Tag Archives: facilities

Rick Farrell, Plant-Tours
FST Soapbox

Communication Tools Food Manufacturers Should Use

By Rick Farrell
No Comments
Rick Farrell, Plant-Tours

As the world continues to work toward economic recovery from the COVID-19 pandemic, food manufacturers have been investing in products and equipment that can enhance their growth. The following are some communication tools that companies should consider adding to their arsenal to improve collaboration between workers, prevent costly mistakes and save money in the long run.

1. Cloud-Hosted Technology

With remote work becoming common in companies across the world, cloud-based technology is turning out to be an invaluable asset. In 2021, we saw a rise in labeling software providers that offer ways for local labeling software to get access to data stored in the cloud. That made it easier to obtain variable data that needed to be put on label templates at print time.

Cloud-hosted technology allows food manufacturers to print the correct labels with the right data at the proper time, and in a simple and secure manner. As a result, they can avoid risky and potentially dangerous mistakes in labeling.

2. Smart Manufacturing

Smart manufacturing is a method for companies to use data to optimize every part of the production process. Radio frequency identification (RFID) and barcode technologies are two of the most popular data carriers used by IoT devices. Such device-to-software communication helps efficiently deliver data while avoiding time-consuming manual procedures that might result in more time loss or costs.

3. New On-Spot Communication Equipment

Many factories still use cheap and outdated headsets to communicate inside loud spaces and next to machinery. That often results in unclear messages. Failing to give and receive a clear message can have dire consequences, especially in terms of food safety. For this reason, food manufacturers should regularly update headsets and other devices they use to convey messages inside factories.

Enhance Communication in Loud Facilities

There are companies that offer a modern solution to the communication problems inside factories. The following are some quality options to offer to enhance communication in loud places.

1. Two-Way Communication Headsets

Originally intended for tour guides and their groups, two-way communication headsets can have various purposes inside food factories. For instance, you can use them to make effective communication easier among your workers in the noisy parts of your plant. Or perhaps, you can use them when you bring in visitors, business partners and potential investors for a quick and interactive look around. In any case, a wireless two-way headsets system makes talking and listening quick and simple, despite ambient sounds.

Furthermore, most headsets for factories and tours are often heavy and bulky, which is why they quickly start irritating those wearing them. On the other hand, these two-way headsets are designed to be comfortable, attractive and lightweight, making them ideal for wearing for a longer period of time. And they are aesthetically appealing for any audience, including top VIPs. Therefore, your team and your guests will be able to focus on the information and their tasks with complete comfort and without any distractions. As a result, you will notice increased comprehension of your message with outside visitors and a higher level of efficiency and safety in your production areas as well as food safety levels.

2. Staff Communication Systems

A multi-channel staff communication system is another good way to ensure food safety in your factory. One example is a system that has fifteen channels, making it great for multiple employees, workgroups, and team communications, and has a transmission range of up to half a mile. It also has a two-way radio technology with privacy and long talk settings that allow you to speak without being interrupted. These types of headsets are sometimes outfitted with non-porous vinyl, which means you can disinfect them after each use.

Such a communication system also comes in handy in factories that follow COVID-19 social distancing guidelines. Not only can your employees stay safe by putting more space between each other, but their communication will remain clear and easy. That way, they will be able to focus on production and other safety guidelines.

3. Wireless Systems

Clarity of message is crucial to maintaining the necessary level of food safety in your plant. Good quality wireless systems provide clear, crisp sound, effective transmitting range, and great battery time. Furthermore, they are easy to use, maintain and store. Wireless systems also feature audio guide systems that make sure you don’t have to be worried about machinery being too loud and interrupting important information.

Conclusion

The past two years have taught us that food manufacturers who want to thrive despite both predictable and unexpected challenges need to respond and adapt quickly. A huge part of that flexibility comes from the willingness to accept changes and new tools that modern technology brings. So, from cloud computing to barcodes and better headsets, any step you take to improve communication in your factory will undoubtedly pay off in the long run.

Emily Newton, Revolutionized Magazine
FST Soapbox

As Demand for Frozen Food Surges, Cold Storage Facilities Must Continue to Prioritize Safety

By Emily Newton
No Comments
Emily Newton, Revolutionized Magazine

Frozen food demand has skyrocketed. Although COVID-19 was a catalyst, there are many reasons why the trend will likely continue going forward. The pandemic forced people to eat at home more, which was largely responsible for the hike in food sales, especially frozen goods. Higher availability and food quality enhancements have also contributed to the spike, prompting suppliers to upgrade and expand cold storage warehouse solutions—whether that means creating extra space or utilizing existing space more effectively.

One of the more important changes, prioritized across the industry, is food preservation and safety. It has always been crucial that frozen food reaches its destination clean, healthy and still frozen — just as it went in. However, preliminary data from the CDC’s Foodborne Diseases Active Surveillance Network reveals that foodborne illnesses are up 15%. The primary or most common form is Salmonella, but COVID-19 has consumers and food safety professionals thinking more closely about cleanliness and proper sanitation.

It has pushed a tight focus on safety overall, with new innovations looking to enhance sector controls.

Necessity Breeds Creativity

Recent events have played a role in the industry’s continued focus on safety, but so have consumer demands, as more and more people look to frozen meals, foods and items as part of their normal routines.

People love convenience. But as the pandemic hit, and people were forced to isolate and remain home more, and restaurants and stores closed as a safety precaution. What was once about convenience became even more about safety. People still wanted freedom and ease of use, but it wasn’t a necessity nor was it a priority. Safety became even more important, which is why curbside pickup, deliveries and online transactions became so popular.

What does this have to do with frozen foods? Everything. Because of the pandemic, we’ve all had to eat at home more often, which means preparing meals, snacks and other items, with minimal exposure to the outside world or even local grocery stores. Naturally, consumers turned to easily cooked and pre-prepared frozen foods and meals.

Safety is the Priority

It makes sense that more frozen foods being purchased and consumed would shift priorities in the market. In a 2021 report released by Acosta, 14% of respondents say they consume frozen food nearly all the time. About 46% say they consume frozen foods often.

During the pandemic, the share of U.S. core frozen food consumers rose to 39% in 2020, up from 35% in 2018. “Core” consumers are defined as those who either eat frozen food daily or every few days.

What’s more, 42% of households that buy frozen foods did so online, up from 23% in 2018. And online frozen food sales jumped 75% last year, with the top purchases including frozen dinners and entrees, meat, poultry and even seafood.

Instead of restricting eating habits, consumers have turned to frozen foods to spruce up their meals, create new at-home dishes, and so on. It has boosted the demand for all kinds of frozen foods. It also necessitates the need for improved quality and safety. Implementing and maintaining strict controls as to how the food is transported, handled and preserved, can prevent contamination on all fronts.

With that rise in dependence, on frozen foods specifically, it is imperative that supply chain operators are delivering goods in a safe, healthy condition. Allowing foods to thaw during the transport process can introduce more problems than just contamination, especially with COVID remaining a major influence.

Imagine how bad it would be if the world experienced a major foodborne outbreak, right now. Most scenarios can be prevented through smarter food handling and better, data-driven controls.

New methods are being implemented to chill and prepare foods earlier on in the supply process. Many cold chain providers are adopting low-temperature chillers, like a food processing chiller, for example. They can freeze prepared foods quickly to ensure they are safe, disinfected and stored appropriately. From there, it’s just a matter of keeping them cold-locked during transport, storage, delivery, and beyond. That’s precisely where some of the latest innovations come into the picture.

Cold Storage Warehouse Innovations

To keep up with the demand and ensure frozen foods and other goods stay fresh in the cold chain, the industry is seeing rampant innovation, thanks to modern technologies. Think IoT-equipped fleets and storage systems to facilitate faster time to market and better transparency. Or, machine learning and AI-driven tools that help discern bottlenecks, locate faster and more effective solutions, and so on.

At the heart of it all is data, or rather digital content and information. The smarter and more contextually driven operations are, the better efficiency is all around. The following are some of the technologies making this happen:

  • IioT. The Industrial Internet of Things (IIoT) involves connected devices that continually collect, transmit and sometimes process performance and contextual data. In the cold chain, it can be used to track goods, prevent theft or fraud, monitor processes, discover bottlenecks and more.
  • Machine Learning. An offset of artificial intelligence, machine learning and neural networks can be used to ingest and analyze massive swarms of data in ways, and at speeds, that humans never could. What’s more, the technology can empower highly advanced automation systems to take action, respond, or act based on algorithmic rulesets.
  • Electric and autonomous vehicles. Revolutionizing logistics and conventional transport, electric and fully autonomous vehicles will significantly improve fleets with better safety, stop-free trips and more.
  • Smart shelving. Imagine Amazon’s Kivo bots, or something similar, implemented within cold storage warehouses. The entire system is designed to improve inventory management, order picking, and general logistics.
  • Co-bots. Beyond delivery, ground-based drones or advanced robots can be used to transport and move heavy goods, large or bulk orders, and organize the warehouse. When outfitted with the appropriate hardware, they can reach high shelves and storage areas or move through hazardous locations, improving safety for manual workers.

Innovation Brings New Challenges

Of course, there are the general challenges facing the cold storage industry, such as how to keep foods fresh throughout the journey, proper packaging solutions, and maintaining more sanitary conditions, but there are new challenges presented by the adopted technologies.

For example, IIoT devices aren’t typically designed to be exposed to extremely frigid temperatures, which may sometimes affect the measurements and data collected. A malfunctioning device can lead to serious problems, especially when it’s the sole method for maintaining temperatures and ensuring food is properly stored.

Bringing these devices up to a sufficiently resistant level is a challenge, as is keeping them running optimally. Failing to do so could increase food contamination, the spread of foodborne illness, or worse.

Another challenge involves the expansion or development of new cold storage facilities. As warehouses and locations grow to accommodate larger inventories, the cold storage systems must become more sophisticated and powerful. What’s more, even the slightest temperature drop because of a system failure can have sweeping repercussions in such a large facility. A single refrigeration unit going down can drop temperatures across the entire warehouse.

Designing smarter spaces to keep the cold temperatures contained is one solution. Installing the supporting systems is another, which keeps things operational even when a negative scenario plays out. Automation and smart, data-driven technologies can be incredibly helpful in this area.

Finally, the bigger the cold storage solution, the higher the power draw and the more resources needed to keep things running. In turn, it’s necessary to install and implement smart technologies to reduce the carbon footprint. Cutting energy usage wherever possible becomes vital to sustainability. It can call for solutions like smart or timed lighting, smart thermostats for the refrigeration units, or upgraded systems that reduce emissions — think electric fleets and renewable energy platforms.

Backup solutions are even a part of the mix, when power outages can bring an entire operation down in seconds, and expose food to long-term risk.

Frozen Food Demand: A Steady Climb

Things may change, and there are never any guarantees, but right now it looks as though high demand for frozen food will continue, and may even grow steadily. Market conditions are partly responsible, but consumers are now more focused on quality and healthy foods, above eating out or ordering in. As the economy continues to open, people will want to get back out there and explore. But that doesn’t necessarily mean frozen food demand will decline.

Cold chain and cold storage warehouse providers must be prepared for the continued growth, which includes finding new and innovative ways to preserve, package and safely store frozen foods.

Jason Chester, InfinityQS
FST Soapbox

Digital Revolution: Empowering the Remote Workforce and Resilience Post-COVID-19

By Jason Chester
No Comments
Jason Chester, InfinityQS

Around the world, countries are beginning to take tentative steps toward a return to normalcy following months of stay-at-home mandates and other restrictions in light of COVID-19. Slowly, we’re starting to see employees return to their offices, retail stores open their doors, and restaurants welcome back patrons. However, many will find themselves in a world dramatically different from the one they left before quarantine.

Namely, on top of social distancing and disinfection measures to control further spread of the virus, entire industries are re-examining their legacy processes and systems—especially ones that presented operational challenges at the pandemic’s outbreak—the food manufacturing industry included.

In truth, food manufacturers have gone to great lengths to maintain productivity and output to meet demand throughout the pandemic. But they have done so in the face of unprecedented circumstances, with many plants operating with limited workforces and key employees like quality professionals and plant managers shifted to remote work. Lacking connectivity between those on the plant floor and at home due to long-held manual processes, a growing number of manufacturers must now take a hard look at their quality and safety programs and embrace digital tools.

A Wake-Up Call for Digital Transformation

Most technological investments in food manufacturing over the past several decades have centered on electro-mechanical automation designed to scale up the physical production process. Fewer investments, however, have been made on the equally important data-driven, decision-making process necessary for ensuring optimal performance, food quality and safety.

Even in the most heavily automated plants, it’s not uncommon to find manufacturers managing quality through manually updated spreadsheets, which are often only reviewed after the fact, when it’s too late for remedial correction. There are unfortunately also those who still rely on paper checklists, making it practically impossible to take proactive action on collected process data—much less get the information in front of remote quality professionals and managers. Meanwhile, others have gone as far as adopting software solutions for quality data management and process control, but these tend to be on-premises systems that employees can’t access outside of the four walls of the plant.

We have also seen many examples where, due to workforce restrictions and availability, employees from other parts of the manufacturing business (e.g., R&D, IT, and back-office teams) have been brought in to perform plant-floor activities like quality and food safety checks. The goal has been to prevent impediments to production output, just when demand has increased substantially. But ensuring that these employees perform the checks on time and in the correct way—with little time for training or coaching—has left many plant leaders in a precarious position.

The challenges seen with these capabilities and enabling geographically dispersed teams to work together through the pandemic have been a wake-up call of sorts for digital transformation. Manufacturers are coming to the realization that they’ll need data accessibility, actionability and adaptability along the road to recovery and in the post-COVID-19 world. And with social distancing and other workplace precautions expected to continue for the foreseeable future, the imperative is all the more urgent.

The Solution Lies in the Cloud

To digitally transform quality and safety programs today, food manufacturers should prioritize investment in the cloud. Notably, cloud-based quality management systems offer a way to standardize and centralize critical process information, as well as tools to empower employees at all levels of the enterprise.

For plant-floor operators struggling to keep up on account of reduced workforce sizes, such solutions can automate routine yet important activities for quality assurance, including data collection, process monitoring and reporting. If a team member needs to cover a different shift or unfamiliar task, role-based dashboards can help them to see required actions, while process workflows can provide guidance to ensure proper steps are taken even with a limited workforce. Further, automated alerts can provide timely notifications of any issues—whether it be a missed data collection or an actual food quality or safety concern present in the data.

Perhaps most importantly during the pandemic and for the post-COVID-19 world, the cloud makes critical quality data instantly and easily accessible from anywhere, at any time. Quality professionals, plant managers, and other decision-makers can continue to monitor and analyze real-time process data, as well as observe performance trends to prevent issues from escalating—all safely from home.

The scalability of cloud-based solutions also streamlines deployment so organizations can rapidly implement and standardize on a single system across multiple lines and sites. In doing so, it becomes possible to run cross-plant analyses to identify opportunities for widescale process improvement and align best practices for optimal quality control at all sites. This ability to understand what’s happening in production—through real-time data—to enact agile, real-world change is a hallmark of successful digital transformation.

An Investment for Whatever the Future Holds

Ultimately, investments in secure cloud-based quality management and the broader digital transformation of manufacturing operations are investments in not only perseverance during the pandemic, but also resilience for the future. Food producers and manufacturers who can readily access and make informed decisions from their data will be the ones best equipped to pivot and adjust operations in times of disruption and uncertainty. And while it’s unclear what the future holds for the world, the food industry, and COVID-19, it’s safe to say we likely won’t see a full return to normalcy but the emergence of a new—and in many ways better—normal, born out of digital solutions and smarter ways of thinking about quality data collection and monitoring.

Coronavirus, COVID-19

China Stops Poultry Imports From Tyson Foods Due to COVID-19 Concerns, Clamping Down on Inspections

By Food Safety Tech Staff
No Comments
Coronavirus, COVID-19

On Sunday China’s General Administration of Customs announced that it would be suspending imported shipments of poultry from a Tyson Foods plant based in Springdale, Arkansas. The suspension is reportedly due to an outbreak of coronavirus cases at the facility.

On Friday Tyson Foods announced the results of COVID-19 testing conducted at its facilities in northwestern Arkansas (Benton and Washington counties): 3,748 employees were tested; 481 tested positive, and 95% were asymptomatic.

“The results across our Northwest Arkansas facilities, and the country more broadly, reflect how much is still unknown about this virus, which is why Tyson is committed to providing information to our local health officials and enhanced education to our team members,” said Tom Brower, senior vice president of health and safety for Tyson Foods stated in a company press release. “Through our inclusive approach to large-scale testing, we are finding that a very high level of team members who test positive do not show symptoms. Identifying asymptomatic cases helps the community, since other testing is often limited to people who feel unwell.”

Meanwhile, it has also been reported that officials in China want the inspection process of overseas shipments ramped up, as they suspect that COVID-19 could be present on imported frozen food products.

Over the weekend PepsiCo’s Beijing operations were suspended following confirmed coronavirus cases at its chips production facility.

Last week new cases of the coronavirus were reported in Beijing, leading to concerns of a resurgence of the virus. Some new cases have been linked to the Xinfadi Market, a wholesale food market.

Mice, pests

Pests Don’t Rest During a Pandemic

By Food Safety Tech Staff
No Comments
Mice, pests

The COVID-19 pandemic has forced the closure of hundreds of restaurants, food processors and other businesses nationwide. As weeks went on, increased rodent activity plagued many businesses, some of which has been attributed to a change in food sources and availability—so much so that the CDC released a warning about rodent control in restaurants and other commercial businesses that have either been closed or have had limited service during the pandemic. “Environmental health and rodent control programs may see an increase in service requests related to rodents and reports of unusual or aggressive rodent behavior,” the CDC stated last month.

As the American economy reopens, many food establishments and facilities must consider three key points that will affect pest management during this time:

  • Pest pressure continues. Rodents are on a never-ending search for food, water and harborage.
  • Change in business patterns. Different inbound and outbound shipments; changes in employee shifts and production schedules; new supply chain partners.
  • Service provider access. Access to facilities and secure areas; changes in facility structure, equipment and storage

Factoring the many changes that COVID-19 has prompted, the role of pest management is more important than ever. We invite you to join us for Food Safety Tech’s upcoming complimentary virtual conference, “Integrated Pest Management: Protect Food Safety and Prevent the Spread of Pathogens”, on June 30. Our Technical Service Lead, Joe Barile, will discuss pest management and risk mitigation in the COVID-19 world; he will be followed by Orkin’s VP of Quality Assurance and Technical Services, Judy Black, on the key components to successful IPM and pest management programs, and Angela Anandappa, Ph.D. of the Alliance for Advanced Sanitation on how an effective sanitation program can protect against pest and food contamination. Register now.

Dave Premo, Birko Corp.
FST Soapbox

How to Maintain Food Safety and Protect Your Brand During Construction

By Dave Premo
No Comments
Dave Premo, Birko Corp.

If your food processing facility needs an expansion or update, construction can be a disruptive event. Throughout the process, a variety of food safety hazards can be present, potentially putting your products at risk. While the contractors you work with are skilled at their trade, protecting your brand is ultimately your responsibility.

Construction, food safety
Developing a thorough plan can keep products, the facility and your employees safe during construction. Images courtesy of Birko.

Extra precautions are needed to minimize the food safety risks during construction, but by developing a thorough plan and following it diligently, you can keep your products, facility and employees safe.

Preparation: The Important First Steps for Safety

Having an established environmental plan before construction starts will make the construction process go smoothly and help maintain safety. If the plan your staff is following needs changes or improvements, make updates in advance of construction and be sure that your staff is up to speed before the project begins.

First, remove any equipment that can be moved from the construction zone and cover all electrical panels, open conduit and electrical outlets to minimize areas that might harbor dust or bacteria during construction.

Next, taking steps to separate the construction and production areas is crucial. Installing heavy gauge plastic sheeting or even temporary walls to isolate the construction area will help prevent cross-contamination. Any doors or wall openings on the temporary barriers should be sealed on both sides, and the gaps between the base of the barriers and the floor should be adequately sealed to keep the surrounding production areas safe. Do whatever is necessary to minimize organisms from traveling by air outside of the construction zone.

The HVAC and air handling system in the construction area should also be evaluated for cross-contamination potential. Be sure to close off or divert the airflow to prevent air movement from the construction zone to any production areas. In addition, make sure the system will be able to accommodate additional areas or space after construction is complete and make any upgrades if necessary. Thoroughly clean the HVAC system and filters before the construction process starts.

Similarly, evaluate any drains that are present in the construction zone for cross-contamination potential and take precautions to keep pathogens from passing from the construction area to the food production areas.

Make Contractors Part of Your Plan

While contractors might have years of experience in their trade, they don’t know your food safety plan. Schedule a formal food safety training session with the contractor and all members of the construction staff. Don’t allow anyone to work in the facility before completing the training. Determine which protective clothing contractors and their team will need, such as frocks, boot covers or hairnets, and provide a separate bag or place to store them during the construction process.

Designating a single entrance for contractors and construction staff will minimize confusion and avoid mistaken entries into prohibited areas. Educate them on the appropriate traffic flow as they arrive, enter the facility, and conduct their work. Their entrance should be separate from those used by office and food production employees. Have quat or alcohol hand and tool sanitizers stationed at the designated contractor entrance, and require them to sanitize any tools, materials or equipment before entering the facility. Emphasize that no mud or other debris should be tracked into the facility. Provide the necessary guidance and monitor the entrance area to prevent that from happening.

Shoe coverings, food safety, construction
Effectively communicate safety plan with all contractors involved.

Construction staff and in-house food production staff should be separated at all times. To prevent cross-contamination, there shouldn’t be any direct paths from the construction area to the production area. No material from the construction area should ever be brought into the food production area. Contractors and construction staff should also be prohibited from using the break rooms or restrooms that are used by the facility employees. Because they won’t have access to other areas, temporary hand wash sinks may be needed for construction employees to follow frequent hand washing and sanitizing procedures.

Best Practices for Sanitation During Construction

Before demolishing and removing any walls during the construction process, apply a foam disinfectant at 800–1000 ppm without rinsing. If any equipment needs to be moved, or if there will be new equipment brought into the area, clean and disinfect it with quat at 800–1000 ppm without rinsing.

Quat should also be applied heavily on the floors around the designated construction team entrances. Foam or spray contractors’ walkways and the construction area floor every four hours at 800–1000 ppm. Allow contractors, forklifts, dollies or other wheeled carts to regularly travel through the disinfectant to keep their feet and wheels sanitized as they move throughout the construction area.

If your construction project involves new equipment installation, discuss the sanitation requirements and restrictions with a sanitation chemical provider before purchasing this equipment to ensure you have the right chemistry on hand. Any new equipment should be cleaned and sanitized, as well as the area where it will be installed, before bringing the equipment into the area. Make sure all the surfaces of the new equipment are compatible with your current cleaning chemistry and that the installation follows proper food safety guidelines. If necessary, upgrade your food safety process to accommodate the new equipment.

Transitioning from Construction to Safe Food Production
Once the construction project is complete, remove all construction materials, tools, debris, plastic sheeting and temporary walls. Seal any holes that might have occurred in the floors, walls and ceilings where equipment was moved, and repair or replace epoxy or other floor coverings. Inspect any forklifts or man lifts used during the construction, and clean and sanitize them.

Clean the HVAC and air handling system and return it to either its pre-construction settings or an updated configuration based on what the new area requires.

Continue cleaning everything in the construction area, from ceiling to floor, including lights, walls, drains, refrigeration units and all equipment following SSOPs. Note that different cleaning products containing solvents may be needed for the initial cleaning to remove cutting oil, welding flux residues, greases, and other elements from the construction process. Be sure to have those cleaning products on hand before you get to this step to avoid delays of a thorough sanitation process. Where necessary, passivate any stainless steel equipment.

Finally, test the environment. Collect a special set of swabs and monitor the results. Apply post-rinse sanitizer and then begin food production. Implement an enhanced environmental monitoring program in all areas disrupted by the construction until the data shows a return to the baseline levels. Revise your facility SSOPs in light of any changes based on the new construction.

Achieving Seamless Productivity

Expansion can mean new capabilities for your business, but lax food safety processes during construction can jeopardize the new opportunities your expansion brings. By having a strong plan in place, following it diligently, educating contractors on your plan, monitoring activity, and using effective sanitizing chemistry, you will be able to expand while protecting your brand and avoiding food safety issues.

Tyson Foods

Report: 22% of Tyson Workers at Iowa Pork Plant Positive for COVID-19, Facility to Temporarily Shut Down

By Food Safety Tech Staff
No Comments
Tyson Foods

Yesterday Tyson Foods, Inc. announced that it would temporarily close its pork plant located in Storm Lake, Iowa following a significant number of employees testing positive for coronavirus. According to Reuters, an Iowa state official placed the positive COVID-19 count at 555 workers at the facility—this accounts to 22% of employees.

Attend the on-demand complimentary webinar: “Is Your Plant COVID-19 Safe?”The company stated that it would reopen next week after “deep cleaning and sanitizing the entire facility.”

The meat industry has been struggling with worker safety during the COVID-19 pandemic for months. While there have been calls for more transparency in the number of COVID-19 cases among facility workers, the information has not been freely flowing. For example, this week Sarah Reisetter, deputy director of the Iowa Department of Health, told the media the following: “Businesses are not currently required to report an outbreak to the Iowa Department of Public Health. Additionally, Iowa law allows confirmation of outbreaks only when necessary to protect the health of the public.”

Brian Sharp, SafetyChain Software
FST Soapbox

How Are Companies Impacted by Labor Shortages?

By Brian Sharp
2 Comments
Brian Sharp, SafetyChain Software

Food and beverage manufacturers are seeing the effects of the coronavirus when it spreads through their workforce. Recently, there have been multiple closures of facilities operated by meat processors, including Smithfield Foods and Tyson Foods as COVID-19 has infected hundreds of workers.

The backdrop of stressful operations and work: Employees now face increased questions before entering plants and feelings of isolation as lunches and breaks are now solo activities due to social distancing. All of these stressors are compounded when you think about what we’re asking them to do: Go into work and keep food on the grocery store shelves. This is a completely new way to operate, and it has a very real emotional effect on our workers.

We’ve received reports from customers where management is getting out of the back office and putting on hairnets to work the production line. The shortage of workers is a very real problem, and our customers are rising to the challenge. Plus, managing this overall labor shortage while doing more safety and sanitation checks than ever before to make sure transmission risks are eliminated is putting stress on everyone working in plants. It’s never been harder to work in the food industry.

In response to California Governor Gavin Newsom’s actions related to the pandemic, we stand behind any effort that is taken to accommodate the needs of these vital, valuable workers, including the executive order to provide supplemental paid sick leave. Such actions, both locally here in California and at the federal level, are critical to elevating the safety of our food manufacturing and distribution workers. Some heroes wear hairnets.

Temp Workers and Lack of Training Protocols

COVID-19 has had a significant impact on the availability of skilled workers in food facilities. Through all the layoffs stemming from the economic standstill, food manufacturers and grocery workers are reporting increases in hiring to help keep up with demand—and to mitigate the effects of sick employees going on quarantine for two weeks. For instance, Albertson’s, a large food grocery chain store, reported that it was hiring for 2,000 positions.

But hiring temporary workers is only half the battle. The task of training people who may have never worked in grocery or food manufacturing has become more critical in the face of new demands on sanitation and social distancing. With these measures in place, it’s no longer a case of a new employee showing up for work and shadowing another employee or supervisor. Technology can close the gap, especially in food production where the regulations and safety standards require strict adherence to processes. For example, software can facilitate shorter employee training in the areas of quality policies and good documentation practices.

Same Volume with Fewer Workers

We are working closely with customers and partners to cope with new guidelines for social distancing inside food facilities, providing the capability to do remote audits as visitor restrictions have increased. Our software is also being used to screen food manufacturing workers for symptoms of COVID-19 before shift work starts to help prevent the spread of the coronavirus to other essential workers.

In response to increased needs from customers, we have developed three solutions to address the impact of COVID-19. These solutions, which include a personnel screener, changeover manager and remote supplier auditor, can help food and beverage manufacturers efficiently manage physical distancing measures, symptom screening, and travel restrictions.

It can’t be stressed enough: The people who carry out food safety protocols are doing more checks and using more labor time to conform to regulations and guidelines for COVID-19. And, adhering to the systems, regulations and processes used to promote safe, high-quality products (in the same or even higher volumes) remains as crucial as ever. Simplifying these processes by leveraging software has been shown to cut 8 to12 hours of labor per day for a single facility. This is critical at a time when even one person being sick can cause lower throughput.

Plus, this isn’t like manufacturing a car where a line will be built to produce hundreds of thousands of cars over a two- to three-year period. Food manufacturers must often change a line over to produce a different flavor, package type or food type altogether, in as little time as possible to keep production going. Robots and automation can help, but in a crisis like this where immediate productivity gains are needed, software can make the much-needed difference.

Angelica Grindle, DEKRA

Four Steps for Utilizing Behavioral Science to Control Exposure to COVID-19

By Angelica Grindle, Ph.D.
4 Comments
Angelica Grindle, DEKRA

Safety is defined as controlling exposure for self and others. Going into 2020, the food industry battled safety concerns such as slips and falls, knife cuts, soft-tissue injuries, etc. As an “essential industry”, food-related organizations now face a unique challenge in controlling exposure to COVID-19. Not only must they keep their facilities clean and employees safe, they must also ensure they do not create additional exposures for their suppliers or customers.

These challenges increase at a time when employees may be distracted by stress, financial uncertainties, job insecurity, and worry for themselves and their families. Additionally, facilities may be understaffed, employees may be doing tasks they do not normally do, and we have swelling populations working from home.

While there is much we cannot control with COVID-19, there are specific behaviors that will reduce the risk of viral exposure for ourselves, our co-workers, and our communities. Decades of research show the power of behavioral science in increasing the consistency of safe behaviors. The spread of COVID-19 serves as an important reminder of what food-related organizations can gain by incorporating a behavioral component into a comprehensive exposure-reduction process.

Whether you have an existing behavior based safety process or not, follow these four steps.

Step 1: Pinpoint Critical COVID-19 Exposure Reduction Behaviors

It is critical to clearly pinpoint the behaviors you want to see occurring at a high rate. In the food industry, an organization must control exposure both within their facilities as well as during interactions with suppliers and customers. Controlling exposure within facilities will typically include those behaviors recommended by the CDC such as:

  1. Maintain six feet of separation at all times possible.
  2. Avoid touching your eyes, nose and mouth with unwashed hands.
  3. Minimize personal interactions to reduce exposure to transmit or receive pathogens.
  4. Frequent 20-second hand washing with soap and warm water.
  5. Make hand disinfectant available.
  6. Use alternatives to shaking hands.
  7. Frequently clean and disinfect common areas, such as meeting rooms, bathrooms, doorknobs, countertops, railings, and light switches.
  8. Sneeze and/or cough into elbow or use a tissue and immediately discard.
  9. Conduct meetings via conferencing rather than in person.
  10.  If you are sick, stay home.
  11. If exposed to COVID-19, self-quarantine for precaution and protection of others.

Supplier/Customer exposure-reduction behaviors will vary depending upon your specific industry and may include pinpointing the critical behaviors for food preparation, loading dock delivery, customer home delivery, and customer pick up. When creating checklists to meet your unique exposures, be sure the behaviors you pinpoint are:

  • Measurable: The behavior can be counted or quantified.
  • Observable: The behavior can be seen or heard by an observer.
  • Reliable: Two or more people agree that they observed the same thing.
  • Active: If a dead man can do it, it is not behavior.
  • Influenceable: Under the control of the performer.

Once you have drafted your checklists, ask yourself, “If everyone in my facility did all of these behaviors all the time, would we be certain that we were controlling exposure for each other, our suppliers, and our customers?” If yes, test your checklists for ease of use and clarity.

Step 2: Develop Your Observation Process

To do this, you will want to ask yourself:

  • Who? Who will do observations? Can we leverage observer expertise from an existing process and have them focus on COVID-19 exposure reduction behaviors or should we create a new observer team?
  • Where? Which specific locations, job types, and/or tasks should be monitored?
  • When? When will observers conduct observations?
  • Data: How will you manage the data obtained during the observations so that it can be used to identify obstacles to safe performance? Can the checklist items be entered into an existing database or will we need to create something new?
  • Communication: What information needs to be communicated before we begin our COVID-19 Exposure Reduction process and over time? How will we communicate it?

Step 3: Conduct Your Observations and Provide Feedback

Starting the Observation
Your observers should explain that they are there to help reduce exposure to COVID-19 by providing feedback on performance.

Recording the Observation
Observers should note on the checklist which behaviors are occurring in a safe manner (protected) and which are increasing exposure to COVID-19 (exposed).

Provide Feedback
Feedback is given in the spirit of reducing exposure. It should be given as soon as possible after the observation to reinforce protected behaviors and give the person to opportunity to modify exposed behaviors.

Success Feedback
Success feedback helps reinforce the behaviors you want occurring consistently. Effective success feedback includes:

  • Context: The situation in which the behavior occurred.
  • Action: The specific behaviors observed which reduce exposure to COVID-19.
  • Result: The impact of those behaviors on themselves or others—in this case, reduced COVID-19 exposure for themselves, their families and community.

“I care about your safety and do not want to see you exposed to COVID-19. I saw you use hand sanitizer prior to putting on eye protection. By doing that, you reduced the likelihood of transferring anything that might have been on your hands to your face which keeps you safe from contracting COVID-19.”

Guidance Feedback

Guidance feedback is given for exposed behaviors to transform that behavior into a protected one. Effective guidance feedback includes Context, Action, Result, but also:

  • Alternative Action: The behavior that would have reduced their exposure to COVID-19.
  • Alternative Result: The impact of that alternative behavior, such as reduced COVID-19 exposure for themselves, their families, and community.

“I care about your safety and do not want to see you exposed to COVID-19. I saw that you touched your face while putting on eye protection. By doing that, you increased the likelihood of transferring anything on your hand to your face which increases your risk of exposure to COVID-19. What could you have done to reduce that exposure?”

When giving guidance feedback, it is important to have a meaningful conversation about what prevented them from doing the safe alternative. Note these obstacles on the checklist.

Step 4: Use Your Data to Remove Obstacles to Safe Practices.

Create a COVID-19 exposure reduction team to analyze observation data. This team will identify systemic or organizational obstacles to safe behavior and develop plans to remove those obstacles. This is critical! When an organization knows that many people are doing the same exposed behavior, it is imperative that they not blame the employees but instead analyze what is going on in the organization that may inadvertently be encouraging these at-risk behaviors.

For example, we know handwashing and/or sanitizing is an important COVID-19 exposure reduction behavior. However, if your employees do not have access to sinks or hand sanitizer, it is not possible for them to reduce their exposure.
Similarly, the CDC recommends that people who are sick not come to work. However, if your organization does not have an adequate sick leave policy, people will come to work sick and expose their co-workers, customers and suppliers to their illness.

Your COVID-19 exposure reduction team should develop plans to remove obstacles to safe behavior using the hierarchy of controls.

Conclusion

Consistently executing critical behaviors is key to reducing exposure to COVID-19 as flattening the curve is imperative in the worldwide fight against this pandemic. Regardless of the type of behavior or the outcome that the behavior impacts, Behavior based safety systems work by providing feedback during the observations and then using the information obtained during the feedback conversation to remove obstacles to safe practices.

By using these tips, you can add a proven and powerful tool to your arsenal in the fight against COVID-19 and help keep your employees, their families, and your community safe.

Eddie Hall, Vital Vio
FST Soapbox

How Automated Technology is Transforming Sanitation in Plant Operations

By Eddie Hall
No Comments
Eddie Hall, Vital Vio

Food safety remains a top-of-mind concern for food manufacturers, especially considering some of the top recalls in 2019 were caused by bacteria contamination—including Listeria and E. coli. Every aspect of the plant operation, from maintenance to executives, to junior staff and quality control, holds both responsibility and concern in producing safe food. Unfortunately, there’s a lot at stake when plant operations’ sanitation programs run into issues, which can cause health threats.

While the rapid explosion of new innovations complements our daily lives in efficiency and convenience, plant operations may find difficulty in keeping up-to-speed with new technology such as robotics, drones and automated applications. When facilities’ equipment becomes more and more outdated, it poses food safety challenges around cleaning, maintenance and upgrades.

Luckily, in some cases, innovation is becoming much easier to deploy. Opportunities abound for food processing plants to integrate new technologies into their operations to deliver significant returns on investment while simultaneously enhancing sanitation, safety and production efficiency on the plant floor.

The Dangers with Today’s Practices

There are many pitfalls with older, more traditional cleaning techniques. In a place where cleanliness is critical to food safety and public health around the world, the industry understands sanitation means more than just scrubbing, mopping and wiping. While these are important daily practices to be done around the processing plant, there are still concerns on whether this kind of intermittent cleaning is truly enough to keep surfaces completely sanitized—knowing that continuous cleaning around the clock seems impractical in any facilities.

Unfortunately, there are many areas, some very hard to reach, for bacteria and other pathogens to live and spread around a processing plant. Zone 1, which holds the conveyor belt and other common high-touch points, consistently comes into contact with food, chemicals and humans. However, for processors to reduce the likelihood of contaminated food, they must consider areas outside of Zone 1 as well—including employee break rooms, hallways and bathrooms—to implement automated sanitation technologies. Additionally, the most common food contaminants, such as Listeria, Salmonella and E. coli, are usually invisible to the naked eye. Therefore, plants need to employ automated technology to continuously kill microscopic bacteria, mold and fungi to prevent regrowth and ensure clean food and equipment.

Looking to New Tech to Fight Germs

When looking to upgrade a plant operation facility, automated technology should be top-of-mind. Automated food production technologies solve two main problems: Food safety and sanitation efficiency. Wash-down robotic systems work to prevent food contamination, while other automated robots complete tasks on the production floor such as packaging, transporting and lifting. With the CDC estimating that roughly one in six Americans suffer from foodborne illnesses, the need for improved sanitation design is integral.

In today’s age, there are several ways to achieve heightened cleanliness by incorporating automation and robotics into production lines. Slicers, dicers and cutters are manufactured with hygienic design in mind. Smart cleaning equipment can automatically store various cleaning steps. Data tracking applications can monitor sanitation steps and ensure all boxes are checked throughout the cleaning program.

Incorporating antimicrobial LED lighting ensures sanitation is truly integrated into the facility’s design—working continually 24/7 to kill and prevent bacteria, and its growth while also serving a dual purpose of both antimicrobial protection and a proper source of illumination. As is the case with this type of technology, once these lights are installed, it becomes an easy, hands-free way of reducing labor, chemicals and, in many cases, work stoppages.

According to Meticulous Research, the global food automation market is expected to be worth $14.3 billion by 2025. With automation set to explode, it’s important for leaders in the food and beverage industry to take advantage of safety tech innovations to advance sanitation around the processing plant. Facility upgrades to improve, enhance and automate sanitation could impact food manufacturers in the long-term by decreasing costs, preventing recalls, improving brand value, gaining consumer trust, minimizing risk and impacting the bottom line.