Tag Archives: fish

Karen Everstine, Decernis
Food Fraud Quick Bites

Food Authenticity: 2020 in Review

By Karen Everstine, Ph.D.
No Comments
Karen Everstine, Decernis

It is fair to say that 2020 was a challenging year with wide-ranging effects, including significant effects on our ongoing efforts to ensure food integrity and prevent fraud in the food system. COVID-19 caused major supply chain disruptions for foods and many other consumer products. It also highlighted challenges in effective tracking and standardization of food fraud-related data.

Let’s take a look at some of the notable food fraud occurrences in 2020:

  • Organic Products. The Spanish Guardia Civil investigated an organized crime group that sold pistachios with pesticide residues that were fraudulently labeled as organic, reportedly yielding €6 million in profit. USDA reported fraudulent organic certificates for products including winter squash, leafy greens, collagen peptides powder, blackberries, and avocados. Counterfeit wines with fraudulent DOG, PGI, and organic labels were discovered in Italy.
  • Herbs and Spices. Quite a few reports came out of India and Pakistan about adulteration and fraud in the local spice market. One of the most egregious involved the use of animal dung along with various other substances in the production of fraudulent chili powder, coriander powder, turmeric powder, and garam masala spice mix. Greece issued a notification for a turmeric recall following the detection of lead, chromium, and mercury in a sample of the product. Belgium recalled chili pepper for containing an “unauthorized coloring agent.” Reports of research conducted at Queen’s University Belfast also indicated that 25% of sage samples purchased from e-commerce or independent channels in the U.K. were adulterated with other leafy material.
  • Dairy Products. India and Pakistan have also reported quite a few incidents of fraud in local markets involving dairy products. These have included reports of counterfeit ghee and fraudulent ghee manufactured with animal fats as well as milk adulterated with a variety of fraudulent substances. The Czech Republic issued a report about Edam cheese that contained vegetable fat instead of milk fat.
  • Honey. Greece issued multiple alerts for honey containing sugar syrups and, in one case, caramel colors. Turkey reported a surveillance test that identified foreign sugars in honeycomb.
  • Meat and Fish. This European report concluded that the vulnerability to fraud in animal production networks was particularly high during to the COVID-19 pandemic due to the “most widely spread effects in terms of production, logistics, and demand.” Thousands of pounds of seafood were destroyed in Cambodia because they contained a gelatin-like substance. Fraudulent USDA marks of inspection were discovered on chicken imported to the United States from China. Soy protein far exceeding levels that could be expected from cross contamination were identified in sausage in the Czech Republic. In Colombia, a supplier of food for school children was accused of selling donkey and horse meat as beef. Decades of fraud involving halal beef was recently reported in in Malaysia.
  • Alcoholic Beverages. To date, our system has captured more than 30 separate incidents of fraud involving wine or other alcoholic beverages in 2020. Many of these involved illegally produced products, some of which contained toxic substances such as methanol. There were also multiple reports of counterfeit wines and whisky. Wines were also adulterated with sugar, flavors, colors and water.

We have currently captured about 70% of the number of incidents for 2020 as compared to 2019, although there are always lags in reporting and data capture, so we expect that number to rise over the coming weeks. These numbers do not appear to bear out predictions about the higher risk of food fraud cited by many groups resulting from the effects of COVID-19. This is likely due in part to reduced surveillance and reporting due to the effects of COVID lockdowns on regulatory and auditing programs. However, as noted in a recent article, we should take seriously food fraud reports that occur against this “backdrop of reduced regulatory oversight during the COVID-19 pandemic.” If public reports are just the tip of the iceburg, 2020 numbers that are close to those reported in 2019 may indeed indicate that the iceburg is actually larger.

Unfortunately, tracking food fraud reports and inferring trends is a difficult task. There is currently no globally standardized system for collection and reporting information on food fraud occurrences, or even standardized definitions for food fraud and the ways in which it happens. Media reports of fraud are challenging to verify and there can be many media reports related to one individual incident, which complicates tracking (especially by automated systems). Reports from official sources are not without their own challenges. Government agencies have varying priorities for their surveillance and testing programs, and these priorities have a direct effect on the data that is reported. Therefore, increases in reports for a particular commodity do not necessarily indicate a trend, they may just reflect an ongoing regulatory priority a particular country. Official sources are also not standardized with respect to how they report food safety or fraud incidents. Two RASFF notifications in 2008 following the discovery of melamine adulteration in milk illustrate this point (see Figure 1). In the first notification for a “milk drink” product, the hazard category was listed as “adulteration/fraud.” However, in the second notification for “chocolate and strawberry flavor body pen sets,” the hazard category was listed as “industrial contaminants,” even though the analytical result was higher.1

RASFF

RASFF, melamine detection
Figure 1. RASFF notifications for the detection of melamine in two products.1

What does all of this mean for ensuring food authenticity into 2021? We need to continue efforts to align terminology, track food fraud risk data, and ensure transparency and evaluation of the data that is reported. Alignment and standardization of food fraud reporting would go a long way to improving our understanding of how much food fraud occurs and where. Renewed efforts by global authorities to strengthen food authenticity protections are important. Finally, consumers and industry must continue to demand and ensure authenticity in our food supply. While most food fraud may not have immediate health consequences for consumers, reduced controls can lead to systemic problems and have devastating effects.

Reference

  1. Everstine, K., Popping, B., and Gendel, S.M. (2021). Food fraud mitigation: strategic approaches and tools. In R.S. Hellberg, K. Everstine, & S. Sklare (Eds.) Food Fraud – A Global Threat With Public Health and Economic Consequences (pp. 23-44). Elsevier. doi: 10.1016/B978-0-12-817242-1.00015-4
Production line, NiceLabel

Farm-to-Fork Transparency: How Digitized Labeling Can Prevent a Major Allergen Recall

By Lee Patty
No Comments
Production line, NiceLabel

For consumers and brands alike, the damaging impact of mislabeling or neglecting to clearly outline an allergen can be colossal. Therefore, to prevent a health and business disaster, best practices around allergen labeling must be top of mind. Luckily, technology can help, and the farm-to-fork transparency provided by a centralized and digitized modern label management system can ensure organizations improve responsiveness and accuracy while reducing costs beyond those saved by mitigating recalls.

No one wants to face a recall, but have you done enough to prevent one from happening to you? More than 650 food products were recalled last year in the United States alone. And one of the leading causes might just be the easiest to prevent: Undeclared allergens.

According to the Q2 2019 Stericycle Recall Index, undeclared allergens are the leading cause of U.S. food recalls, accounting for 48.4% of food recalls from the FDA and 62.9% of food pounds recalled by the USDA. This statistic becomes more alarming considering that roughly 11% of US adults have a food allergy, according to JAMA.

Enacted in 2004, the Food Allergen Labeling and Consumer Protection Act (FALCPA) stipulates that all packaged food regulated under the Federal Food Drug and Cosmetic Act (FFD&C) comply by listing major food allergens. “Major allergens” refers to milk, eggs, fish, shellfish, tree nuts, peanuts, wheat, and soybeans, and for nuts and shellfish, the species must be declared.

For brands, the damaging impact of mislabeling or neglecting to clearly outline an allergen can be colossal, resulting in costly recalls or litigation. However, the impact to consumers can be even greater when one small mistake can cause serious illness, or worse, death. To prevent a health and business nightmare, best practices around allergen labeling must be top of mind.

However, with constantly changing legislation, this can be easier said than done. For instance, in a move that outpaced the FDA, Illinois issued a state law requiring sesame labeling. And in the UK, Natasha’s Law was recently introduced, requiring companies to label all food ingredients on fresh pre-packaged food after 15-year-old Natasha Ednan-Laperouse died of a sesame allergy from a sandwich that didn’t list all the ingredients.

The need for optimal allergen labeling is clear, so how can organizations ensure allergens are clearly labeled on their products and meet existing standards while preparing for future requirements?

Though the underlying principle behind a clear label is simple, the process of designing such labels can be multifaceted and difficult to streamline—especially if labels are designed, printed and managed by separate users across a franchise or store network. And this challenge is multiplied further when products reach across international boundaries. But technology can help, and the farm-to-fork transparency provided by a centralized and digitized modern label management system can ensure organizations improve responsiveness and accuracy while reducing costs beyond those saved by mitigating recalls.

Disorganized Sprawl: A Major Hurdle to Effective Labeling

When implemented properly, modern label management can cost-effectively centralize labeling, reducing inefficiencies and human error. However, before this can happen, there are a few common roadblocks that may make standardizing the labeling process challenging.

One issue may be a sprawl of legacy equipment that is not integrated into a cohesive network. For instance, a legacy labeling system may only support certain label printers while certain manufacturers of direct marking equipment may only support their own propriety brand of printers. In another sense, a lack of standardization can also make it difficult to efficiently integrate labeling with other business solutions like manufacturing execution systems (MES) and enterprise resource planning (ERP) systems.

A damaging impact of sprawl is adoption of a wide range of different labeling applications across various facilities. This will result in inconsistent label formatting, the need to create the same label multiple times, and the need to accommodate different systems and printers. Consequences of this may be a lack of centralized storage when everything is saved locally, complex user training encompassing many software programs, an increased burden on IT, and a great deal of extra administration and human intervention to maintain and update labels.

Another problem with a disorganized ecosystem for labeling is that quality assurance inevitably suffers because tracing a label’s history or implementing standardized approval processes can be difficult or impossible. To accurately track labeling, it’s necessary to have a production log stating where and when labels were produced and who produced them. Having such a log and using it effectively requires centralization or else it can become difficult to track different versions or enforce universal approval processes for altering templates.

Implementing Modernized Labeling to Improve QA

Modern label management systems can help suppliers and manufacturers standardize and control marking packaging or label production across an entire organizational ecosystem. These solutions feature a central, web-based document management system and provide a reliable storage space for label templates and label history. This will enable changes and updates to be tracked centrally, so local facilities can access uniform and accurate templates to produce labels.

An ideal label management system can also interface with a multitude of direct marking and labeling printers, even if they are from different manufacturers, and it can integrate labeling and direct marking with a business system’s master data, which eliminates manual data entry errors. This decreases upfront capital expenditures in more costly efforts to standardize equipment, provides a system that is easy to integrate with partners, saves costs generated from having to discard product or rework labels, and increases a company’s ability to implement unified, organization-wide labeling processes.

Centralized Labeling is Easily Delivered Through Cloud

To many, the thought of migrating legacy labeling to a centralized system or investing a large sum of resources into centralizing labeling may seem inordinate or daunting. However, cloud technology makes migrating to a modern label management system feasible for organizations of all sizes.

With the cloud, designing labels and ensuring quality assurance becomes far more accessible. Additionally, the software-as-a-service (SaaS) model doesn’t require the capital investments or operations and maintenance upkeep associated with costly IT infrastructure and is easily scalable depending on business needs. This is a game changer for small to medium sized businesses who can now benefit from a centralized labeling system because of the cloud.

The Benefits of a “Single-source-of-truth”

In addition to other benefits, integrating a modern label management solution with other business systems allows users to access a “single-source-of-truth.” This allows for enforceable, specific user roles with logins for each user as well as traceability and transparency across all factories that produce products. The traceability from being able to monitor a “single-source-of-truth” is a critical component to farm-to-fork transparency because it can provide an accurate production log overviewing label versions and changes, so companies can pinpoint the locations and causes of labeling inaccuracies and fix them instantly.

A modern label management system also enables organizations to nimbly respond to new regulatory requirements because alterations only need to be made in one location, new templates can be previewed before going to production, and nutrition and allergen functionality can be easily formatted so that it is clear and stands out to the consumer. This increases labeling consistency and accuracy, and saves time when rules change and when new products need to be incorporated during a merger or acquisition.

Futureproofing and Ensuring Consumer Safety with Allergen Labeling

In today’s world, food and beverage manufacturers must rise to the challenge of changing regulations while meeting the call of shifting customer demands and integrating themselves within greater business ecosystems and extended supply chains. In the case of allergen labeling, this may mean preparing labels for different countries, which have varying standards for labeling allergens like sesame, royal jelly, bee pollen, buckwheat and latex, or ensuring labels can be altered quickly when new products are rolled out or when bodies like the FDA revamp standards.

Companies that implement modern label management solutions position themselves to adapt to competition and regulations quickly, implement solutions that can easily be integrated with partners in a supply chain, and streamline quality control. This can help improve productivity, reduce labeling errors, increase collaboration, and prevent product recalls. But most importantly, it helps ensure the safety of consumers everywhere.

Susanne Kuehne, Decernis
Food Fraud Quick Bites

This Smells Quite Fishy

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Food fraud, Fish
Records involving fraud can be found in the Food Fraud Database. Image credit: Susanne Kuehne

In a EU-wide coordinated effort, more than a dozen members of an organized criminal group were arrested. The criminals were fishing with illegal methods, and processed and stored their catch in unsanitary conditions. Consumers’ health was possibly affected by the rotting fish being treated with bleach to mask unsavory smells, with the goal to sell the fish in multiple EU countries, yielding a revenue of more than €100,000 per year. In addition, the gang committed tax and money laundering crimes.

Resources

  1. EU-OCS Editor (May 16 2019). “Tons of contaminated fish seized in EU-wide operation”. EU-OCS Latest News on Crime and Security in Europe. Retrieved from https://eu-ocs.com/tons-of-contaminated-fish-seized-in-eu-wide-operation/
Susanne Kuehne, Decernis
Food Fraud Quick Bites

Pretty Fishy

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Fish
Records involving fraud can be found in the Food Fraud Database. Image credit: Susanne Kuehne

Hundreds of seafood samples from U.S. grocery stores, seafood markets and restaurants were analyzed in 2018, and a large rate of mislabeling was found. Cheaper catch, for example, gets mislabeled as higher value fish, especially sea bass, snapper or halibut. Other frauds include illegally caught fish or seafood mislabeled as sustainable, covering up harmful environmental practices. In spite of federal government policy measures already in place, many gaps that allow seafood fraud to largely go undetected still exist.

Resource

  1. O., Warner, K., Roberts, W., Mustain, P., Lowell, B., & Swain, M. (2019, March 11). Casting a Wider Net: More Action Needed to Stop Seafood Fraud in the United States. https://doi.org/10.31230/osf.io/sbm8h
Blockchain

Promise of Blockchain Could Help Seafood Traceability, Unique Challenges Remain

By Maria Fontanazza
1 Comment
Blockchain

As our conversation about the potential of blockchain continues at Food Safety Tech, we sat down with Thomas Burke, food traceability and safety scientist, Global Food Traceability Center (GFTC) at the Institute of Food Technologists, to discuss how ready the seafood industry is in the adoption of blockchain, more specifically as it relates to traceability.

Food Safety Tech: What are the current major issues in seafood traceability?
Thomas Burke: Some of the challenges are diversity in product, diversity in regulatory compliance, a hyper-globalized supply chain and variable technology adoption.

I always like to distinguish seafood traceability from other major food commodities for several different reasons. When thinking about traceability and devising traceability systems, you want to think about use cases. For most food commodities, food safety is usually top of mind; there’s also a regulatory compliance component. Seafood still has food safety as a high priority, but there are also issues with illegal and unreported fishing and fraudulent issues in the supply chain. When you’re thinking about devising a traceability system, you also have to consider different key data elements. For instance, in food safety, while location is important, the location is only really important for tracing back in the event of recalling product. In seafood traceability you’re looking at racing back to ascertain if it was caught in the right place with the right method at the right time. With this as context, you also want to think about the technological challenges and food operations wise such as the diversity of commodities in seafood—there’s diversity in species way more so than in poultry or produce. You also have very different geographic locations, different harvest methods (i.e., farmed, wild); because of the diversity of harvesting practices, there are other considerations to think about. There are some traceability service providers that rely on a constant internet connection, and that’s obviously not possible if you’re fishing on the high seas. You might have equipment for data collections that works really well in the field or in the food manufacturing environment, but it may not work under the harsh conditions of a boat or in aquaculture. So we end up seeing a great diversity of technological adoption. Especially further upstream when thinking about other small-scale fishers and smaller processors—they generally only do traceability for regulatory compliance, because they just don’t have the capital to invest in technologically sophisticated data collection management. And sometimes it’s not necessary for what they’re trying to achieve. So, we still see a lot of paper records, basic spreadsheet data management, and then it gets more complicated as you go down the supply chain. Larger processors and retailers will have more dedicated traceability systems.

FST: Where do you see blockchain entering the traceability process and what other technologies should be used in conjunction with blockchain?

Burke: One of the things that we’ve found in our work at the Global Food Traceability Center and with the global dialogue on seafood traceability [regarding] blockchain is that there’s a lot of interest and hype around the application itself, which helps draw in solution providers and developers that are interested in applying a new technology to a new use case.

Blockchain is a data sharing platform. So the technologies that it’s comparing itself to are FTP (file transfer protocol) and transferring data through an EDI (electronic data interchange). This is a new way of sharing data between supply chain partners that has some unique capabilities, some of which are very advantageous for seafood.

When I was talking earlier about how there is variable adoption of technologies (i.e., small harvesters or producers that use paper records or use minimal digital records), blockchain has the advantage that data hosting is shared and decentralized across the notes of the network. What that means is that a small producer doesn’t have to set up a dedicated server infrastructure in order to communicate with their supply chain partners, whereas that’s more of the case with EDI; even with FTP you’ll still have to set up some kind of formal relationship with your servers. What’s nice about blockchain is that in order to host information on that network, you just pay a small amount of the currency that the blockchain runs on. It’s a little bit different if you have a private or consortium blockchain, but the idea is with the open blockchain applications is that you only pay on a per transaction basis (data upload basis). The larger the network is, the cheaper that is to do. So over the month, it’s a lower cost for participants for hosting the shared ledger of updates.

There are also some other advantages: It’s immutable; once it’s on the blockchain it’s very difficult to corrupt that data. There are other components to the problem of data collection and the transportation of data, along with the product along the supply chain. You still need certain legs of that stool such as a global identifier that identifies the product as it goes through the supply chain and gets incorporated into other products; you also need to collect the related data that’s necessary to make your use case. There’s a balance between the data collection and the identification [i.e., fishermen might not want to reveal their best location]. Those all need to be part of the picture, in addition to novel data-sharing platforms such as blockchain. A big part of what GFTC is trying to do in the seafood space is gather industry and work with them to develop standards and best practices to ensure the same data is being collected at each point and that data is able to be transported with the product in an interoperable way that takes into account the diversity of technological adoption along the supply chain.

FST: What level of blockchain adoption do you see in the seafood industry? How prepared is the industry, including retailers?

Burke: As far as adoption: It depends. There are a few different aspects that depend on whether companies will invest in a blockchain solution or not. It depends on what their current adoption is and their market. Where we’re seeing a lot of interest in blockchain being used as a component of data sharing for traceability is in more niche products that have more straightforward supply chains, and they’re using traceability as a market differentiator for their product. Right now, in order to invest in blockchain, you need to devote a significant amount of staff time or invest in a service provider to devise the blockchain scheme that you’re going for. There are a lot of unanswered questions about the implementation of blockchain. There are major players using blockchain in other types of food supply chains, but those are generally very vertically integrated companies that have a lot of resources—both IT resources and monetary resources to devote to this early experimental stage. And that’s where I would see it start first. If there’s success in those more limited trials, then maybe larger multinational companies might have interest in using it as a linkage between some of the information systems.

The biggest challenge with large multinational seafood companies is they have a lot of subsidiaries. And when they have subsidiaries, they might use different ERP systems; they’re looking at ways to transport the data into those disparate systems. And with seafood, as with most food commodities, it’s a fairly low margin industry. So most companies are going to be fairly conservative in investing in a new technology until it’s really being seen as a proven and achievably implementable software solution. Larger companies are still seeing more traditional cloud hosting such as EDI as a viable option for data sharing in food traceability. But blockchain is being seen in those niche areas and as the technology becomes more proven, we’ll probably see greater adoption. There’s just still a lot of skepticism in the industry, and that’s with any new technology.

I will say with other technologies in seafood traceability, I am seeing quite a bit of promise in AI [artificial intelligence] data analytics and image processing technologies just because it’s very difficult to identify products, especially early up in the supply chain. Some of these new technologies in data processing are going to help streamline data collection and be able to process it into those key data elements that you’re looking for to achieve those traceability use cases. There’s been so much development of facial recognition technology in humans that similar algorithms could be used in labeling fish. Those are some of the other promising technologies. There are some [uses of] IoT devices and RFID but those still remain to be seen—they have implementation issues, because there are quite a few environmental interferences on water or in humidity-rich environments, especially when you’re thinking about radio frequency resistance/interference.

In seafood right now, most of the blockchain-oriented applications are in line with NGOs that are experimenting with the use of blockchain as a traceability tool—and those tend to be high-end products like tuna or crab using blockchain in limited use cases. It’s still very much in the piloting and early implementation.

FST: What are the top three advantages to using blockchain for seafood traceability?

Burke: 1. Immutability. Once you put transactions onto the blockchain, because of the way the architecture is set up, it’s really difficult to alter that record. Other data sharing platforms don’t have the advantage of a singular record.
2. Decentralization. Everyone has access to the same leger that can be shared in real time across a global supply chain. Most of the other data sharing platforms are emphasized in one-to-one communication, whereas blockchain is many-to-many.
3. Flexibility and interest from the development community. There’s a lot of creativity associated with blockchain applications right now. There are a lot of developers coming up with interesting ideas of how to maximize the architecture to work for food traceability applications. Because it has an economic structure where you are using tokens that are powering the data processing, you can potentially do interesting things with incentivizing inputting data into a traceability system and monetizing it. We’re exploring that in the global dialogue—looking to see how you can tie the value of traceability data upstream, because that will help incentivize the entire ecosystem. There have been limited trials with startups that have been looking at incentivizing data collection through blockchain.

FST: Where do you see blockchain headed in five years?
Burke: I don’t see the actual architectural idea of blockchain idea going away. It’s a fairly brilliant way of ensuring that valuable data isn’t double counted or deleted. It helps reduce some risk.

The next five years will depend on what the end retailers end up adopting. In western markets, more specifically North America, the retailers have a lot of leverage in what standards and best practices are kept and carried through. So it will depend a lot on those large end retailers and how comfortable they are in adopting blockchain, and the decisions that they make behind blockchain providers.

The largest seafood markets are China and Japan, so [adoption] more depends on what those retailers/customer bases are demanding versus what happens in North America just because the demand is so much stronger there. That will also drive the development of blockchain interfaces and will influence the adoption among smaller scale fishers, which is more of the tendency in East Asia. It’s a very open question. I think it will be influenced by decisions that governments make in East Asia regarding blockchain.

I would emphasize that the success of seafood traceability and food traceability in general will be very dependent on standards, and the development of commonly understood and accepted practices, and the way those data standards are collected. So you can have a robust blockchain platform, but if every supply chain partner doesn’t agree to collect the same data and identify it in a similar way that is interoperable, it still won’t work—even if you have the most advanced technology. There’s a human process of agreeing upon the same way that traceability data is gathered. Interoperability and standards are key, in addition to the new technologies.