents possible facility closures or other case-related bottlenecks that would inhibit consistent supply to the market.

There also has to be confidence that, amid these countermeasures for COVID-19, companies are still upholding their commitments to food safety, integrity and proper handling. What can support that confidence is data—shared data from every point in a product’s journey from source to shelf. The data should be transparent and available to all supply chain participants as well as immutable so that it is tamperproof and fully traceable should there be any problem, such as mislabeling or a foodborne illness. The data ultimately holds everyone accountable for their role in ensuring a safe food supply chain.

To achieve the level of visibility outlined above, the food industry will have to break away from legacy processes involving the siloed management of operational systems and databases. Instead, the disruption seen during COVID-19 and ongoing shifts in the marketplace should encourage companies to consider digital transformation and technologies that can enable a more cohesive and nimble food supply chain. These are technologies like blockchain, which provides a decentralized, distributed ledger to publish and share data in real time. Moreover, artificial intelligence that can leverage incoming real-time data to guide next-best actions, even when the unexpected occurs. Personally, I always return to the notion that the supply chain is a team sport. You need visibility to know what each team member is doing on the field and how to align everyone on a gameplay. The digital solutions available today offer that visibility and insight, as well as the agility to pivot as needed to obstacles along the journey from source to shelf.

References

  1. Taylor, K. (May 6, 2020). “The American meat shortage is pushing prices to unprecedented heights — here’s how it could affect your grocery bill.” Business Insider.
  2. Maze, J. (July 7, 2020). “As the coronavirus resurges, restaurant sales start slowing again.” Restaurant Business.
  3. Perez, S. (July 6, 2020). “US online grocery sales hit record $7.2 billion in June.” TechCrunch.