Tag Archives: exposure

magnifying glass

Surveying the Phthalate Litigation Risk to Food Companies

By Kara McCall, Stephanie Stern
1 Comment
magnifying glass

Boxed macaroni and cheese—comforting, easy, and, according to a 2017 article by The New York Times, containing “high concentrations” of “[p]otentially harmful chemicals.” Roni Caryn Rabin, The Chemicals in Your Mac and Cheese, N.Y. TIMES, June 12, 2017. Those “chemicals” referenced by the Times are phthalates—versatile organic compounds that have been the focus of increased media, advocacy, and regulatory scrutiny. But what are phthalates and what is the litigation risk to food companies who make products that contain trace amounts of this material?

Background

Phthalates are a class of organic compounds that are commonly used to soften and add flexibility to plastic.1 Ninety percent of phthalate production is used to plasticize polyvinyl chloride (PVC).2 Di-(2-ethylhexl) phthalate (DEHP) is the most commonly used phthalate plasticizer for PVC.3 Due to the prevalence of plastics in the modern world, phthalates are everywhere—from food packaging to shower curtains to gel capsules. Consequently, almost everyone is exposed to phthalates almost all of the time and most people have some level of phthalates in their system.4

Recently, various epidemiological studies have purported to associate phthalates with a range of different injuries, from postpartum depression to obesity to cancer. However, as the Agency for Toxic Substances and Disease Registry (ATSDR) stated in its 2019 toxicology profile for DEHP, these epidemiology studies are flawed because, inter alia, they often rely on spot urine samples to assess exposure, which does not provide long-term exposure estimates or consider routes of exposure.5 To date, claims regarding the effects of low-level phthalate exposure on humans are not supported by human toxicology studies. Instead, phthalate toxicology has only been studied in animals, and some phthalates tested in these animal studies have demonstrated no appreciable toxicity. Two types of phthalates—DBP and DEHP—are purported to be endocrine disrupting (i.e., affecting developmental and reproductive outcomes) in laboratory animals, but only when the phthalates are administered at doses much higher than those experienced by humans.6 Indeed, there is no causal evidence linking any injuries to the low-level phthalate exposure that humans generally experience. Nonetheless, advocacy and government groups have extrapolated from these animal studies to conclude that DEHP may possibly adversely affect human reproduction or development if exposures are sufficiently high.7 Indeed, in the past two decades, a number of regulatory authorities began taking steps to regulate certain phthalates. Most notably:

  • In 2005, the European Commission identified DBP, DEHP, and BBP as reproductive toxicants (Directive 2005/84/EC), and the European Union banned the use of these phthalates as ingredients in cosmetics (Directive 2005/90/EC).
  • In 2008, Congress banned the use of DBP, DEHP, and BBP in children’s toys at concentrations higher than 0.1%. See 15 U.S.C. § 2057c.
  • The EU added four phthalates (BBP, DEHP, DBP, and DIBP) to the EU’s list of Substances of Very High Concern (SVHCs) and, subsequently, to its Authorization List, which lists substances that cannot be placed on the market or used after a given date, unless authorization is granted for specific uses. BBP, DEHP, DBP, and DIBP were banned as of February 21, 2015, except for the use of these phthalates in the packaging of medicinal products.
  • In 2012, the FDA issued a statement discouraging the use of DBP and DEHP in drugs and biologic products. At the time, the agency said that these phthalates could have negative effects on human endocrine systems and potentially cause reproductive and developmental problems.8

More recently, phthalate exposure through food has become a trending topic among consumer advocates. Phthalates are not used in food, but can migrate into food through phthalates-containing materials during food processing, storing, transportation, and preparation. Certain studies report that ingestion of food accounts for the predominant source of phthalate exposure in adults and children. However, in assessing DEHP, the ATSDR noted that the current literature on “contamination of foodstuffs comes from outside the United States or does not reflect typical exposures of U.S. consumers; therefore, it is uncertain whether and for which products this information can be used in U.S.-centered exposure and risk calculations.”9 Further, the concentration of phthalates found in food are very low-level—multiples lower than the doses used in animal toxicology studies.10

In 2017, a study published on the advocacy site “kleanupkraft.org” stated that phthalates were detected in 29 of 30 macaroni and cheese boxes tested.11 The study notes that “DEHP was found most often in the highest amounts.” Notably, however, the “amounts” are provided without any context, likely because there is no universally accepted threshold of unsafe phthalate consumption. Thus, although the boxed macaroni and cheese study found “that DEHP, DEP, DIBP, and DBP were frequently detected in the cheese items tested,” and “[t]he average DEHP concentration was 25 times higher than DBP, and five times higher than DEP,” none of this explains whether these numbers are uniquely high and/or dangerous to humans. Meanwhile, on December 10, 2019, the European Food Safety Authority announced an updated risk assessment of DBP, BBP, DEHP, DINP, and DIDP, and found that current exposure to these phthalates from food is not of concern for public health.12

Phthalate Litigation

For years, phthalates in food have been targeted by environmental groups seeking to eliminate use of phthalates in food packaging and handling equipment. Most recently, several lawsuits were filed against boxed macaroni and cheese manufacturers alleging misrepresentation and false advertising due to their undisclosed alleged phthalate contamination. See, e.g., McCarthy, et al. v. Annie’s Homegrown, Inc., Case No. 21-cv-02415 (N.D. Cal. Apr. 2, 2021). Perhaps acknowledging that the amounts contained in the food packages have not been shown to present any danger, these claims are being pursued as consumer fraud claims based on failure to identify phthalates as an ingredient, rather than as personal injury claims.

Besides this recent litigation, however, there has been a notable dearth of phthalate litigation. This is likely due to several factors: First, in general, courts have rejected false claim lawsuits involving trace amounts of a contaminant chemical. See, e.g., Tran v. Sioux Honey Ass’n, Coop., 471 F. Supp. 3d 1019, 1025 (C.D. Cal. 2020) (collecting cases). For example, in Axon v. Citrus World, Inc., 354 F. Supp. 3d 170 (E.D.N.Y. 2018), the Court dismissed plaintiff’s claim that the use of the word “natural” constituted false advertising because the product contained trace amounts of weed killer. Id. at 182–84. The Court based this dismissal, in part, on the fact that the trace amounts of the commonly used pesticide was “not an ‘ingredient’ added to defendant’s products; rather, it is a substance introduced through the growing process.” Id. at 183. Similarly, phthalate is not an intentionally added ingredient—instead, it is a substance introduced, if at all, in trace amounts at various points throughout the manufacturing, handling, and packaging process. Second, proving that phthalate exposure from a particular food item caused an alleged injury would be extremely difficult. As mentioned above, there is no direct scientific evidence linking low-level phthalate exposure in humans to reproductive problems, cancer, or any other injury. Instead, plaintiffs must rely on animal studies where the subject, most commonly a rat, was exposed to enormous amounts of phthalates, many multiples of the amount that would be found in food. Moreover, the pervasive nature of phthalates makes it difficult to pinpoint any particular product as the source of the injury. If every food item a plaintiff ever consumed has been touched by a phthalate-containing material, it seems near impossible to prove that one particular food caused the alleged injury.

Although phthalate litigation has thus far proven unpopular, this landscape could change in the near future due to increased regulatory scrutiny. On December 20, 2019, the EPA stated that DEHP, DIBP, DBP, BBP, and dicyclohexyl phthalate were five of 20 high-priority chemicals undergoing risk evaluation pursuant to the Toxic Substances Control Act.13 The categorization of these phthalates as high-priority initiates a three- to three-and-a-half-year risk evaluation process, which concludes in a finding of whether the chemical substance presents an unreasonable risk of injury to health or the environment under the conditions of use.14 Although the same causation and product identification issues will remain, a revised risk analysis by the EPA may lead to increased phthalate litigation.

The views expressed in this article are exclusively those of the authors and do not necessarily reflect those of Sidley Austin LLP and its partners. This article has been prepared for informational purposes only and does not constitute legal advice. This information is not intended to create, and receipt of it does not constitute, a lawyer-client relationship. Readers should not act upon this without seeking advice from professional advisers.

References

  1. The most commonly used phthalates are di-(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP), benzyl butyl phthalate (BBP), di-n-butyl phthalate (DBP), and diethyl phthalate (DEP). See Angela Giuliani, et al., Critical Review of the Presence of Phthalates in Food and Evidence of Their Biological Impact, 17 INT. J. ENVIRON. RES. PUBLIC HEALTH 5655 (2020).
  2. COWI A/S, Data on Manufacture, Import, Export, Uses and Releases of Dibutyl Phthalate (DBP), As Well As Information on Potential Alternatives To Its Use 10-11 (Jan. 29, 2009). http://echa.europa.eu/documents/10162/
    13640/tech_rep_dbp_en.pdf (observing European Council for Plasticizers and Intermediates (ECPI)); Agency for Toxic Substances & Disease Registry, DI-n-BUTYL PHTHALATE, Production, Import/Export, Use, and Disposal (Jan. 3, 2013). http://www.atsdr.cdc.gov/ToxProfiles/tp135-c5.pdf; Peter M. Lorz, et al., Phthalic Acid and Derivatives. ULLMANN’S ENCYCLOPEDIA OF INDUSTRIAL CHEMISTRY (Wiley-VCH: Weinheim, 2000); Lowell Center for Sustainable Production, Phthalates and Their Alternatives: Health and Environmental Concerns 4 (Jan. 2011). https://www.sustainableproduction.org/downloads/PhthalateAlternatives-January2011.pdf.
  3.  Michael D. Shelby, NTP-CERHER Monograph on the Potential Human Reproductive and Developmental Effects of Di (2-Ethylhexyl) Phthalate (DEHP). National Toxicology Program, HHS. NIH Publication No. 06-4476 at 2–3 (Nov. 2006).
  4.  See Chris E. Talsness, et al., Components of Plastic: Experimental Studies in Animals and Relevance for Human Health, 364 PHIL. TRANS. R. SOC. B 2079, 2080 (2009). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2873015/pdf/rstb20080281.pdf.
  5. Agency for Toxic Substances & Disease Registry, Toxicology Profile for Di(2-Ethylhexyl) Phthalate (DEHP), Draft for Public Comment 3 (Dec. 2019). https://www.atsdr.cdc.gov/toxprofiles/tp9.pdf.
  6. FDA Guidance for Industry, Limiting the Use of Certain Phthalates as Excipients in CDER-Regulated Products. HHS, FDA. (Dec. 2012).
  7. NIH Publication No. 06-4476 at 2–3, supra n.3.
  8. FDA Guidance for Industry. Limiting the Use of Certain Phthalates as Excipients in CDER-Regulated Products. HHS, FDA. (Dec. 2012).
  9. Toxicology Profile for Di(2-Ethylhexyl) Phthalate (DEHP) at 362, supra n.5.
  10. Compare id. at 5 (measuring effects of phthalate oral exposure in mg/kg/day) with Samantha E. Serrano, et al., Phthalates and diet: a review of the food monitoring and epidemiology data, 13 ENVIRON. HEALTH 43 (2014) (measuring phthalate concentration in food in μg/kg).
  11. Testing Finds Industrial Chemical Phthalates in Cheese, Coalition for Safer Food Processing and Packaging. http://kleanupkraft.org/data-summary.pdf.
  12. FAQ: phthalates in plastic food contact materials. European Food Safety Authority. (Dec. 10, 2019).
  13. EPA Finalizes List of Next 20 Chemicals to Undergo Risk Evaluation under TSCA. U.S. Environmental Protection Agency. (Dec. 20, 2019).
  14.  Risk Evaluations for Existing Chemicals under TSCA. U.S. Environmental Protection Agency.
Julie Holt, Decernis
FST Soapbox

California Proposition 65: Every Company Should Know Their Risk

By Julie Holt
No Comments
Julie Holt, Decernis

Known officially as The California Safe Drinking Water and Toxic Enforcement Act of 1986, California Proposition 65 reaches far beyond state boundaries and has potential regulatory implications for almost any company that manufactures, imports, and / or sells products containing listed chemicals in the state. California Prop 65 prohibits the sale of a product in California that knowingly and intentionally exposes an individual to a California Office of Environmental Health Hazard Assessment (OEHHA) listed chemical without a specific stated warning. For many food and supplement companies, the risk of opportunistic litigation based on California Prop 65 drives the need to monitor updates, new amendments and enforcement of the law.

Prop 65 Background

California Proposition 65, also known by the shortened name Prop 65, is not a ban on products or ingredients. The law is intended to inform consumers in California about exposure to a list of chemicals exceeding a defined level in products for sale, including product packaging. The regulation mandates a warning label for exposure to chemicals at a level that could cause cancer, birth defects or other reproductive harm. Guidance for upper limits (“Safe Harbor Level”) on chemicals is based on expected daily exposure. If no Safe Harbor Level exists for a chemical, the product containing a listed chemical must include a warning, unless the exposure level can be proven to not pose a significant risk of causing harm.

With the size of the California economy and the interconnected U.S. supply chain, the state law effectively reaches other states and U.S. importers. More recently, the Prop 65 requirements impact online and catalog sales, which have increased significantly during the global pandemic.

Know Your Suppliers

All companies need to proactively evaluate and document Prop 65 risks. Enforcement occurs primarily through civil litigation, resulting in specialized legal firms profiting from a company’s ignorance of the law’s extent. Even the threat of publicity from a lawsuit can cause targeted companies to settle a case.
At each point of manufacturing and distribution—supplier, manufacturer, packager, importer or distributor—regulatory teams should ask about Prop 65 compliance. The main point of responsibility is at the manufacturer, but a retailer can also be obligated for introducing a chemical at point-of-sale.

What’s New with Prop 65

The OEHHA issues notices regarding amendments to the California Code of Regulations Title 27, Article 6, covering “Clear and Reasonable Warnings”. Recently the OEHHA requested public comments on proposed amendments that would modify the content and methods for providing “short-form” warnings. The short form was originally intended for products with restricted label space.

The proposed rule would modify the existing short-form warning provisions to:

  • Only allow use of the short-form warning on products with five square inches or less of label space.
  • Eliminate use of short-form warnings for products sold via the Internet and catalogs.
  • Clarify how short-form warnings can be used for food products.
  • Require the name of at least one chemical be included in the short-form warning.

Bottomline: Know Your Business and Risk

As an advisor with more than 20 years of regulatory compliance experience in food and food ingredients, my guidance for business best practice on Prop 65 is to be proactive, maintain supply chain knowledge, and understand risk. Regulatory or legal staff, or consultant teams specializing in Prop 65, should regularly monitor for additions to the chemical list and rulemaking changes to the far-reaching law.

OSHA

OSHA Fines Smithfield Foods, JBS for Failing to Protect Workers from COVID-19

By Food Safety Tech Staff
No Comments
OSHA

Last week OSHA cited Smithfield Packaged Meats in Sioux Falls, South Dakota for failing to protect its workers from COVID-19 exposure. The federal agency issued a fine of $13,494 and cited a violation of failing to provide a violation-free environment following an inspection. More than 1200 workers for Smithfield Foods have contracted COVID-19 and four have died since April. The company, which produces 5% of the nation’s pork, has been under investigation since the early spring for its workplace conditions and the large coronavirus outbreak among employees. It has continued to defend itself against “misinformation”, with President and CEO Kenneth Sullivan going as far as submitting a letter to Senators Elizabeth Warren and Cory Booker at the end of June. Smithfield has 15 business days to pay the fine or contest the citation—and the company will reportedly contest the fine, as a company spokesperson called it “wholly without merit”.

During the September 17 Episode of the 2020 Food Safety Consortium Virtual Conference Series, experts will discuss COVID-19, worker safety and managing quality in the new normal | Register NowOSHA also slapped meat packer JBS with a proposed fine of $15,615, also for a “violation of the general duty clause for failing to provide a workplace free from recognized hazards that can cause death or serious harm”. Nearly 300 workers have reportedly contracted COVID-19, and seven employees died. JBS also has 15 days to comply with or contest the fine, which a company spokesperson said is “entirely without merit” and that OSHA was trying to enforce a standard not even in existence in March.

“Contrary to the allegations in the citation, the Greeley facility is in full compliance with all recommended guidance and hazard abatements. The facility has been audited and reviewed by multiple health professionals and government experts, including the CDC, local and state health departments, third-party epidemiologists, and the Department of Labor, National Institute for Occupational Safety and Health, who twice visited the plant during the citation period, and issued favorable reports on April 20 and May 8,” according to a statement by a JBS spokesperson. “The Greeley facility has only had 14 confirmed positives in the past three and half months, representing 0.4% of our Greeley workforce, despite an ongoing community outbreak. The facility has not had a positive case in nearly seven weeks, despite more than 1,730 positives in the county and more than 33,300 positive cases in the state during the same time period.”

Meanwhile Kim Cordova, president of the union that represents JBS workers, stated that the company penalty is simply a drop in the bucket and not severe enough. “A $15,000 ‘penalty’ from OSHA is nothing to a large company like JBS. In fact, it only incentivizes the company to continue endangering its employees. The government has officially failed our members, the more than 3,000 workers at JBS Greeley, who have protected the food supply chain while our communities quarantined during the pandemic. It is immoral and unethical, but in the current Administration, unfortunately not illegal, that OSHA waited seven months to investigate the unsafe working conditions that led to this deadly outbreak. Because of this failure, JBS Greeley is the site of the most meat processing plant worker deaths in the nation due to Covid-19.”

Melanie Neumann, Neumann Risk Services
FST Soapbox

The COVID-19 Record Retention Conundrum

By Melanie J. Neumann
2 Comments
Melanie Neumann, Neumann Risk Services

During this global pandemic, the U.S. Equal Employment Opportunity Commission (EEOC) green-lighted employers to take temperatures checks of employees and to administer COVID-19 testing for workers prior to returning to work without running afoul of the Americans with Disabilities Act (ADA). This appears straight-forward upon first reading, however, several practical uncertainties about implementation, including confidentiality, discrimination, and how long to retain records remain.

As such, deciding whether to take temperatures and/or require COVID- 19 testing as a return to work strategy is more complicated than it may seem.

Temperature Screening & Testing Considerations

Temperature screening and COVID-19 mandatory testing are both permitted medical examinations during this pandemic but are otherwise prohibited during non-pandemic times. Before adopting, employers should understand the requirements impacting the records these tests generate, including the need to protect confidentiality and to retain records for longer than one may expect.

Temperature Screens
Under normal circumstances, temperature checks are considered a prohibited medical examination under the ADA. During a pandemic, however, the Equal Employment Opportunity Commission (“EEOC”) makes an exception, allowing employers to take temperatures/use temperature checks and exclude employees from the workplace should temperatures exceed public health recommendations. If employers keep records of temperatures, they must retain these records per applicable regulations. This is important because an “employee medical record” would likely result if employers take employees’ temperatures or collect temperature related records. As we will see below, there are regulatory requirements that require how we conduct these screens, and where and for how long we must retain them.

COVID-19 Testing

COVID-19 testing also constitutes a permissible medical exam under ADA during this pandemic, per the EEOC-issued guidance regarding mandatory employee testing.

For medical examinations to be allowed under the ADA, the test must be “job related and consistent with business necessity,” and employers must treat information as a confidential medical exam.

The initial guidance acknowledged that the spread of COVID-19 is a “direct threat,” hence meeting the requirement that a medical exam be “job related and consistent with business necessity” and that temperature screenings were therefore appropriate. For the same reasons, in updated guidance released at the end of April 2020, the EEOC expanded that guidance to clarify that employers may choose to administer COVID-19 testing to employees before they enter the workplace to determine if they have the virus for the same reasons.

When reading the EEOC’s language closely, the permission granted by EEOC appears to be for diagnostic tests, as the guidance states testing is to determine if employees have the virus before allowing employees to return to work. It is unclear whether antibody testing is included in the above analysis because antibody tests do not determine if someone is currently infected.

In addition, there are other considerations employers should assess before adopting a testing protocol. EEOC reminds employers that they must review the accuracy and efficacy of the selected test per FDA and CDC recommendations. Moreover, pragmatic considerations, such as how to maintain social distancing and employee privacy, determining who will perform the testing and at what the frequency, not to mention evaluating whether there is enough test capacity to perform employee-wide testing at a meaningful cadence should be evaluated.

Records Management & Retention

There is another often over-looked question: What do employers do with documented test records? This question applies whether the employer conducts the test, requires tests from employee’s healthcare providers to be off work to self-isolate, or as a return to work requirement.

It was clearly outlined above that temperature records and COVID-19 test records constitute employee medical records. Why is this important? Because there are specific requirements relating to employee medical records, including what appears to be a surprisingly long retention requirement.

Where to retain: An employer should store all medical information related to COVID-19 in existing medical files, separate from the employee’s personnel file, per the ADA, limiting access to this employee confidential information. This includes an employee’s statement that he has COVID-19 or suspects he/she has the disease, or the employer’s notes or other documentation from questioning an employee about symptoms.

How long to retain: That is the 30-year question. The Department of Labor’s Occupational Safety and Health Agency (OSHA) provides retention requirements for employee medical records in certain situations for a period of an employee’s employment plus 30 years.

While COVID-19 test results and temperature screening documentation are deemed medical examinations under the applicable regulations, are the documented results deemed medical records? We turn to applicable EEOC OSHA regulations in section 1910.1020 for answers.

OSHA Requirements

The OSHA general duty clause, section 5(a)(1) requires employers to furnish to each of its employees a workplace free from recognized hazards that are causing or likely to cause death or serious physical harm. COVID-19 appears to rise to this threat level. But is that fact alone dispositive to falling under the applicable OSHA retention requirements?

OSHA regulation section 1910.1020 requires employers to retain employee exposure or employee medical records relating to employee exposure to certain hazards. This section applies to each general industry, maritime and construction employer who makes, maintains, contracts for, or has access to employee exposure or medical records, or analyses thereof, pertaining to employees exposed to toxic substances or harmful physical agents (Emphasis added).

Is SARS-CoV-2, the virus that causes COVID-19, considered a “toxic substance or harmful physical agent?”

Most would quickly assume the answer is ‘yes’. But it may not be as clear as the black and white letter of the law would hope. Let’s review some key definitions in the applicable regulation to help shed more light on this question.

What are Toxic Substances or Harmful Physical Agents?

The record retention requirement pivots on the last phrase of 1910.1020, that is “…pertaining to employees exposed to toxic substances or harmful physical agents.”

Toxic substances or harmful physical agents are defined as follows;

  • 1910.1020(c)(13) “Toxic substance or harmful physical agent” means any chemical substance, biological agent (bacteria, virus, fungus, etc.), or physical stress (noise, heat, cold, vibration, repetitive motion, ionizing and non-ionizing radiation, hypo – or hyperbaric pressure, etc.) which:
    • 1910.1020(c)(13)(i) is listed in the latest printed edition of the National Institute for Occupational Safety and Health (NIOSH) Registry of Toxic Effects of Chemical Substances (RTECS) which is incorporated by reference as specified in Sec. 1910.6; or
    • 1910.1020(c)(13)(ii) has yielded positive evidence of an acute or chronic health hazard in testing conducted by, or known to, the employer; or
    • 1910.1020(c)(13)(iii) is the subject of a material safety data sheet kept by or known to the employer indicating that the material may pose a hazard to human health. (Emphasis added by author).

The use of “or” clarifies that only one of the criteria need to be met. Based on the above, while subsections (c)(13)(i) and (c)(13)(iii) do not appear relevant, subsection (c)(13)(ii) appears to apply as SARS-CoV-2 has shown to result in acute health hazard, resulting in the disease COVID-19. Whether there is a chronic health impact remains to be seen given the novelty of this virus. That said, acute health impact appears sufficient to determine SARS-CoV-2 as a “toxic substance or harmful physical agent” for purposes of this analysis.

This alone doesn’t automatically place an employer in a 30-plus year requirement to retain employee medical records. What constitutes an “employee medical record” and “employee exposure record” for purposes of this regulation must be further understood before determining appropriate retention.

What are Employee Medical Records and Employee Exposure Records?

“Employee medical records” are defined in section 1910.1020(c)(6), and means a record concerning the health status of an employee that is made or maintained by a physician, nurse or other healthcare personnel, or technician, including: Medical and employment questionnaires or histories, the results of medical exams, lab test results, medical opinions/doctor’s recommendations, first aid records, employee medical complaints, and descriptions of treatment or prescriptions.

Section 1910.1020(d)(1)(i) goes on to specifically prescribes a minimum of a 30-plus year retention period as follows: “The medical record for each employee shall be preserved and maintained for at least the duration of employment plus thirty (30) years.”

“Employee exposure records,” are defined in subsection 1910.1020(d)(1)(ii), as: “Each employee exposure record shall be preserved and maintained for at least thirty (30) years,…”. Some exceptions are listed in this subsection for records relating to health insurance claims, first aid records and records relating to employees working less than one year.

What Constitutes Employee Exposure?

One must also look at what “employee exposure” means in light of this regulatory requirement to determine applicability of the 30-plus year retention.

1910.1020(c)(8) defines “exposure” or “exposed” to mean that an employee is subjected to a toxic substance or harmful physical agent in the course of employment through any route of entry (inhalation, ingestion, skin contact or absorption, etc.), and includes past exposure and potential (e.g., accidental or possible) exposure, but does not include situations where the employer can demonstrate that the toxic substance or harmful physical agent is not used, handled, stored, generated, or present in the workplace in any manner different from typical non-occupational situations.

More Questions than Answers

This analysis may leave more questions than answers, as several questions remain after looking closely at the regulatory requirements. For example:

  • How can an employee prove that exposure to SARS-CoV-2 occurred in the course of employment?
  • Does the employee even have to? The regulation clearly states that it is the employer’s burden, in that the “employer demonstrate that a toxic substance or harmful physical agent was not present in the workplace in any manner different from typical, non-occupational situations”.
  • How can an “employer demonstrate” that the harmful physical agent was not present? In other words, how can employers demonstrate that its employees are at any greater exposure by coming to work than they are in their every day lives, like going to the grocery store?
  • How do employers prove absence? Is it even possible given several people are asymptomatic?
  • Does this analysis differ by food industry sectors? What about meat and poultry processors with known high rates of infection in their workplace? Would the analysis differ?

Conclusion

Short of additional guidance issued by Department of Labor’s OSHA, ultimately this will likely be decided by the courts when the first lawsuit on this topic arises, known as decision via case law. What do employers do in the interim while these shades of gray are not yet adjudicated? It is recommended to err on the side of caution. Find ways to adjust your company’s record retention procedures and systems to be able to accurately retain these records for the duration of your employee’s employment plus 30 years.

Resources

  1. OSHA Laws & Regulations. OSH Act of 1970. SEC 5. Duties. Retrieved from https://www.osha.gov/laws-regs/oshact/section5-duties
  2. OSHA Standards. Part 1910, Standard 1910.1020. Retrieved from https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.1020
  3. OSHA. Access to Medical and Exposure Records. (2001). U.S. Department of Labor, OSHA. Retrieved from https://www.osha.gov/Publications/pub3110text.html
  4.  U.S. Equal Employment Opportunity Commission. “What You Should Know About COVID-19 and the ADA, the Rehabilitation Act, and Other EEO Laws”. (Updated May 7, 2020). Retrieved from https://www.eeoc.gov/wysk/what-you-should-know-about-covid-19-and-ada-rehabilitation-act-and-other-eeo-laws. See A. 6 and B.1.
Coronavirus, COVID-19

Fourth USDA Food Safety Inspector, at Least 30 Meat Plant Workers Dead from COVID-19

By Food Safety Tech Staff
No Comments
Coronavirus, COVID-19

Last week another USDA food safety inspector died as a result of COVID-19. Time reported the unidentified inspector was located in Dodge City, Kansas, and cited a brief USDA statement: “USDA can confirm the passing of an employee. The safety and well being of our employees is our top priority. We thank those working on the front lines of our food supply chain for remaining on the job and for making sure the American people have access to safe food.”

Attend the webinar, “Is Your Plant COVID-19 Safe?” | May 27,2020 at 12 pm ET According to the report, at least 30 workers at meat plants have died of coronavirus, and a fourth USDA inspector as of May 14. More 100 USDA FSIS employees were self-quarantining as a result of exposure to COVID-19 and 171 field employees were diagnosed with the virus and did not report to work.

Worker safety at meat plants has been a concern for months, and the industry has been grappling with the threat of a meat shortage. On April 28, President Trump signed an executive order to keep meat and poultry processing facilities open during the COVID-19 crisis.

Angelica Grindle, DEKRA

Four Steps for Utilizing Behavioral Science to Control Exposure to COVID-19

By Angelica Grindle, Ph.D.
4 Comments
Angelica Grindle, DEKRA

Safety is defined as controlling exposure for self and others. Going into 2020, the food industry battled safety concerns such as slips and falls, knife cuts, soft-tissue injuries, etc. As an “essential industry”, food-related organizations now face a unique challenge in controlling exposure to COVID-19. Not only must they keep their facilities clean and employees safe, they must also ensure they do not create additional exposures for their suppliers or customers.

These challenges increase at a time when employees may be distracted by stress, financial uncertainties, job insecurity, and worry for themselves and their families. Additionally, facilities may be understaffed, employees may be doing tasks they do not normally do, and we have swelling populations working from home.

While there is much we cannot control with COVID-19, there are specific behaviors that will reduce the risk of viral exposure for ourselves, our co-workers, and our communities. Decades of research show the power of behavioral science in increasing the consistency of safe behaviors. The spread of COVID-19 serves as an important reminder of what food-related organizations can gain by incorporating a behavioral component into a comprehensive exposure-reduction process.

Whether you have an existing behavior based safety process or not, follow these four steps.

Step 1: Pinpoint Critical COVID-19 Exposure Reduction Behaviors

It is critical to clearly pinpoint the behaviors you want to see occurring at a high rate. In the food industry, an organization must control exposure both within their facilities as well as during interactions with suppliers and customers. Controlling exposure within facilities will typically include those behaviors recommended by the CDC such as:

  1. Maintain six feet of separation at all times possible.
  2. Avoid touching your eyes, nose and mouth with unwashed hands.
  3. Minimize personal interactions to reduce exposure to transmit or receive pathogens.
  4. Frequent 20-second hand washing with soap and warm water.
  5. Make hand disinfectant available.
  6. Use alternatives to shaking hands.
  7. Frequently clean and disinfect common areas, such as meeting rooms, bathrooms, doorknobs, countertops, railings, and light switches.
  8. Sneeze and/or cough into elbow or use a tissue and immediately discard.
  9. Conduct meetings via conferencing rather than in person.
  10.  If you are sick, stay home.
  11. If exposed to COVID-19, self-quarantine for precaution and protection of others.

Supplier/Customer exposure-reduction behaviors will vary depending upon your specific industry and may include pinpointing the critical behaviors for food preparation, loading dock delivery, customer home delivery, and customer pick up. When creating checklists to meet your unique exposures, be sure the behaviors you pinpoint are:

  • Measurable: The behavior can be counted or quantified.
  • Observable: The behavior can be seen or heard by an observer.
  • Reliable: Two or more people agree that they observed the same thing.
  • Active: If a dead man can do it, it is not behavior.
  • Influenceable: Under the control of the performer.

Once you have drafted your checklists, ask yourself, “If everyone in my facility did all of these behaviors all the time, would we be certain that we were controlling exposure for each other, our suppliers, and our customers?” If yes, test your checklists for ease of use and clarity.

Step 2: Develop Your Observation Process

To do this, you will want to ask yourself:

  • Who? Who will do observations? Can we leverage observer expertise from an existing process and have them focus on COVID-19 exposure reduction behaviors or should we create a new observer team?
  • Where? Which specific locations, job types, and/or tasks should be monitored?
  • When? When will observers conduct observations?
  • Data: How will you manage the data obtained during the observations so that it can be used to identify obstacles to safe performance? Can the checklist items be entered into an existing database or will we need to create something new?
  • Communication: What information needs to be communicated before we begin our COVID-19 Exposure Reduction process and over time? How will we communicate it?

Step 3: Conduct Your Observations and Provide Feedback

Starting the Observation
Your observers should explain that they are there to help reduce exposure to COVID-19 by providing feedback on performance.

Recording the Observation
Observers should note on the checklist which behaviors are occurring in a safe manner (protected) and which are increasing exposure to COVID-19 (exposed).

Provide Feedback
Feedback is given in the spirit of reducing exposure. It should be given as soon as possible after the observation to reinforce protected behaviors and give the person to opportunity to modify exposed behaviors.

Success Feedback
Success feedback helps reinforce the behaviors you want occurring consistently. Effective success feedback includes:

  • Context: The situation in which the behavior occurred.
  • Action: The specific behaviors observed which reduce exposure to COVID-19.
  • Result: The impact of those behaviors on themselves or others—in this case, reduced COVID-19 exposure for themselves, their families and community.

“I care about your safety and do not want to see you exposed to COVID-19. I saw you use hand sanitizer prior to putting on eye protection. By doing that, you reduced the likelihood of transferring anything that might have been on your hands to your face which keeps you safe from contracting COVID-19.”

Guidance Feedback

Guidance feedback is given for exposed behaviors to transform that behavior into a protected one. Effective guidance feedback includes Context, Action, Result, but also:

  • Alternative Action: The behavior that would have reduced their exposure to COVID-19.
  • Alternative Result: The impact of that alternative behavior, such as reduced COVID-19 exposure for themselves, their families, and community.

“I care about your safety and do not want to see you exposed to COVID-19. I saw that you touched your face while putting on eye protection. By doing that, you increased the likelihood of transferring anything on your hand to your face which increases your risk of exposure to COVID-19. What could you have done to reduce that exposure?”

When giving guidance feedback, it is important to have a meaningful conversation about what prevented them from doing the safe alternative. Note these obstacles on the checklist.

Step 4: Use Your Data to Remove Obstacles to Safe Practices.

Create a COVID-19 exposure reduction team to analyze observation data. This team will identify systemic or organizational obstacles to safe behavior and develop plans to remove those obstacles. This is critical! When an organization knows that many people are doing the same exposed behavior, it is imperative that they not blame the employees but instead analyze what is going on in the organization that may inadvertently be encouraging these at-risk behaviors.

For example, we know handwashing and/or sanitizing is an important COVID-19 exposure reduction behavior. However, if your employees do not have access to sinks or hand sanitizer, it is not possible for them to reduce their exposure.
Similarly, the CDC recommends that people who are sick not come to work. However, if your organization does not have an adequate sick leave policy, people will come to work sick and expose their co-workers, customers and suppliers to their illness.

Your COVID-19 exposure reduction team should develop plans to remove obstacles to safe behavior using the hierarchy of controls.

Conclusion

Consistently executing critical behaviors is key to reducing exposure to COVID-19 as flattening the curve is imperative in the worldwide fight against this pandemic. Regardless of the type of behavior or the outcome that the behavior impacts, Behavior based safety systems work by providing feedback during the observations and then using the information obtained during the feedback conversation to remove obstacles to safe practices.

By using these tips, you can add a proven and powerful tool to your arsenal in the fight against COVID-19 and help keep your employees, their families, and your community safe.