Tag Archives: Focus Article

Manuel Orozco, AIB International
FST Soapbox

Detecting Foreign Material Will Protect Your Customers and Brand

By Manuel Orozco
No Comments
Manuel Orozco, AIB International

During the production process, physical hazards can contaminate food products, making them unfit for human consumption. According to the USDA’s Food Safety and Inspection Service (FSIS), the leading cause of food recalls is foreign material contamination. This includes 20 of the top 50, and three of the top five, largest food recalls issued in 2019.

As methods for detecting foreign materials in food have improved over time, you might think that associated recalls should be declining. To the contrary, USDA FSIS and FDA recalls due to foreign material seem to be increasing. During the entire calendar year of 2018, 28 of the 382 food recalls (7.3%) in the USDA’s recall case archive were for foreign material contamination. Through 2019, this figure increased to approximately 50 of the 337 food recalls (14.8%). Each of these recalls may have had a significant negative impact on those brands and their customers, which makes foreign material detection a crucial component of any food safety system.

The FDA notes, “hard or sharp foreign materials found in food may cause traumatic injury, including laceration and perforation of tissues of the mouth, tongue, throat, stomach and intestine, as well as damage to the teeth and gums”. Metal, plastic and glass are by far the most common types of foreign materials. There are many ways foreign materials can be introduced into a product, including raw materials, employee error, maintenance and cleaning procedures, and equipment malfunction or breakage during the manufacturing and packaging processes.

The increasing use of automation and machinery to perform tasks that were once done by hand are likely driving increases in foreign matter contamination. In addition, improved manufacturer capabilities to detect particles in food could be triggering these recalls, as most of the recalls have been voluntary by the manufacturer.

To prevent foreign material recalls, it is key to first prevent foreign materials in food production facilities. A proper food safety/ HACCP plan should be introduced to prevent these contaminants from ending up in the finished food product through prevention, detection and investigation.
Food manufacturers also have a variety of options when it comes to the detection of foreign objects from entering food on production lines. In addition to metal detectors, x-ray systems, optical sorting and camera-based systems, novel methods such as infrared multi-wavelength imaging and nuclear magnetic resonance are in development to resolve the problem of detection of similar foreign materials in a complex background. Such systems are commonly identified as CCPs (Critical Control Points)/preventive controls within our food safety plans.

But what factors should you focus on when deciding between different inspection systems? Product type, flow characteristics, particle size, density and blended components are important factors in foreign material detection. Typically, food manufacturers use metal and/or x-ray inspection for foreign material detection in food production as their CCP/preventive control. While both technologies are commonly used, there are reasons why x-ray inspection is becoming more popular. Foreign objects can vary in size and material, so a detection method like an x-ray that is based on density often provides the best performance.

Regardless of which detection system you choose, keep in mind that FSMA gives FDA the power to scientifically evaluate food safety programs and preventive controls implemented in a food production facility, so validation and verification are crucial elements of any detection system.

It is also important to remember that a key element of any validation system is the equipment validation process. This process ensures that your equipment operates properly and is appropriate for its intended use. This process consists of three steps: Installation qualification, operational qualification and performance qualification.

Installation qualification is the first step of the equipment validation process, designed to ensure that the instrument is properly installed, in a suitable environment free from interference. This process takes into consideration the necessary electrical requirements such as voltage and frequency ratings, as well as other factors related with the environment, such as temperature and humidity. These requirements are generally established by the manufacturer and can be found within the installation manual.

The second step is operational qualification. This ensures that the equipment will operate according to its technical specification. In order to achieve this, the general functions of the equipment must be tested within the specified range limits. Therefore, this step focuses on the overall functionality of the instrument.

The third and last step is the performance qualification, which is focused on providing documented evidence through specific tests that the instrument will performs according to the routine specifications. These requirements could be established by internal and industry standards.

Following these three steps will allow you to provide documented evidence that the equipment will perform adequately within the work environment and for the intended process. After completion of the equipment validation process, monitoring and verification procedures must be established to guarantee the correct operation of the instrument, as well procedures to address deviations and recordkeeping. This will help you effectively control the hazards identified within our operation.

There can be massive consequences if products contaminated with foreign material are purchased and consumed by the public. That’s why the development and implementation of a strong food safety/ HACCP plan, coupled with the selection and validation of your detection equipment, are so important. These steps are each key elements in protecting your customers and your brand.

Wawona Bagged Peaches, ALDI

Bagged Peaches from ALDI Recalled Following Salmonella Outbreak

By Food Safety Tech Staff
No Comments
Wawona Bagged Peaches, ALDI
Wawona Bagged Peaches, ALDI

As a precautionary measure, ALDI is voluntarily recalling assorted peaches received from its supplier, Wawona Packing Company, due to possible Salmonella contamination.

–UPDATE AUGUST 31, 2020 — Prima Wawona has recalled bagged, bulk and loose peaches that were distributed nationwide to retailers that include ALDI, Food Lion, Hannaford, Kroger, Target, Walmart and Wegmans. As of August 28, the CDC reported the outbreak of Salmonella infections reached 78 cases across 12 states.

In addition, the recall of Prima Wawona peaches has extended to Canada, Singapore and New Zealand. FDA states that the products may have been shipped to Australia, Canada, China, Costa Rica, Ecuador, El Salvador, Guatamala, Honduras, Mexico, Panama, the Philippines, Singapore, Taiwan and the United Arab Emirates.

–END UPDATE–

Do not eat, sell or serve Wawona-brand bagged peaches from ALDI stores, says the FDA. ALDI issued a voluntary recall of two-pound clear plastic bags of peaches from Wawona Packing Company, LLC following a multistate outbreak of Salmonella Enteritidis that has been linked to the product. The peaches were sold in ALDI stores from June 1 until present, and as of August 19, the CDC reported 68 cases of Salmonella infections across nine states, with 14 hospitalizations. No deaths have been reported

“FDA’s traceback investigation is ongoing to identify the source of this outbreak and to determine if potentially contaminated product has been shipped to additional retailers,” the agency stated in an investigation update.

FDA

More Cases of Cyclospora Reported from Bagged Salads, Pathogen Found in Irrigation Canal

By Food Safety Tech Staff
No Comments
FDA

Learn more about food safety supply chain management & traceability during the 2020 Food Safety Consortium Virtual Conference SeriesThe FDA and CDC have been investigating a multistate outbreak of Cyclospora involving bagged salads from Fresh Express since June. Although the products were recalled and should no longer be available in retail locations, the CDC continues to report more cases. As of August 12, 2020, the CDC counted 690 people with laboratory-confirmed Cyclospora infections throughout 13 states. Thirty-seven people have been hospitalized, and no deaths have been reported.

As the FDA conducted its traceback investigation to find the source of the outbreak linked to the Fresh Express products, the agency was able to identify several farms. It analyzed water samples from two public access points along a regional water management canal (C-23) west of Port St. Lucie, Florida. Using the FDA’s validated testing method, the samples tested positive for Cyclospora cayetanensis. However, it is important to note that the Cyclospora found might not be a direct match to the pathogen found in the clinical cases.

According to FDA: “Given the emerging nature of genetic typing methodologies for this parasite, the FDA has been unable to determine if the Cyclospora detected in the canal is a genetic match to the clinical cases, therefore, there is currently not enough evidence to conclusively determine the cause of this outbreak. Nevertheless, the current state of the investigation helps advance what we know about Cyclospora and offers important clues to inform future preventive measures.”

The agency’s traceback investigation is complete, but the cause or source of the outbreak has not been determined. The investigation also revealed that carrots are no longer of interest at as part of the outbreak, but red cabbage and iceberg lettuce are still being investigated. FDA is also working with Florida and the area’s local water district to learn more about the source of Cyclospora in the canal.

Susanne Kuehne, Decernis
Food Fraud Quick Bites

Food Fraud, Fruit Fraud

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Lemon
Find records of fraud such as those discussed in this column and more in the Food Fraud Database.
Image credit: Susanne Kuehne

Even unprocessed fruit can be a target for food fraudsters. Fraudulent fruit does not only damage a company’s brand, but it also may have pesticide and other residue levels above the permitted limit. Counterfeit branding and packaging was used in exports of 2 tons of lemons from China. It is not the first time that such fraud happened and the affected company won a lawsuit earlier this year. To prevent such mislabeling in the future, the company finally registered its brand with Chinese authorities.

Resource

  1. Phil Taylor (August 6, 2020) “Counterfeit Unifrutti lemons seized in China”. Securing Industry.

 

Karen Everstine, Decernis
Food Fraud Quick Bites

Adulteration of Botanical Ingredients

By Karen Everstine, Ph.D.
No Comments
Karen Everstine, Decernis

Botanical ingredients are important to the food and beverage industries as well as the dietary supplements industry. Botanicals are plants or specific plant parts (leaves, roots, bark, berries, etc.) that are used for particular properties. These properties can be therapeutic or related to color, flavor or other attributes. Botanicals include extracts such as Ginkgo biloba, saw palmetto, and elderberry as well as herbs and spices used in cooking, essential oils, pomegranate juice and extracts, and olive oil. There is a substantial overlap between botanical products used in the herb and supplement industries and those used in foods and beverages. Many “conventional” foods and beverages include botanical extracts or other ingredients to advertise a therapeutic effect.

In 2014, FDA issued a final guidance for industry related to labeling of liquid dietary supplements (vs. beverages). FDA noted, in their rationale for the guidance, two trends:

“First, we have seen an increase in the marketing of beverages as dietary supplements, in spite of the fact that the packaging and labeling of many liquid products represent the products as conventional foods. Products that are represented as conventional foods do not meet the statutory definition of a dietary supplement…and must meet the regulatory requirements that apply to conventional foods.

Second, FDA has seen a growth in the marketplace of beverages and other conventional foods that contain novel ingredients, such as added botanical ingredients or their extracts. Some of these ingredients have not previously been used in conventional foods and may be unapproved food additives. In addition, ingredients that have been present in the food supply for many years are now being added to beverages and other conventional foods at levels in excess of their traditional use levels or in new beverages or other conventional foods. This trend raises questions regarding whether these ingredients are unapproved food additives when used at higher levels or under other new conditions of use. Some foods with novel ingredients also bear claims that misbrand the product or otherwise violate the FFDCA.”

The American Botanical Council (ABC) has been publishing information on the safe, responsible and effective use of botanicals since 1988, including the quarterly journal HerbalGram and a book of herb monographs The ABC Clinical Guide to Herbs. In order to help combat the increasing problem of adulteration in the industry, the Botanical Adulterants Prevention Program (BAPP) was launched in 2010 by ABC along with the American Herbal Pharmacopeia and the University of Mississippi National Center for Natural Products Research. The goal of BAPP is to educate members of the herbal and dietary supplement industry about ingredient and product adulteration through the publication of documents such as adulteration bulletins and laboratory guidance documents. The information in these documents helps ensure the identity, authenticity and safety of botanicals along the supply chain.

Karen Everstine will be discussing food fraud during the 2020 Food Safety Consortium Virtual Conference Series | An example of the Botanical Adulterants Prevention Bulletin for cranberry is seen in Figure 1. It includes a description of the species that can be labeled as cranberry in the United States, a brief description of the marketplace, information on potential adulterants in cranberry fruit extract and other cranberry products, and guidance on analytical methods to test cranberry products for adulteration.

Cranberry adulteration, Botanical Adulterants Bulletin
Figure 1 courtesy of Decernis and the Botanical Adulterants Bulletin.

Decernis has been working with the Botanical Adulterants Prevention Program (BAPP) to integrate links to their expert content into the Food Fraud Database (FFD). This will ensure our users can better develop ingredient specifications, manage risk, and protect their consumers by leveraging this content for food fraud and herbal ingredient fraud prevention. We are currently incorporating three types of BAPP documents into FFD:

  • Adulterants Bulletins. Information and links to these documents will be entered as Inference records in FFD. We are extracting ingredient and adulterant names (including Latin names as synonyms) from the document, assigning “Reasons for Adulteration,” and providing a link to the full document on the BAPP website.
  • Adulteration Reports. Information and links to these documents will also be entered as Inference records in FFD. We are extracting ingredient and adulterant names from the document, assigning “Reasons for Adulteration,” and providing a link to the full document on the BAPP website.
  • Laboratory Guidance documents. Information and links to these documents will be entered as both method record and inference records in FFD. We are extracting ingredient and adulterant names from the document, assigning “Reasons for Adulteration,” and providing a link to the full document on the BAPP website.

Decernis analysts are currently integrating this content into FFD, which will be uploaded to the system between now and early September.

Shawna Wagner, DNV GL
FST Soapbox

Pandemics and Your Business Continuity Plan

By Shawna Wagner
2 Comments
Shawna Wagner, DNV GL

Who would have even thought to put the topic of a pandemic in your business continuity plan? I know, I sure never thought of it, even as a senior auditor. I think that most of us are familiar with the typical subjects of tornados, floods, power outages and disgruntled employees, to name a few. We now need to focus on adding a pandemic to the to-do list of your plan, as this global issue has become a reality since early 2020.

It is quite likely that your plant has been affected by COVID-19 in some way, therefore your site has put into place actions to mitigate the risks posed by the pandemic. What may not be likely, is that any of these actions have been documented. I have currently seen plants evolve actions based on the severity of the pandemic in their locations. Travel restrictions, reduced work force, changing employee personal protective equipment, additional employee monitoring, and remote work environments are some of the examples directly affecting sites that I have witnessed during the first half of this year. As plants learn and experience more issues, they tend to adapt to how they are mitigating the risks in their facilities.

Capturing what actions went smoothly and what has gone astray will aid in strengthening your business continuity plan. Pandemics as well as other extraordinary events are handled by a multi-step approach that needs organization and good communication. That is why it is imperative to build and document actions, then verify how those steps are to be used. Involving key personnel–not just the quality manager–at the site is a best practice in getting a full grasp on what needs to happen during an emergency. In several instances, I have witnessed that key personnel are not informed about where a site’s business continuity plan is located; or the plan was updated right before an audit and after goes back on the shelf for the next 12 months, collecting dust. Employees should be trained on the contents of the plan, their responsibilities (if they are part of the business continuity team), current contacts, updates, and ways to initiate proper channels, if or when a time comes to do so. Hopefully, it never does, but it sure does not hurt to be prepared.

The business continuity plan is not a “one-size-fits-all” approach for plants. An important consideration, when defining what actions to take, if your area has been plagued by a pandemic includes determining what risks are brought by employees, visitors (i.e., contractors), location, and type of product being produced. Plant A making a high-risk open product may implement additional hand washing and sanitation, whereas Plant B making a low-risk closed product may implement additional health screening (i.e., temperature checks) for employees. You should ensure that it makes sense, and it is beneficial for your site and your interested parties, such as customers, consumers and stakeholders.

Your business continuity plan should be built to be a great resource to you in the time of need. And in return, you will have to put some elbow grease into shaping the document in a way that fits the ever-changing food environment. Keeping your plant current will assist your business to quickly respond to a negative event. In consequence, not having a plan that works for your site, or any at all, could lead to closed doors.

Susanne Kuehne, Decernis
Food Fraud Quick Bites

Deadly Fraudulent Libations

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
counterfeit wine, food fraud
Find records of fraud such as those discussed in this column and more in the Food Fraud Database. Image credit: Susanne Kuehne

Counterfeit alcoholic beverages keep claiming lives, like in this latest case in the state of Punjab in India. To curb the consumption of alcohol, the Indian government has imposed high taxes on alcoholic beverages, with the effect of increased illegal alcohol production. Often, the alcohol is from a variety of sources like nuts and sugar cane and of poor quality, posing a health hazard. Officials raided numerous operations and arrested multiple suspects, including police officers and customs officials.

Resource

  1. Jamshaid, U. (August 2, 2020). “India’s Death Toll From Counterfeit Alcohol Rises To 86 – Authorities”.
Pratik Soni, Omnichain
Retail Food Safety Forum

Top Three Visibility Challenges in Today’s Food Supply Chain

By Pratik Soni
No Comments
Pratik Soni, Omnichain

To say that COVID-19 has been disruptive would be putting it mildly. The pandemic’s sudden and seismic impact has brought major upheaval across industries—the food industry and its supply chain included.

There was the initial panic buying that drove upticks in consumer demand for which few manufacturers and grocers were prepared, resulting in widespread product shortages. With restaurants closed, distributors and suppliers were left with considerable excess inventory—most of which ended up as waste and losses. Inside production sites and plants, many had to try and maintain their output with a reduced workforce, even as demand continued to climb. Meanwhile, some plants unfortunately have had to shut down operations on account of employees testing positive for COVID-19.

In the time since the outbreak, the food supply chain has stabilized to an extent. Store shelves are continuously being replenished with products. Restaurants have started reopening with new health and safety measures. Yet even as the industry takes gradual steps toward recovery, the underlying problem that led to the magnitude of COVID-19’s impact persists: Lack of visibility. There was lack of visibility into supply and demand and what was happening upstream and downstream across the supply chain, which prevented timely, proactive action to optimize operations in face of disruption.

Looking ahead, participants across the food supply chain will need enhanced end-to-end visibility so that they can work together to get ahead of the curve. As part of gaining this visibility, they will need the transparent exchange of information and cohesive collaboration to adapt especially as the food industry continues to see shifts in consumer behavior and the marketplace in the wake of COVID-19—particularly in the following three key areas.

Food Distribution

While food producers have been working tirelessly to keep grocery store shelves and restaurant kitchens well stocked, there continues to be fluctuating availability on certain products, such as eggs, dairy, poultry and meat. This has led distributors and suppliers to increase their prices when selling these goods to stores and restaurants, who have had to then pass the additional costs on to consumers through their own price increases and surcharges, respectively. One report from CoBank, a cooperative bank part of the Farm Credit System, notes there could be as much as a 20% increase in the price of pork and beef this year due to supply issues.1 Many grocers have also implemented purchase limitations on consumers to combat shortages.

These downstream implications stem largely to uncertainty in the supply chain, with stores and restaurants unsure about available supply upstream and when they can expect to receive shipments. But if there was clearer visibility and transparency between production, distribution, transportation, food service and retail, then all parties could better anticipate and plan for supply shortages or delays. For instance, if a meat processing plant has to temporarily close due to cases of COVID-19, they can immediately communicate to the rest of the supply chain so that parties downstream can readily find alternative sources and minimize any necessary price inflations or other implications to consumers.

Consumer Demand

Even with the reopening of restaurants, people will likely choose to cook more of their meals at home. It was a trend that began with restaurant closures and will continue for the foreseeable future as consumers remain cautious of dining out. While this may bring tough times ahead for the food service industry, the grocery sector is seeing a huge lift in business. Research from restaurant management platform Crunchtime shows that, towards the end of June, restaurants were only seeing 64.5% of their pre-COVID-19 sales levels.2 At the same time, a study by Brick Meets Click and Mercatus reveals U.S. online grocery sales reached a record $7.2 billion in June, up nearly 10% over May.3

For food companies and brands, growth in the grocery sector has presented a challenge in the way of demand planning and forecasting. I’ve personally spoken with several company executives who have seen significant upticks in orders from their grocery channel partners—an increase for which they didn’t forecast—and are now struggling to adjust production levels accordingly to avoid the risk of excess production that would lead to unnecessary costs, wastes and losses. In such instances, real-time visibility into transactional activity and stock levels at the retail level would help production planners improve the accuracy of their forecasts and enable them to think steps ahead before orders come in and thereby optimally balance supply with demand. Stores would remain well stocked and the supply chain could flow in a more efficient and profitable way for all participants.

Food Handling

Without question, public health is the number one priority right now. Participants at each point in the food supply chain today need to communicate with each other, as well as to consumers, that they’re following best practices for social distancing, disinfecting and other precautions. It’s not to prevent the possible transfer of the virus via actual products, as the FDA notes there is currently no evidence of transmission through food or packaging. But rather, it’s to build greater confidence in the food supply chain—that everyone is doing their part to support individual and collective health and safety, which in turn prevents possible facility closures or other case-related bottlenecks that would inhibit consistent supply to the market.

There also has to be confidence that, amid these countermeasures for COVID-19, companies are still upholding their commitments to food safety, integrity and proper handling. What can support that confidence is data—shared data from every point in a product’s journey from source to shelf. The data should be transparent and available to all supply chain participants as well as immutable so that it is tamperproof and fully traceable should there be any problem, such as mislabeling or a foodborne illness. The data ultimately holds everyone accountable for their role in ensuring a safe food supply chain.

To achieve the level of visibility outlined above, the food industry will have to break away from legacy processes involving the siloed management of operational systems and databases. Instead, the disruption seen during COVID-19 and ongoing shifts in the marketplace should encourage companies to consider digital transformation and technologies that can enable a more cohesive and nimble food supply chain. These are technologies like blockchain, which provides a decentralized, distributed ledger to publish and share data in real time. Moreover, artificial intelligence that can leverage incoming real-time data to guide next-best actions, even when the unexpected occurs. Personally, I always return to the notion that the supply chain is a team sport. You need visibility to know what each team member is doing on the field and how to align everyone on a gameplay. The digital solutions available today offer that visibility and insight, as well as the agility to pivot as needed to obstacles along the journey from source to shelf.

References

  1. Taylor, K. (May 6, 2020). “The American meat shortage is pushing prices to unprecedented heights — here’s how it could affect your grocery bill.” Business Insider.
  2. Maze, J. (July 7, 2020). “As the coronavirus resurges, restaurant sales start slowing again.” Restaurant Business.
  3. Perez, S. (July 6, 2020). “US online grocery sales hit record $7.2 billion in June.” TechCrunch.
LIMS, Laboratory information management system, food safety

How Advanced LIMS Brings Control, Consistency and Compliance to Food Safety

By Ed Ingalls
No Comments
LIMS, Laboratory information management system, food safety

Recent food scandals around the world have generated strong public concerns about the safety of the foods being consumed. Severe threats to food safety exist at all stages of the supply chain in the form of physical, chemical and biological contaminants. The current pandemic has escalated the public’s concern about cross contamination between people and food products and packaging. To eliminate food risks, manufacturers need robust technologies that allow for reliable monitoring of key contaminants, while also facilitating compliance with the ISO 17025 standard to prove the technical competence of food testing laboratories.

Without effective data and process management, manufacturers risk erroneous information, compromised product quality and regulatory noncompliance. In this article, we discuss how implementing a LIMS platform enables food manufacturers to meet regulatory requirements and ensure consumer confidence in their products.

Safeguarding Food Quality to Meet Industry Standards

Food testing laboratories are continually updated about foodborne illnesses making headlines. In addition to bacterial contamination in perishable foods and ingredient adulteration for economic gains, chemical contamination is also on the rise due to increased pesticide use. Whether it is Salmonella-contaminated peanut butter or undeclared horsemeat inside beef, each food-related scandal is a strong reminder of the importance of safeguarding food quality.

Food safety requires both preventive activities as well as food quality testing against set quality standards. Establishing standardized systems that address both food safety and quality makes it easier for manufacturers to comply with regulatory requirements, ultimately ensuring the food is safe for public consumption.

In response to food safety concerns, governing bodies have strengthened regulations. Food manufacturers are now required to ensure bacteria, drug residues and contaminant levels fall within published acceptable limits. In 2017, the ISO 17025 standard was updated to provide a risk-based approach, with an increased focus on information technology, such as the use of software systems and maintaining electronic records.

The FDA issued a notice that by February 2022, food testing, in certain circumstances, must be conducted in compliance with the ISO 17025 standard. This means that laboratories performing food safety testing will need to implement processes and systems to achieve and maintain compliance with the standard, confirming the competence, impartiality and consistent operation of the laboratory.

To meet the ISO 17025 standard, food testing laboratories will need a powerful LIMS platform that integrates into existing workflows and is built to drive and demonstrate compliance.

From Hazard Analysis to Record-Keeping: A Data-Led Approach

Incorporating LIMS into the entire workflow at a food manufacturing facility enables the standardization of processes across its laboratories. Laboratories can seamlessly integrate analytical and quality control workflows. Modern LIMS platforms provide out-of-the-box compliance options to set up food safety and quality control requirements as a preconfigured workflow.

The requirements set by the ISO 17025 standard build upon the critical points for food safety outlined in the Hazard Analysis and Critical Control Points (HACCP) methodology. HACCP, a risk-based safety management procedure, requires food manufacturers to identify, evaluate and address all risks associated with food safety.

LIMS, laboratory information management system
LIMS can be used to visualize control points for HACCP analysis according to set limits. Graphic courtesy of Thermo Fisher Scientific.

The systematic HACCP approach involves seven core principles to control food safety hazards. Each of the following seven principles can be directly addressed using LIMS:

  • Principle 1. Conduct a hazard analysis: Using current and previous data, food safety risks are thoroughly assessed.
  • Principle 2. Determine the critical control points (CCPs): Each CCP can be entered into LIMS with contamination grades assigned.
  • Principle 3. Establish critical limits: Based on each CCP specification, analytical critical limits can be set in LIMS.
  • Principle 4. Establish monitoring procedures: By defining sampling schedules in LIMS and setting other parameters, such as frequency and data visualization, procedures can be closely monitored.
  • Principle 5. Establish corrective actions: LIMS identifies and reports incidents to drive corrective action. It also enables traceability of contamination and maintains audit trails to review the process.
  • Principle 6. Establish verification procedures: LIMS verifies procedures and preventive measures at the defined CCPs.
  • Principle 7. Establish record-keeping and documentation procedures: All data, processes, instrument reports and user details remain secured in LIMS. This information can never be lost or misplaced.

As food manufacturers enforce the safety standards set by HACCP, the process can generate thousands of data points per day. The collected data is only as useful as the system that manages it. Having LIMS manage the laboratory data automates the flow of quality data and simplifies product release.

How LIMS Enable Clear Compliance and Optimal Control

Modern LIMS platforms are built to comply with ISO 17025. Preconfigured processes include instrument and equipment calibration and maintenance management, traceability, record-keeping, validation and reporting, and enable laboratories to achieve compliance, standardize workflows and streamline data management.

The workflow-based functionality in LIMS allows researchers to map laboratory processes, automate decisions and actions based on set criteria, and reduce user intervention. LIMS validate protocols and maintain traceable data records with a clear audit history to remain compliant. Data workflows in LIMS preserve data integrity and provide records, according to the ALCOA+ principles. This framework ensures the data is Attributable, Legible, Contemporaneous, Original and Accurate (ALCOA) as well as complete, consistent and enduring. While the FDA created ALCOA+ for pharmaceutical drug manufacturers, these same principles can be applied to food manufacturers.

Environmental monitoring and quality control (QC) samples can be managed using LIMS and associated with the final product. To plan environmental monitoring, CCPs can be set up in the LIMS for specific locations, such as plants, rooms and laboratories, and the related samples can then be added to the test schedule. Each sample entering the LIMS is associated with the CCP test limits defined in the specification.

Near real-time data visualization and reporting tools can simplify hazard analysis. Managers can display information in different formats to monitor critical points in a process, flag unexpected or out-of-trend numbers, and immediately take corrective action to mitigate the error, meeting the requirements of Principles 4 and 5 of HACCP. LIMS dashboards can be optimized by product and facility to provide visibility into the complete process.

Rules that control sampling procedures are preconfigured in the LIMS along with specific testing rules based on the supplier. If a process is trending out of control, the system will notify laboratory personnel before the product fails specification. If required, incidents can be raised in the LIMS software to track the investigation of the issue while key performance indicators are used to track the overall laboratory performance.

Tasks that were once performed manually, such as maintaining staff training records or equipment calibration schedules, can now be managed directly in LIMS. Using LIMS, analysts can manage instrument maintenance down to its individual component parts. System alerts also ensure timely recalibration and regular servicing to maintain compliance without system downtime or unplanned interruptions. The system can prevent users from executing tests without the proper training records or if the instrument is due for calibration or maintenance work. Operators can approve and sign documents electronically, maintaining a permanent record, according to Principle 7 of HACCP.

LIMS allow seamless collaboration between teams spread across different locations. For instance, users from any facility or even internationally can securely use system dashboards and generate reports. When final testing is complete, Certificates of Analysis (CoAs) can be autogenerated with final results and showing that the product met specifications. All activities in the system are tracked and stored in the audit trail.

With features designed to address the HACCP principles and meet the ISO 17025 compliance requirements, modern LIMS enable manufacturers to optimize workflows and maintain traceability from individual batches of raw materials all the way through to the finished product.

Conclusion

To maintain the highest food quality and safeguard consumer health, laboratories need reliable data management systems. By complying with the ISO 17025 standard before the upcoming mandate by the FDA, food testing laboratories can ensure data integrity and effective process management. LIMS platforms provide laboratories with integrated workflows, automated procedures and electronic record-keeping, making the whole process more efficient and productive.

With even the slightest oversight, food manufacturers not only risk product recalls and lost revenue, but also losing the consumers’ trust. By upholding data integrity, LIMS play an important role in ensuring food safety and quality.

Susanne Kuehne, Decernis
Food Fraud Quick Bites

Prosecution Puts an End to Cash Cow

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Sulfites, food fraud
Find records of fraud such as those discussed in this column and more in the Food Fraud Database.
Image credit: Susanne Kuehne

Sulfites and sulfur dioxide can make meats look fresher than they truly are, and therefore are banned by the FDA The Australia New Zealand Food Standards Code also prohibits the addition of sulfites to raw meat. Not only is there a risk of meat past its prime getting into the food supply, sulfites may also pose a danger to allergy and asthma sufferers. More than 23 tons of ground beef were freshened up illegally with sulfites and sold in New Zealand to consumers. The manufacturer was recently sentenced to a fine in this two-year old case.

Resource

  1. News Desk. (July 27, 2020). “NZ company fined for adding sulfites to ground beef”. Food Safety News.

The 2020 Food Safety Consortium Virtual Series features an episode on Food Integrity & Food Fraud. The episode takes place on Thursday, October 22. Learn more about 2020 FSC now!