Tag Archives: efficiency

Petra Sterwerf and Holly Mockus

Going Lean To Support Food Safety

By Food Safety Tech Staff
No Comments
Petra Sterwerf and Holly Mockus

Lean manufacturing is synonymous with efficiency, but many people mistake it for being only about reductions in workforce, inventory or waste. Lean itself is a growth strategy, and like any strategy, it requires an investment—not a reduction—of time and resources to succeed. To understand how Lean Manufacturing can help food and beverage companies save money and improve efficiencies and food safety, we asked two industry professionals to share their insights.

Petra Sterwerf is an operations executive with experience in lean manufacturing and a background in plant management. She currently serves as director of commissary operations with Skyline Chili in Cincinnati. Holly Mockus is the director of content and industry strategy at Intertek Alchemy where she leads employee training for manufacturing clients around the world.

 How can Lean processes enhance food manufacturing facilities?

Petra: Lean’s meticulous focus on eliminating waste obviously makes it invaluable to the complex, ingredient-focused processes that dominate food manufacturing. However, Lean is ultimately a culture built through collaborative problem solving, which can happen every day throughout the organization.

Collaborative problem solving not only positively impacts the operations group, but it can also be taken across different departments and different processes within a food manufacturing facility. This focus on eliminating waste through problem solving is more important than ever in today’s economic environment where ingredients are more expensive and harder to come by.

Subscribe to the weekly Food Safety Tech newsletter to stay up to date on the latest news and information on food safety practices and regulation.

What’s happening in the industry to make Lean more important to companies? 

Petra: In the era of the great resignation, many food companies have lost a lot of institutional knowledge. So, you often have a whole new workforce to ramp up on important processes. Cross-functional, collaborative problem solving allows food manufacturers to bring together experienced people with employees who might be new to the industry. Combined, they can bring all kinds of new ideas to the table.

The process challenges experienced workers to consider new methods and techniques. It also helps less experienced workers understand many of the tried-and-true industry processes that make things operate efficiently.

What is the implementation cost vs. reward for setting up a Lean manufacturing program?

Petra: It’s hard to put a specific number on it, but I’ve seen an investment of $1 million result in over $10 million in returns. Beginning a Lean journey can be as simple or as complex as you want it to be. At some companies, a Lean rollout may include large consulting groups and corporate teams. But I’ve been a part of implementations with just a couple of people in a small department.

Holly: Before you see financial ROI, you’ll see improvements in KPIs like safety recordable rates, environmental positive rates or first-pass quality rates. Production-wise, it could be your line efficiencies, your product yields or order fill rates. In terms of food quality and safety, you’re going to see fewer holds, customer complaints and near-miss incidents because your processes are more consistent.

Some people hear the word “Lean” and immediately expect workforce reductions. Can you implement Lean without having layoffs? 

Petra: I’ve been involved in projects for sizable facilities with over 600 people, and we did not lose one person in the name of a Lean manufacturing change. As part of the process, you will identify value-added tasks that you need and the resources to make them happen. And then you reallocate people accordingly. Also, manufacturing facilities often experience turnover, which adjusts the workforce level down to where it needs to be.

Holly: Lean cost savings can also be invested back into your employees through training, internal celebrations, facility improvements or other programs that can provide substantial worker and business benefits.

Where can you see the fastest results or ROI?

Petra: The quickest results tend to materialize in yields and formulations. In the protein business, for example, where meat has become more expensive, you have to decide where problem-solving Kaizen events are necessary, or where you want to implement standardized work. The meat cost or meat waste is always a good place to start.

Holly: I’ve seen many formula audits that reveal significant inconsistencies in processes such as things being weighed differently, or recipes and formulas that aren’t followed. These mistakes can produce inconsistent products and also result in regulatory issues that could affect public health. Streamlining these processes through Lean practices can deliver results in a short period of time.

What are some of the best ways to integrate HR and senior leadership into the Lean process? 

Petra: It is important to get HR involved from the very beginning by explaining what you’re trying to do with collaborative problem solving and putting Lean tools into place. As you start planning problem-solving events, keep HR in the loop on scheduling, processes and reporting. This is typically done every time you do a continuous improvement workshop. You’ll pull in senior leadership and HR to report what you learned from the event.

Holly: Sometimes it can help to include HR representatives in your Lean teams to represent the people factor. That way, if employees are concerned about any new process, HR can talk to it and provide the reassurances that are needed.

How do you educate and get the employees to embrace Lean? 

Petra: You have to be careful when you start a Lean initiative not to oversell it in the beginning. If you stop everything in the plant for an all-hands meeting to describe the project, you can cause some employee anxiety. And then people are expecting big changes to happen quickly. Lean can be a slow evolution, especially if you start with constrained resources. I recommend starting with a small group of people and talk to them, while letting all employees know that you’re starting small on this new project.

Holly: I would say you have to empower people and engage them by providing knowledge. They need to understand what Lean is, the benefits, their role and how they can contribute. It’s all about making sure everyone fully participates regardless of their level. And employees need to feel like they are being listened to and that their ideas have a chance of moving forward in the process.

How is creating a “culture of failure” essential to the ultimate success of a Lean program?

Petra: It’s basically the scientific method of thinking. You have to try different approaches, knowing that things don’t always work. Sometimes you have to take a few steps back, learn from mistakes, and move on. The worst mindset you can have is a fear of failure. That being said, you also don’t want to just try a whole lot of poorly thought out ideas and waste a lot of product or money.

How do you measure success from your initial steps, and how do you continue using Lean?

Petra: I would recommend that people implementing Lean programs document their journeys. At the beginning of the project, go around and take pictures of the current state of the business. When you start making changes, you often forget what it looked like before. And then you realize that despite making significant changes, you have no documentation to show that journey. Continuous improvement reports are a great way to capture pictures and create a folder of all the changes that you make.

 

Berk Birand, Fero Labs

Is the Future of Food Quality in the Hands of Machine Learning?

By Maria Fontanazza
No Comments
Berk Birand, Fero Labs

Is the future of food quality in the hands of machine learning? It’s a provocative question, and one that does not have a simple answer. Truth be told, it’s not for every entity that produces food, but in a resource, finance and time-constrained environment, machine learning will absolutely play a role in the food safety arena.

“We live in a world where efficiency, cost savings and sustainability goals are interconnected,” says Berk Birand, founder and CEO of Fero Labs. “No longer do manufacturers have to juggle multiple priorities and make tough tradeoffs between quality and quantity. Rather, they can make one change that optimizes all of these variables at once with machine learning.” In a Q&A with Food Safety Tech, Birand briefly discusses how machine learning can benefit food companies from the standpoint of streamlining manufacturing processes and improve product quality.

Food Safety Tech: How does machine learning help food manufacturers maximize production without sacrificing quality?

Berk Birand: Machine learning can help food manufacturers boost volume and yield while also reducing quality issues waste, and cycle time. With a more efficient process powered by machine learning, they can churn out products faster without affecting quality.

Additionally, machine learning helps food producers manage raw material variation, which can cause low production volume. In the chemicals sector, a faulty batch of raw ingredients can be returned to the supplier for a refund; in food, however, the perishable nature of many food ingredients means that they must be used, regardless of any flaws. This makes it imperative to get the most out of each ingredient. A good machine learning solution will note those quality differences and recommend new parameters to deal with them.

FST: How does integrating machine learning into software predict quality violations in real-time, and thus help prevent them?

Birand: The power of machine learning can predict quality issues hours ahead of time and recommend the optimal settings to prevent future quality issues. The machine learning software analyzes all the data produced on the factory floor and “learns” how each factor, such as temperature or length of a certain process, affects the final quality.

By leveraging these learnings, the software can then help predict quality violations in real-time and tell engineers and operators how to prevent them, whether the solution is increasing the temperature or adding more of a specific ingredient.

FST: How does machine learning technology reveal & uphold sustainability improvements?

Birand: Due to the increase in climate change, sustainability continues to become a priority for many manufacturers. Explainable machine learning software can reveal where sustainability improvements, such as reducing heat or minimizing water consumption, can be made without any effect on quality or throughput. By tapping into these recommendations, factories can produce more food with the same amount of energy.

Emily Newton, Revolutionized Magazine
FST Soapbox

Six Ways Food Manufacturers Can Save Money on Electricity

By Emily Newton
No Comments
Emily Newton, Revolutionized Magazine

Energy usage has increased worldwide, especially with everyone isolated due to COVID-19. That translates to higher costs across most sectors. The Energy Information Agency (EIA) expects U.S. electricity consumption to grow by 2.1% this year.

Coupled with the rising adoption of renewable energy and green initiatives, it makes sense to cut down on electricity consumption as much as possible. Commercial operations, food manufacturers included, could stand to benefit from reduced energy usage.

The question isn’t necessarily “why,” but “how.” What can food manufacturers and similar commercial providers do to reduce electricity requirements? What are some ways to minimize consumption and achieve efficient food production processes?

1. Energy Audits

Process and energy audits are a must. How could one hope to improve a system without understanding everything there is to know about it? More specifically, how could a company reduce energy consumption if they don’t know where, when and how it’s being used? That’s why energy and resource audits are crucial to optimization. It doesn’t matter whether they are conducted in-house or by a third party. What’s important is that they are accurate and detailed.

Inspectors will examine heating, refrigeration and cooling systems, facility processes, equipment, infrastructure, and beyond. Everything that uses electricity will be part of the audit, and analysts will be able to discern how much power each component is using. The statistics then inform action, driving a reduction in energy consumption. With this information, company analysts can also create a food manufacturing cost breakdown, which can be used to improve other areas of the business.

It’s easy to draw a line between regular energy audits and improved food safety, too. The ability to continuously monitor facility equipment performance means a lower chance of failure and more consistent quality. Keeping a digital eye on optimal performance means a reduced risk of one machine negatively impacting others if it begins performing suboptimally or erratically.

2. Upgraded Equipment

Energy conservation is as much about improving efficiencies as it is about using less electricity overall. While not always true, as a general rule, newer equipment tends to be much more economical at utilizing electricity.

Over time, technology has improved considerably to use less power, utilize resources more effectively and incorporate new methods for completing various actions, sometimes with significant performance boosts. In other words, new equipment can bring energy consumption down and will also improve productivity and output. Because it’s not cost-effective to replace equipment often, that’s precisely where audit information comes in handy.

The best practice would be to replace equipment before it malfunctions or breaks down, but also after it has declined in performance and efficiency. It would mean constantly analyzing equipment through real-time metrics and statistics.

Better production, more output, and fewer costs lead to greater profit, so it’s worth the investment.

More efficient and modern equipment typically features other upgraded components that impact performance and food safety as well, including updated materials, tighter tolerances, and improved microbial and viral resistance. Next-generation food prep and packaging stations that automate sanitation using ultraviolet (UV) light are examples.

3. Retooled Infrastructure

If the operation is located in an older building, it’s likely that much of the existing infrastructure and equipment is not just dated but also less efficient.

For example, traditional lighting sources use a lot more energy than LED or smart lighting solutions. HVAC systems may be non-existent or extremely outdated. Even facilities that are just a few years old may have obsolete elements.

This stretches far beyond the basics such as lighting to include power and utility components. A well-built and quality transformer setup will save money over time, for example. Replacing aging equipment can save food processing plants cash in the long run.

Investing in a transformer that doesn’t use a liquid cooling agent gives plant owners more options as they can be placed indoors or outdoors. They also have other business benefits, like longer lifecycles, lower fire risks, a more eco-friendly operation, and higher efficiency. A lower risk of fires, smoke intrusion and other destructive events also means greater security and peace of mind for delicate and perishable foods and food components.

Upgrading these components is more cost-effective than moving to a new location or building a whole new facility. It is often these kinds of incremental hardware and operational updates that can offer the best impact.

4. Better Refrigeration and Cooling

In 2019, the EIA reported that the commercial food sector used 154 billion kilowatt-hours of energy on cooling alone. That’s nearly 4% of the entire country’s annual energy usage. It isn’t just because cooling systems are running constantly year-round. It’s also because many companies refuse to upgrade to more efficient solutions.

Refrigeration is a massive energy hog. So how can it be improved? There are several ways:

  • More efficient motors
  • Reduced and more effective use of refrigeration space for walk-ins
  • Smarter fans with variable frequency drives (VFDs)
  • Renewable energy farms
  • Intermittent absorption refrigeration

Food waste at the retail and consumer levels amounts to 30–40% of the United States’ total output and billions of tons per year. Better and more reliable refrigeration technology at every stage of the supply chain, including warehouses and vehicles, means less food wasted worldwide and greater security for products at rest and in transit.

5. Monitor, Automate and Notify

Through real-time monitoring and automated processes, managers and operations teams can take action to reduce consumption. For instance, let’s say an employee walks away from a piece of equipment and leaves it powered on. With traditional equipment, that machine would continue draining power and increasing costs.

With automated and smart equipment, a notification would be sent to the appropriate administrator, who can then send out an order to have the machine shut down. Moreover, this can all happen within an instant, and administrators can be off-site and notified remotely.

Even better, the process could be improved further by installing an IoT sensor that automatically turns off the hardware after an expiration period.

An energy dashboard, accessible via mobile platforms, would allow facility managers to keep an eye on resource consumption, general costs, and operations no matter where they are. Creating a unified and always-on system with automation is definitely possible with the help of modern technologies like the Internet of Things (IoT).

The cost of food supply chain recalls stands at 48 million illnesses and $55.5 billion per year in productivity losses, amelioration efforts and the rest of the fallout. As with the other points made here, an investment in higher-efficiency equipment with lower power requirements translates to dividends elsewhere.

More efficient and widely connected machines in the supply chain mean fewer opportunities for failure and pricey recalls. This also leads to ongoing cost savings, which begin on day one.

6. Educate Employees

A cultural response to energy reductions can also have a huge impact. By training and educating employees on the importance of energy conservation, companies can gain an edge. This could include steps as simple as turning off the lights when departing an unoccupied room, remembering to power down equipment, or discussing more effective techniques.

If and when people are armed with the correct knowledge, they can make more informed decisions. The idea is to build a culture around energy conservation, operational efficiencies, and smarter utilization. Make it a team-based practice so everyone holds themselves accountable and values the initiative.

Cultivating mindfulness in this area of the company’s culture translates elsewhere, too. Safeguarding against unsafe habits, incorrect equipment usage and improper handling techniques, and encouraging workspace sanitization, is everybody’s responsibility.

Whether it’s saving money on electricity for the company’s and planet’s sake or protecting the customer from product defects, ongoing education makes for a stronger culture and a more reliable product.

Make It Happen

The longer a manufacturer continues to operate without efficient solutions in place like the ones discussed in this column, the greater the energy consumption levels and the higher the expenses. It is beneficial to all to adopt some of these practices as soon as possible, and there’s no question that it will result in higher profits. In several ways, some less obvious than others, this efficiency transformation means safer products, employees and customers, too.

As energy prices continue to climb across all sectors and the impact on the environment mounts, it makes sense to reduce consumption, find smarter sources like renewable energy, and upgrade equipment, processes and operations accordingly.

Roberto Bellavia, Kestrel
FST Soapbox

How Integrated Compliance Management Systems Maximize Efficiency

By Roberto Bellavia
No Comments
Roberto Bellavia, Kestrel

Managing the complexities of a management system is challenging for any food and beverage company, particularly for the team tasked with implementing the system throughout the organization. That is because every regulatory agency (e.g., FDA, USDA, OSHA, EPA) and voluntary certification (e.g., GFSI-benchmarked standards, gluten-free, organic, ISO) calls for companies to fulfill compliance requirements—many of which overlap. Supply chain and internal requirements can create further complications and confusion.

In today’s “New Era of Smarter Food Safety,” having a common system to organize, manage and track compliance offers an ideal solution. Dynamic tools are becoming available—systems that can manage employee training, pest control, laboratory testing, supply chain management tools, regulatory compliance and certification requirements, etc.

Unfortunately, these systems are often not set up to “talk” to each other, leaving company representatives to navigate many systems, databases, folders, and documents housed in many different locations.

The Solution: Compliance Management Systems

An integrated compliance management system (CMS) is intended to bring all these tools together to create one system that effectively manages compliance requirements, enables staff to carry out daily tasks and manage operations, and supports operational decision making by tracking and trending data that is collected daily by the team charged with implementation.

A CMS is used to coordinate, organize, control, analyze and visualize information to help organizations remain in compliance and operate efficiently. A successful CMS thinks beyond just access to documents; it manages the processes, knowledge and work that is critical to helping identify and control business risks. That may include the following:

  • Ensuring only authorized employees can access the right information.
  • Consolidating documents and records in a centralized location to provide easy access
  • Setting up formal business practices, processes and procedures
  • Implementing compliance and certification programs
  • Monitoring and measuring performance
  • Supporting continuous improvements
  • Documenting decisions and how they are made
  • Capturing institutional knowledge and transferring that into a sustainable system
  • Using task management and tracking tools to understand how people are doing their work
  • Enabling data trending and predictive analytics

CMS Case Study: Boston Sword and Tuna

In early 2019, Boston Sword and Tuna (BST) began the process of achieving SQF food safety certification. We initially started working with BST on the development, training and implementation of the program requirements to the SQF code for certification—including developing guidance documents for a new site under construction.

The process of attaining SQF certification included the development of a register of SQF requirements in Microsoft SharePoint, which has since evolved into a more comprehensive approach to overall data and compliance management. “We didn’t plan to build a paperless food safety management system,” explains BST President Larry Dore, “until we implemented our SQF food safety management program and realized that we needed a better way to manage data.”

We worked with BST to structure the company’s SharePoint CMS according to existing BST food safety management processes to support its certification requirements and overall food safety management program. This has included developing a number of modules/tools to support ongoing compliance efforts and providing online/remote training in the management of the site and a paperless data collection module.

The BST CMS has been designed to support daily task activities with reminders and specific workflows that ensure proper records verifications are carried out as required. The system houses tools and forms, standards/regulatory registers, and calendars for tracking action items, including the following:

  • Ambient Temperature
  • Corrective and Preventive Action (CAPA)
  • Chemical Inventory/Safety Data Sheets (SDS)
  • Compliance Management
  • Customer Complaints
  • Document Control
  • Employee Health Check
  • Food Safety Meetings Management Program
  • Forklift Inspections
  • Good Manufacturing Practices (GMP) Audit
  • SQF Register
  • Maintenance (requests/work orders/assets/repairs)
  • Nightly Cleaning Inspections
  • Operational/Pre-Operational Inspections
  • Sanitation Pre-Op Inspections
  • Scale Calibration
  • Sharp/Knife Inspections
  • Shipping/Receiving Logs
  • Thawing Temperature Log
  • Thermometer Calibration

Key Considerations for Designing a Successful CMS

An effective CMS requires an understanding of technology, operational needs, regulatory compliance obligations and certification requirements, as well as the bigger picture of the company’s overall strategy. There are several key considerations that can help ensure companies end up with the right CMS and efficiency tools to provide an integrated system that supports the organization for the long term.

Before design can even begin, it is important to first determine where you are starting by conducting an inventory of existing systems. This includes not only identifying how you are currently managing your compliance and certification requirements, but also assessing how well those current systems (or parts of them) are working for the organization.

As with many projects, design should begin with the end in mind. What are the business drivers that are guiding your system? What are the outcomes you want to achieve through your system (e.g., create efficiencies, provide remote access, reduce duplication of effort, produce real-time reports, respond to regulatory requirements, foster teamwork and communication)? Assuming that managing compliance and certification requirements is a fundamental objective of the CMS, having a solid understanding of those requirements is key to building the system. These requirements should be documented so they can be built into the CMS for efficient tracking and management.

While you may not build everything from the start, defining the ultimate desired end state will allow for development to proceed so every module is aligned under the CMS. Understand that building a CMS is a process, and different organizations will be comfortable with different paces and budgets. Establish priorities (i.e., the most important items on your list), schedule and budget. Doing so will allow you to determine whether to tackle the full system at once or develop one module at a time. For many, it makes sense to start with existing processes that work well and transition those first. Priorities should be set based on ease of implementation, compliance risk, business improvement and value to the company.

Finally, the CMS will not work well without getting the right people involved—and that can include many different people at various points in the process (e.g., end user entering data in the plant, management reviewing reports and metrics, system administrator, office staff). The system should be designed to reflect the daily routines of those employees who will be using it. Modules should build off existing routines, tasks, and activities to create familiarity and encourage adoption. A truly user-friendly system will be something that meets the needs of all parties.

Driving Value and Compliance Efficiency

When thoughtfully designed, a CMS can provide significant value by creating compliance efficiencies that improve the company’s ability to create consistent and reliable compliance performance. “Our system is allowing us to actually use data analytics for decision making and continuous opportunity,” said Dore. “Plus, it is making remote activities much more practical and efficient”.

For BST, the CMS also:

  • Provides central management of inspection schedules, forms, and other requirements.
  • Increases productivity through reductions in prep time and redundant/manual data entry.
  • Improves data access/availability for reporting and planning purposes.
  • Effectively monitors operational activities to ensure compliance and certifications standards are met.
  • Allows data to be submitted directly and immediately into SharePoint so it can be reviewed, analyzed, etc. in real time.
  • Creates workflow and process automation, including automated notifications to allow for real-time improvements.
  • Allows follow-up actions to be assigned and sent to those who need them.

All these things work together to help the company reduce compliance risk, create efficiencies, provide operational flexibility, and generate business improvement and value.

Emily Newton, Revolutionized Magazine
FST Soapbox

How to Improve Food Processing Efficiency

By Emily Newton
No Comments
Emily Newton, Revolutionized Magazine

For food processors, efficiency can be a major asset. Cutting production times and improving kitchen throughput is one of the best ways to reduce costs and boost profits. In recent years, new management strategies and a range of technologies—like Industry 4.0—has transformed how business owners manage their facilities, including food processing plants. This means there is a range of new, efficiency-improving tools available for businesses that want to streamline plant processes and better manage their operations. The strategies and investments are some of the best possible ways for food processors to improve their plant’s efficiency.

1. Take Advantage of Industry 4.0 Technology

Over the past few years, the digital transformation of industries has resulted in a wide range of products, platforms and devices that can help streamline facility operations and workflows.

Industrial Internet of Things (IIoT) sensors, for example, are Internet-connected sensors that collect a wide range of real-time data from site processes. This data can help food processors improve their bottom lines in a few different ways—like by providing better data on food safety or providing real-time quality control.

For example, IIoT sensors can be used to keep an eye on equipment performance and machine health. An air pressure sensor, installed at the right place in an HVAC duct, can provide valuable notice on blockages and damaged filters. When air pressure drops dramatically, it is typically a sign of some kind of blockage in the HVAC system. This advanced notice can help you fix the HVAC system quicker, potentially saving money and preventing dust or other contaminants from reducing facility air quality.

These IIoT systems also make it much easier to collect information about a facility. This information can help unlock insights about workflows, processes and site layouts, allowing changes that make a facility even more efficient.

For example, you may be able to gather hard data on how an individual product or product line influences machine timing—or how production of a particular item may slow down throughput or make workers less efficient. This information can help you adjust site processes, simplifying the workflow for products that put more strain on your facility, or cutting those products entirely in favor of simpler-to-produce items.

2. Use Efficient Equipment and Materials

Equipment choice can have a major impact on the overall efficiency of a facility. Even small choices—like the lightbulbs used or HVAC filters installed—can add up over time, reducing a facility’s energy bill and contributing to a more comfortable working environment.

Filter choice, for example, is especially important at plants that process a significant amount of wastewater or similar fluids. Good filtration is necessary to remove dangerous chemicals and contaminants from wastewater, but not all filter materials are made equal. Some perform much better than others—and this cost efficiency can have a major impact on a long enough timescale.

EPDM, for example, is an FDA-approved food-grade rubber and a common gasket material for equipment used in industrial kitchens and other food processing plants. It is also a common filter material. However, EPDM filters have a tendency to swell and suffer from performance issues over time. They may require more regular maintenance, which could negatively impact the productivity of a filtration system. PTFE membranes, in contrast, don’t have the same drawbacks.

Making simple adjustments—finding the right kind of filter or LED bulb— can help reduce maintenance costs and improve facility energy efficiency. Often, these changes can happen without major adjustments to the underlying equipment or workflows that keep the factory moving. These upgrades are a great place to start if you want to see how smaller tweaks and adjustments impact facility efficiency before moving on to more major changes.

3. Find Ways to Conserve Water

Similarly, food processing plants can save significantly by finding ways to reduce the amount of water they consume. Water is often seen as a free commodity in food processing plants—but consumption of water can become a significant expense at scale. Equipment, practices and machinery that help reduce water usage can be a way to cut down on costs while making the plant a little more eco-friendly.

Simple changes can make a notable difference without requiring new equipment. For example, some plants may be able to begin cleaning floors and equipment with sweeping or mopping rather than hoses. Mobile sweepers can cover large areas, like parking lots, that can’t be swept with manual labor alone. In one example, Bartter Industries, a New South Wales-based poultry product manufacturer, was able to reduce its water consumption by 10,000 liters a day (approximately 2,640 gallons) by switching from hosing to mopping and sweeping.

More extensive equipment and facility upgrades can yield more significant results.

Increasing the efficiency of water usage may also help future-proof a plant. Industrial water and sewage rates have risen significantly over the past two decades. Water insecurity and droughts may drive these prices higher in the near future.

Many major food production companies—including Pepsi-Cola and Coca-Cola—are already in the process of investing major amounts of money in water reuse and conservation technology.

Adopting similar technology and practices at your facility can provide a valuable competitive advantage now and help in the future when water reuse and stringent water conservation policies are more common.

4. Upgrade Your Maintenance Plan

Scheduled maintenance is one of the most commonly used maintenance approaches. Having such a plan in place can help reduce sudden, unexpected machine failure—helping avoid major downtime and reducing spending on replacement parts for facility machinery.

There are, however, major limitations to the scheduled maintenance model. Every time a machine is opened for maintenance, technicians may unintentionally expose sensitive electronics and internal components to dust, oil, fluids and other contaminants. Regular checks also won’t catch everything. If an issue arises and causes machine failure between scheduled checks, workers and supervisors will have no advanced notice of that machine’s failure, potentially leading to damage or injury.

New Industry 4.0 tech, however, means you can do even better than scheduled maintenance. Predictive maintenance is a maintenance approach that uses data collected from IIoT devices to improve maintenance checks and provide advanced notice on potential failure.

With this approach, IIoT sensors installed in and around machinery capture real-time data on how individual machines are behaving. If one begins to function unusually—exceeding safe temperature ranges, vibrating excessively or emitting strange sounds—the sensors can capture this behavior and alert a supervisor.

This maintenance method can help any facility cut down on maintenance checks and reduce the risk of sudden downtime due to damaged equipment.

Improve Food Processing Efficiency with These Strategies

Improvements to efficiency can be a major advantage for food processors. These strategies and investments are some of the best ways to improve a plant’s efficiency. Simple adjustments to materials, equipment, and workflows—or more serious investments in technology like predictive maintenance platforms—can make a significant difference in a facility’s productivity and resource usage.

Jason Chester, InfinityQS
FST Soapbox

Resilience for Tomorrow Begins with Digital Transformation Today

By Jason Chester
1 Comment
Jason Chester, InfinityQS

COVID-19 has been a sharp wake-up call for many food manufacturers in the need for resilient production environments that can readily respond to large and sudden changes, including fluctuations in demand and disruptive external events. This means being able to optimize operations for the following:

  • Efficiency: Where you can achieve constant output even when given fewer inputs—such as in workforce availability or resources. This was especially important when the pandemic caused widespread supply shortages, as well as staffing shortages due to social distancing measures.
  • Productivity: When you can ensure that, given the amount of available input (i.e., raw ingredients, manpower, equipment availability), you can maintain a consistent output to meet demand in the marketplace.
  • Flexibility: Where you can rapidly and intelligently adapt your processes in the face of change, in ways that are in the best interest of your business, the supply chain, and the consumers who purchase and trust in your products.

That trust is paramount, as manufacturers must continue to uphold quality and safety standards—especially during a time when public health is of the upmost importance. But between operational challenges and managing product quality, that’s a lot for manufacturers to wade through during a crisis.

To navigate the current COVID reality and improve response to future events, more organizations are looking to harness the power of data to enable agile decision-making and, in turn, build more resilient production environments.

Harnessing the Power of Data

The key to harnessing data for agile decisions is to aggregate end-to-end process information and make it available in real time. When you can achieve that, it’s possible to run analytics and derive timely insights into every facet of production. Those insights can be used to increase efficiency, productivity and flexibility—as well as ensure product quality and safety—even amidst upheaval.

When looking at solutions to aggregate data from a single site—or better yet, multiple sites—all roads lead to the cloud. Namely, cloud-based quality intelligence solutions can decouple the data from physical locations—such as paper checklists, forms, or supervisory control and data acquisition (SCADA) and human-machine interfaces (HMI) systems—and centralize what’s collected digitally in a unified repository. The data can then be accessed, analyzed, and consumed by those who need actionable insights from anywhere, at any time, and on any device, making cloud an ideal solution for connecting on-site operators and remote employees.

Digital transformation
When process and quality data are centralized and standardized on the cloud, they can be leveraged for real-time monitoring and timely response to issues—from anywhere and at any time. (Image courtesy of InfinityQS)

An Opportunity for Broader Transformation

In migrating to the cloud, manufacturers open the opportunity to break away from the legacy, manual processes of yesterday and transition to more nimble, digitally enabled environments of tomorrow. For example, manual processes are often highly dependent on individual operator knowledge, experience and judgement. As the pandemic has shown, such institutional knowledge can be lost when employees become ill, or are unavailable due to self-isolation or travel restrictions, presenting a risk to operational efficiency and productivity. But if that valuable institutional knowledge were captured and codified in a quality intelligence solution as predefined workflows and prescriptive instructions, then a manufacturer could more easily move their resources and personnel around as necessary and find comfort knowing that processes will be executed according to best practices.

For many organizations, this would be a remarkable transformation in the ways of working, where data and digital technologies can augment human capacity and flexibility. Take for instance, in traditional production environments, a lot of human effort is spent on monitoring lines to catch process deviations or events like machine anomalies or quality issues. Using real-time data, next-generation solutions can take on that burden and continuously monitor what’s happening on the plant floor—only alerting relevant teams when an issue arises and they need to intervene. Manufacturers can thereby redeploy people to other tasks, while minimizing the amount of resources necessary to manage product quality and safety during daily production and in the event of disruption.

Ensuring Quality Upstream and Downstream

One company that has succeeded in digital transformation is King & Prince, a manufacturer of breaded, battered and seasoned seafood. When the company digitized its manufacturing processes, it centralized the quality data from all points of origin in a single database. The resulting real-time visibility enables King & Prince to monitor quality on more than 100 processes across three U.S. plants, as well as throughout a widespread network of global suppliers.

With this type of real-time visibility, a company can work with suppliers to correct any quality issues before raw materials are shipped to the United States, which directly translates to a better final product. This insight also helps plant-based procurement managers determine which suppliers to use. Within its own plants, operators receive alerts during production if there are any variations in the data that may indicate inconsistencies. They can thereby stop the process, make necessary adjustments, and use the data again to confirm when everything is back on track.

During finished product inspections, the company can also review the captured data to determine if they need to finetune any processes upstream and respond sooner to prevent issues from making it downstream to the consumer level. Overall, the company is able to better uphold its quality and safety standards, with the number of customer complaints regarding its seafood products dropping to less than one per million pounds sold year over year—and that’s all thanks to the harnessing of data in a digitally enabled production environment.

There’s No Time Like the Present

In truth, technologies like the cloud and quality intelligence solutions, and even the concept of digital transformation, aren’t new. They’ve been on many company agendas for some time, but just haven’t been a high priority. But when the pandemic hit, organizations were suddenly faced with the vulnerabilities of their long-held operational processes and legacy technologies. Now, with the urgency surrounding the need for resilient production environments, these same companies are thinking about how to tactically achieve digital transformation in the span of a few weeks or months rather than years.

Yet while digital transformation may sound like a tremendous initiative with high risks and expenses, it’s more tangible than some may think. For example, cloud-based Software-as-a-Service (SaaS) solutions offer flexible subscription-based models that keep costs low on top of rapid scalability. Digital transformation doesn’t have to be an all-or-nothing endeavor either. In fact, it can be better to progress incrementally, starting first with the manufacturing areas that are most in need or have the most issues. This minimizes unnecessary risk, makes digital transformation more achievable and realistic over short timeframes, and avoids overwhelming already maxed out operational and IT teams.

All things must pass. The pandemic will eventually be over. But in its wake will be a permanent legacy on not just society, but also on the manufacturing sector. In my opinion, digital transformation is a fundamental basis for building resilience into the modern food production environment. Now, more than ever, is the time to address that opportunity head on.

Karil Kochenderfer, LINKAGES
FST Soapbox

GFSI at 20 YEARS: Time for a Reboot?

By Karil Kochenderfer
No Comments
Karil Kochenderfer, LINKAGES

The marketplace has experienced dramatic changes that were barely on the horizon 20 years ago—by that, I mean mobile phones, Instagram, Facebook, climate change, consumer transparency, globalization, novel new products delivered to your doorstep and now COVID-19, too.

I write from a perspective of both pride and concern. I had the privilege of representing GFSI in North America and helping the organization expand beyond Europe as new food safety laws were implemented in both the United States and Canada.

Questionable Utility of Multiple, Redundant and Costly Certifications

However, I also sympathized with small and medium food companies that struggled with minimal resources and food safety expertise to understand GFSI and then to become certified not once, but multiple times for multiple customers. GFSI’s mantra, “Once Certified, Accepted Everywhere,” was far from their GFSI reality…or, frankly, the reality of many food companies. My concern was not insignificant. The food industry is populated by a majority of small businesses, each seeking that one big break that could possibly, maybe open up access to retail shelves. Their confusion about being audited and certified to one standard was significant. Certification to multiple and redundant standards presented a daunting and costly endeavor for these start-ups. I heard their anxiety in their voices as I served as GFSI’s 1.800 “customer service rep” in North America for years.

Karil Kochenderfer will present “GFSI at 20 Years: Time for a Reboot?” during the 2020 Food Safety Consortium Virtual Conference Series | Her session takes place on December 17Transparency

In the 20 years since GFSI was established, the world has become much more transparent. Today, entire industries operate on open, international, consensus-based ISO management standards in far bigger and more complex sectors than the food sector (e.g., the automotive, airline and medical device sectors). And, in the 20 years since GFSI was established, an ISO food safety management system standard has been developed that is now used widely throughout the world with more than 36,000 certifications (i.e., ISO 22000).

Auditing and certifying a facility to a single, international, public standard would enhance GFSI transparency. It also would help to hurdle government concerns related to the lack of public input into the development of private standards, enabling private certifications like GFSI to be used efficiently as a compliance tool—a benefit to both government and food interests and to consumer health, safety and trade.

New Technologies

Many new technologies, such blockchain, artificial intelligence, sensors and the Internet of Things are being heralded widely now as well, particularly for businesses with complex supply-chains like those in like the fast-moving food and retail sectors. The benefits of these technologies are predicated on the use of a common digital language…or standard. Multiple and diverse standards, like GFSI, complicate the use of these new technologies, which is why FDA is examining the harmonizing role of standards and data management in its proposed New Era of Smarter Food Safety.

Sustainable Development

Today, food safety often is managed in tandem with other corporate environment, health and safety programs. The Consumer Goods Forum, which oversees GFSI, should take a similar approach and merge GFSI with its sustainability, and health and wellness programs to help CGF members meet their existing commitments to the United Nations’ Sustainable Development Goals (SDGs) and to encourage others to do the same. Here, once again, adoption of a single, transparent ISO standard can help. Adoption of ISO 22000 as the single and foundational standard for GFSI makes it easy to layer on and comply with other ISO standards—for example, for the environment (ISO 14000), worker protection (ISO 45001), energy efficiency (ISO 50001) and information/data security (ISO 27001)— and to simultaneously meet multiple SDGs.

Globalization

As I write, the COVID pandemic rages. It may re-align global supply chains and set back global trade temporarily, but the unprecedented rise in consumer incomes and corresponding decrease in poverty around the world attests to the importance of the global trade rules established by the World Trade Organization (WTO). Among these rules is a directive to governments (and businesses) to use common standards to facilitate trade, which uniquely recognizes ISO standards as well as those of Codex and OIE. When trade disputes arise, food interests that use ISO 22000 are hands-down winners, no questions asked. So, why use many and conflicting private standards?

Supply Chain Efficiency

Finally, ISO 22005, part of the ISO 22000 family of food management standards, also is aligned with GS1 Standards for supply-chain management, used throughout the food and retail sectors in North America and globally to share information between customers and suppliers. GS1 is most well known for being the administrators of the familiar U.P.C. barcode. The barcode and other “data carriers” provide visibility into the movement of products as well as information about select attributes about those products—including whether they have been certified under GFSI. Both GS1 and ISO GS1 standards are foundational to the new technologies that are being adopted in the fast-moving food, consumer products, healthcare and retail sectors both in the United States and globally. That alignment puts a spotlight on safety, sustainability, mobility, efficiency and so much more.

Focus Less on the Change, More on the Outcome

My proposal will surely set tongues in motion. Proposals to switch things up generally do. Disruption has become the norm, however, and food businesses are prized for their agility and responsiveness to the endless changes in today’s fast-moving marketplace. Still, ISO and Codex standards already are embedded in the GFSI benchmark so what I’m proposing should not be so disruptive and no one scheme or CPO should benefit disproportionately. And, less differentiation in the standard of industry performance will compel scheme or certification owners to shift their focus away from compliance with their standards and audit checklists to working with customers to truly enhance and establish “food safety-oriented cultures.” If they do, all of us emerge as winners.

The New Normal?

Around us new food businesses are emerging just as old businesses reinvent theirs. Trucks now operate as restaurants and athletes deliver dinner on bicycles. For a long time, we’ve operated businesses based on 20th century models that don’t resonate in the 21st century world. Are we at an inflection point, with both small and large businesses paying for costly and inefficient practices that no longer apply, and is it time for GFSI to change?

I welcome your thoughts. I truly do. Better, let’s discuss on a webinar or video call of your choosing. I look forward to connecting.

Submit questions you want Karil to answer during her session at the 2020 Food Safety Consortium Virtual Conference Series in the Comments section below.

Daniel Erickson, ProcessPro
FST Soapbox

Recall Risk Reduction: An ERP’s Role

By Daniel Erickson
No Comments
Daniel Erickson, ProcessPro

Consumer safety is of paramount importance and product recalls are a necessary means to this end. Product recalls are a serious, complex, and costly issue affecting the food and beverage industry in the United States. The FDA estimates that there are around 48 million cases of foodborne illness each year—causing one in six Americans to get sick from contaminated food. In addition to affecting public health, recalls have a dramatic effect on manufacturers by creating economic problems, damaging a company’s reputation, and imposing potential legal penalties and liabilities. In the search for a business management solution to better prepare themselves for and reduce the risk of recalls in their operations, many food manufacturers have discovered that technology, specifically ERP software, is key to lowering the risk of food and beverage product recalls.

An industry-specific ERP solution is a centralized business system with key industry features providing a system of record-keeping, with the tools to support the preparation and reduction of recall risks. While a manufacturer is ultimately responsible for a product recall, an ERP solution is essential in supporting and championing overall recall readiness and reduction. With the streamlined and automated inventory, manufacturing, and quality control processes managed within the software, critical steps and data that assist in recall mitigation are documented—including supplier verification records, audit logs, receipt records, quality testing, lot tracking, and shipment logs. The key to prevention of a product recall is preparation, which can be handled efficiently through an ERP’s functionality specifically in the following areas.

Supplier Management

An ERP facilitates best practices for supplier management and risk assessment within the solution to assure the acquisition of quality raw materials from trusted vendors. Its role is to maintain an approved supplier list for each product ingredient, documenting detailed supplier information, quality control test results, and risk level to ensure in-house and customer-specific standards are met. For approved or activated suppliers, information regarding materials that can be purchased through the vendor, applicable certifications, quality control results, and other pertinent supplier information is stored within the centralized data system of the ERP. A risk assessment for each vendor is also documented to ensure that any potential inherent risk(s) from vendor-issued recalls and to finished goods are limited.

In addition to activated suppliers, an ERP solution also assigns and manages qualified alternates to provide vetted selections should a primary supplier’s materials become unavailable. This positions a company well in the supply chain, as the investigative work has already been conducted on other suppliers, limiting the need and risk associated with onboarding an unknown supplier in a moment of crisis. Vendors are recorded within the system and ranked in order of preference and/or risk level so that they can be identified and put into use quickly if a supplier becomes unavailable—providing the preparation and leverage that companies need to mitigate the risk to safety in the supply chain. In a product recall situation, when a supplier notifies a customer of a contaminated ingredient, the supplier management feature within the ERP solution provides for a qualified replacement vendor that can fulfill the needed raw material quickly and efficiently.

Inventory Control

An ERP system offers end-to-end traceability, maintaining a comprehensive record that tracks raw ingredients, work-in-progress, and final products throughout the supply chain using barcode scanning to link product and lot information to batch tickets, QC testing results, shipping documents, and labels. This full forward and backward lot traceability is necessary to provide a documented audit trail imperative to locating raw materials or finished goods quickly within the initial 24-hour time period of a product recall. With full manufacturing, inventory, and reporting integrations, the ERP supports sound manufacturing practices that assist with recall preparedness – maintaining current Good Manufacturing Practices (cGMP), FDA reporting, GFSI compliance, and other industry-specific regulations to provide a documented audit trail with the ability to adapt as compliance requirements change.

Managing protocols to ensure the quality of inbound and outbound materials is essential in minimizing recall risk across the entire supply chain—from raw materials to the delivered final product. With an industry-specific ERP solution, formulas, recipes and instructions are maintained, scaled and verified to ensure consistency of products within the manufacturing process. This instills preventative measures throughout the production cycle in the form of process steps and quality control test specifications to bolster safety and quality. Quality features such as quarantine status and other status capabilities permit the isolating, removing and disposing of raw ingredients and finished goods that fail to meet quality control standards—triggering an alert to notify the purchasing department to investigate the issue. Having the ability to remove ingredients and finished goods from inventory or production prevents contaminated items from reaching store shelves and consumers, which reduces overall recall risk.

Inventory control practices are an important part of the functionality within an ERP solution that help to reduce overall recall risk. This includes managing and reporting of shelf life and expiration dates to maintain precise and lean control of inventory and reduce variances. Automated inventory transactions with the use of an ERP’s warehouse management solution (WMS) follow industry best practices and improve efficiency to ensure the accuracy of shipments, transfers, and material returns. This real-time visibility allows for the maintenance of FIFO inventory practices necessary to reduce the risk of spoilage.

One of the leading causes of contamination for food and beverage manufacturers that results in a recall event is a lack of allergen control throughout the supply chain and production process. An ERP system helps to track, manage and record the handling, storage and batch steps of raw materials from farm-to-fork. This includes stringent sanitary practices, lot tracking, raw material segregation and process controls to avoid allergen contamination or cross-contamination. Accurate product labeling is also a significant factor in reducing risk and an automated system that generates nutritional and product package labels plays a key role in a company’s recall prevention. To meet the needs of consumers and regulators, an ERP solution automates label creation to include accurate ingredient and allergen statements, nutrient analysis, expiration dates, lot and batch numbers, and regulatory specifications. The labeling history documented in the software allows products to be identified and located quickly in the event of a recall.

Reporting

Utilizing the recall functionality in the ERP solution allows companies to plan and test their recall process in advance. Performing mock recalls permits regular measurement and improvement of procedures to ensure rapid, accurate, and thorough responses by all company stakeholders in the event of a recall. A successful simulated exercise identifies 100% of recalled ingredients/products and notifies appropriate entities in a timely manner. Evaluation and documentation of mock recall exercises help expose inefficiencies, process gaps and procedural adjustments, which are designed to improve recall readiness and minimize consumer exposure to potentially dangerous contaminants.

As proof or documentation of adherence to specific processes, reporting is essential to demonstrate that these processes have been completed—without it, an integral component is missing. Across the supply chain and throughout the manufacturing process, documentation and reporting accentuate steps that have been taken to prepare and reduce recall risk. Risk-based assessments in supplier management, lot traceability reports, and mock recall reporting all provide a starting point of analysis to allow for adjustments to be made across the business. In a recall situation, the system is able to create lot tracking reports that encompass raw ingredients through shipped finished goods. These reports can be produced in minutes, rather than the hours it takes if data is stored within separate software programs.

Due to the amount of time and money that food and beverage companies invest in getting their products to market, it is imperative that preventative measures are taken in order to avoid a product recall. Forward-thinking manufacturers can help prepare for and reduce recall risks by utilizing several important features in ERP software—including supplier management, inventory control, and reporting. Using the tools at their disposal, a company can mitigate liabilities and protect their brand to turn a potential crisis into a future filled with opportunities.

Raj Rajagopal, 3M Food Safety
In the Food Lab

Pathogen Detection Guidance in 2020

By Raj Rajagopal
No Comments
Raj Rajagopal, 3M Food Safety

Food production managers have a critical role in ensuring that the products they make are safe and uncontaminated with dangerous pathogens. Health and wellness are in sharp focus for consumers in every aspect of their lives right now, and food safety is no exception. As food safety becomes a continually greater focus for consumers and regulators, the technologies used to monitor for and detect pathogens in a production plant have become more advanced.

It’s no secret that pathogen testing is performed for numerous reasons: To confirm the adequacy of processing control and to ensure foods and beverages have been properly stored or cooked, to name some. Accomplishing these objectives can be very different, and depending on their situations, processors rely on different tools to provide varying degrees of testing simplicity, speed, cost, efficiency and accuracy. It’s common today to leverage multiple pathogen diagnostics, ranging from traditional culture-based methods to molecular technologies.

And unfortunately, pathogen detection is more than just subjecting finished products to examination. It’s become increasingly clear to the industry that the environment in which food is processed can cross-contaminate products, requiring food manufacturers to be ever-vigilant in cleaning, sanitizing, sampling and testing their sites.

For these reasons and others, it’s important to have an understanding and appreciation for the newer tests and techniques used in the fight against deadly pathogens, and where and how they might be fit for purpose throughout the operation. This article sheds light on the key features of one fast-growing DNA-based technology that detects pathogens and explains how culture methods for index and indicator organisms continue to play crucial roles in executing broad-based pathogen management programs.

LAMP’s Emergence in Molecular Pathogen Detection

Molecular pathogen detection has been a staple technology for food producers since the adoption of polymerase chain reaction (PCR) tests decades ago. However, the USDA FSIS revised its Microbiology Laboratory Guidebook, the official guide to the preferred methods the agency uses when testing samples collected from audits and inspections, last year to include new technologies that utilize loop-mediated isothermal amplification (LAMP) methods for Salmonella and Listeria detection.

LAMP methods differ from traditional PCR-based testing methods in four noteworthy ways.

First, LAMP eliminates the need for thermal cycling. Fundamentally, PCR tests require thermocyclers with the ability to alter the temperature of a sample to facilitate the PCR. The thermocyclers used for real-time PCR tests that allow detection in closed tubes can be expensive and include multiple moving parts that require regular maintenance and calibration. For every food, beverage or environmental surface sample tested, PCR systems will undergo multiple cycles of heating up to 95oC to break open DNA strands and cooling down to 60oC to extend the new DNA chain in every cycle. All of these temperature variations generally require more run time and the enzyme, Taq polymerase, used in PCR can be subjected to interferences from other inhibiting substances that are native to a sample and co-extracted with the DNA.

LAMP amplifies DNA isothermally at a steady and stable temperature range—right around 60oC. The Bst polymerase allows continuous amplification and better tolerates the sample matrix inhibitors known to trip up PCR. The detection schemes used for LAMP detection frees LAMP’s instrumentation from the constraints of numerous moving pieces.

Secondly, it doubles the number of DNA primers. Traditional PCR tests recognize two separate regions of the target genetic material. They rely on two primers to anneal to the subject’s separated DNA strands and copy and amplify that target DNA.

By contrast, LAMP technology uses four to six primers, which can recognize six to eight distinct regions from the sample’s DNA. These primers and polymerase used not only cause the DNA strand to displace, they actually loop the end of the strands together before initiating amplification cycling. This unique looped structure both accelerates the reaction and increases test result sensitivity by allowing for an exponential accumulation of target DNA.

Third of all, it removes steps from the workflow. Before any genetic amplification can happen, technicians must enrich their samples to deliberately grow microorganisms to detectable levels. Technicians using PCR tests have to pre-dispense lysis buffers or reagent mixes and take other careful actions to extract and purify their DNA samples.

Commercialized LAMP assay kits, on the other hand, offer more of a ready-to-use approach as they offer ready to use lysis buffer and simplified workflow to prepare DNA samples. By only requiring two transfer steps, it can significantly reduces the risk of false negatives caused by erroneous laboratory preparation.

Finally, it simplifies multiple test protocols into one. Food safety lab professionals using PCR technology have historically been required to perform different test protocols for each individual pathogen, whether that be Salmonella, Listeria, E. coli O157:H7 or other. Not surprisingly, this can increase the chances of error. Oftentimes, labs are resource-challenged and pressure-packed environments. Having to keep multiple testing steps straight all of the time has proven to be a recipe for trouble.

LAMP brings the benefit of a single assay protocol for testing all pathogens, enabling technicians to use the same protocol for all pathogen tests. This streamlined workflow involving minimal steps simplifies the process and reduces risk of human-caused error.

Index and Indicator Testing

LAMP technology has streamlined and advanced pathogen detection, but it’s impractical and unfeasible for producers to molecularly test every single product they produce and every nook and cranny in their production environments. Here is where an increasing number of companies are utilizing index and indicator tests as part of more comprehensive pathogen environmental programs. Rather than testing for specific pathogenic organisms, these tools give a microbiological warning sign that conditions may be breeding undesirable food safety or quality outcomes.

Index tests are culture-based tests that detect microorganisms whose presence (or detection above a threshold) suggest an increased risk for the presence of an ecologically similar pathogen. Listeria spp. Is the best-known index organism, as its presence can also mark the presence of deadly pathogen Listeria monocytogenes. However, there is considerable skepticism among many in the research community if there are any organisms outside of Listeria spp. that can be given this classification.

Indicator tests, on the other hand, detect the presence of organisms reflecting the general microbiological condition of a food or the environment. The presence of indicator organisms can not provide any information on the potential presence or absence of a specific pathogen or an assessment of potential public health risk, but their levels above acceptable limits can indicate insufficient cleaning and sanitation or operating conditions.

Should indicator test results exceed the established control limits, facilities are expected to take appropriate corrective action and to document the actions taken and results obtained. Utilizing cost-effective, fast indicator tests as benchmark to catch and identify problem areas can suggest that more precise, molecular methods need to be used to verify that the products are uncontaminated.

Process Matters

As discussed, technology plays a large role in pathogen detection, and advances like LAMP molecular detection methods combined with strategic use of index and indicator tests can provide food producers with powerful tools to safeguard their consumers from foodborne illnesses. However, whether a producer is testing environmental samples, ingredients or finished product, a test is only as useful as the comprehensive pathogen management plan around it.

The entire food industry is striving to meet the highest safety standards and the best course of action is to adopt a solution that combines the best technologies available with best practices in terms of processes as well –from sample collection and preparation to monitoring and detection.

Megan Nichols
FST Soapbox

Machine Vision Training Tips to Improve Food Inspections

By Megan Ray Nichols
1 Comment
Megan Nichols

As machines become more intelligent, every industry on earth will find abundant new applications and ways to benefit. For the food industry, which has an incredible number of moving parts and is especially risk-averse, machine vision and machine learning are especially valuable additions to the supply chain.

The following is a look at what machine vision is, how it can play a role in manufacturing and distributing foods and beverages, and how employers can train workers to get the most out of this exciting technology.

What Is Machine Vision?

Machine vision isn’t a brand-new concept. Cameras and barcode readers with machine vision have long been capable of reading barcodes and QR codes and verifying that products have correct labels. Modern machine vision takes the concept to new levels of usefulness.

Barcodes and product identifiers have a limited set of known configurations, which makes it relatively straightforward to program an automated inspection station to recognize, sort or reject products as necessary. Instead, true machine vision means handlers don’t have to account for every potential eventuality. Machine vision instead learns over time, based on known parameters, to differentiate between degrees of product damage.

Consider the problem of appraising an apple for its salability. Is it bruised or discolored? Machine vision recognizes that no two bruises look precisely alike. There’s also the matter of identifying different degrees of packaging damage. To tackle these problems, it’s not possible to program machine vision to recognize a fixed set of visual clues. Instead, its programming must interpret its surroundings and make a judgment about what it sees.

Apples, machine vision
On an apple, no two bruises are alike. Machine vision technology can help. Photo credit: Pexels.

The neural networks that power machine vision have a wide range of applications, including improving pathfinding abilities for robots. In this article, I’ll focus on how to leverage machine vision to improve the quality of edible products and the profitability of the food and beverage industry.

Applications for Machine Vision in the Food Industry

There are lots of ways to apply machine vision to a food processing environment, with new variations on the technology cropping up regularly. The following is a rundown on how different kinds of machine vision systems serve different functions in the food and beverage sector.

1. Frame Grabbing and 3-D Machine Vision
Machine vision systems require optimal lighting to carry out successful inspections. If part of the scanning environment lies in shadow, undesirable products might find their way onto shelves and into customers’ homes.

Food products sometimes have unique needs when it comes to carrying out visual inspections. It’s difficult or impossible for fallible human eyeballs to perform detailed scans of thousands of peas or nuts as they pass over a conveyor belt. 3-D machine vision offers a tool called “frame grabbing,” which takes stills of — potentially — tens of thousands of tiny, moving products at once to find flaws and perform sorting.

2. Automated Sorting for Large Product Batches
Machine vision inspection systems can easily become part of a much larger automation effort. Automation is a welcome addition to the food and beverage sector, translating into improved worker safety and efficiency and better quality control across the enterprise.

Inspection stations with machine vision cameras can scan single products or whole batches of products to detect flaws. But physically separating these products must be just as efficient a process as identifying them. For this reason, machine vision is an ideal companion to compressed air systems and others, which can carefully blow away and remove even a single grain of rice from a larger batch in preparation.

3. Near-Infrared Cameras
Machine vision takes many forms, including barcode and QR code readers. A newer technology, called near-infrared (NIR) cameras, is already substantially improving the usefulness and capabilities of machine vision.

Remember that bruised apple? Sometimes physical damage to fruits and vegetables doesn’t immediately appear on the outside. NIR technology expands the light spectrum cameras can observe, giving them the ability to detect interior damage before it shows up on the exterior. It represents a distinct advantage over previous-generation technology and human inspectors, both of which can leave flaws undiscovered.

Tips on Training Workers to Use Machine Vision

Implementing machine vision into a productive environment delivers major benefits, but it also comes with a potentially disruptive learning curve. The following are some ideas on how to navigate it.

1. Take Advantage of Third-Party Training Courses
Don’t expect employees to hit the ground running with machine vision if they’re not familiar with the fundamentals of how it works. Google has a crash course on machine learning, and Amazon offers a curriculum as well to help companies get their employees up to speed on the technology and how to use it.

2. Get the Lighting Right
Having the appropriate intensity of light shining on the food product is essential for the machine vision cameras to get a clear photo or video. The most common types of lighting for machine vision are quartz halogen, LEDs, metal halide and xenon lights. Metal halide and xenon are better for larger-scale operations because of their brightness.

Train employees to check the amount and positioning of the lighting before each inspection station starts up for the day, so that no shadows obscure products from view.

3. Single Out Promising Subject Matter Leaders
Companies today don’t seem to have much confidence in how well they’re preparing their workforce for tomorrow, including future innovations. According to Deloitte, just 47% of companies in the world believe they’re doing enough to train their employees on the technologies and opportunities of Industry 4.0.

Machine vision does not involve buying a camera or two, setting them up, then slapping the “autopilot” button. As products turn over, and manufacturing and distribution environments change and grow over time, machine vision algorithms require re-training, and you might need to redesign the lighting setup.

Employers should find individuals from their ranks who show interest and aptitude in this technology and then invest in them as subject matter experts and process owners. Even if an outside vendor is the one providing libraries of algorithms and ultimately coming up with machine vision designs, every company needs a knowledgeable liaison who can align company needs with the products on the market.

Machine Vision Is the Future of Food Inspections

The market for machine vision technology is likely to reach $30.8 in value by 2021, according to BCC Research.

It is important to remember that neither machine learning nor machine vision are about creating hardware that thinks and sees like humans do. With the right approach, these systems can roundly outperform human employees.

But first, companies need to recognize the opportunities. Then, they must match the available products to their unsolved problems and make sure their culture supports ongoing learning and the discovery of new aptitudes. Machine vision might be superior to human eyesight, but it uses decidedly human judgments as it goes about its work.