Tag Archives: food waste

Dollar

Quantifying the ROI of Environmental Monitoring Program Automation

By Joseph Heinzelmann
No Comments
Dollar

The COVID-19 pandemic heightened the urgency for food brands to adopt technology solutions that support remote management of environmental monitoring programs (EMPs) as they strive to provide safe products to customers. While digital transformation has progressed within the food safety industry, food and beverage manufacturers often have lower profitability as compared to other manufacturing industries, such as pharmaceutical and high-tech equipment, which can lead to smaller IT spend.1 Many companies still rely on manual processes for environmental monitoring and reporting, which are prone to error, fail to provide organizations with visibility into all of their facilities and limit the ability to quickly take corrective actions.

Despite growing recognition of the value of automating testing, diagnostics, corrective actions and analytic workflows to prevent contamination issues in food production environments, barriers to adoption persist. One key obstacle is the recurring mindset that food safety is a necessary compliance cost. Instead, we need to recognize that EMP workflow automation can create real business value. While the downside of food safety issues is easy to quantify, organizations still struggle to understand the upside, such as positive contributions to productivity and a stronger bottom-line achieved by automating certain food safety processes.

To understand how organizations are using workflow automation and analytics to drive quantifiable business ROI, a two-year study that included interviews and anonymized data collection with food safety, operations, and executive leadership at 34 food organizations was conducted.

The respondents represent more than 120 facilities using advanced EMP workflow automation and analytics. Based on the interviews and the shared experience of food organization leaders, two key examples emerged that demonstrate the ROI of EMP automation.

Improved Production Performance

According to those interviewed, one of the primary benefits of EMP automation (and driver of ROI) is minimizing production disruptions. A temporary conveyor shutdown, unplanned cleaning, or extensive investigatory testing can add up to an astounding 500 hours annually at a multi-facility organization, and cost on average $20,000 to $30,000 per hour.2 So, it’s obvious that eliminating costly disruptions and downtime has a direct impact on ROI from this perspective.

But organizations with systems where information collected through the EMP is highly accessible have another advantage. They are able to take corrective actions to reduce production impacts very quickly. In some cases, even before a disruption happens.
By automatically feeding EMP data into an analytics program, organizations can rapidly detect the root cause of issues and implement corrective actions BEFORE issues cause production delays or shutdowns.

In one example, over the course of several months, a large dairy company with manual EMP processes automated its food safety workflows, improved efficiencies, reduced pathogen positives and improved its bottom line. At the start of the study, the company increased systematic pathogen testing schedules to identify where issues existed and understand the effectiveness of current sanitation efforts. With improved access to data on testing, test types and correlated sanitation procedures, the company was able to implement a revamped remediation program with more effective corrective action steps.

Ultimately, the automated workflows and analytics led to reduced positive results and more efficient EMP operations for the company as compared to the “crisis-mode” approach of the past. The associated costs of waste, rework, delayed production starts, and downtime caused by food safety issues were significantly reduced as illustrated in Figure 1.

EMP automation
Figure 1: Reduction of food safety testing costs through EMP automation. Customer Study 2016-2018. All figures courtesy of Corvium, Inc.

Quantifying the ROI of Production Performance Improvements

The financial impact of reducing production downtime by just 90 minutes per week can be dramatic when looked at by cumulative results over multiple weeks. In fact, eliminating just a few delayed starts or unplanned re-cleaning can have significant financial gains.

Figure 2 shows the business impact of gaining 90 minutes of production up-time per week by automating food safety operations. For the purposes of this analysis, the “sample organization” depicted operates two facilities where there are assumptions that down-time equates to a cost value of $30,000 per hour, and that both plants experience an average of 90 minutes of downtime per week that can be re-gained.

Production Performance Improvement ROI Calculation
Figure 2: Sample Production Performance Improvement ROI Calculation.

Reduced Food Waste

The second key insight uncovered in the two-year study was the impact that automating the EMP process had on waste. An estimated 30–40% of all food produced in the United States is wasted, and preventable food safety and quality issues account for a substantial portion of this waste.3

A key challenge shared by study participants was detecting food safety issues early enough to avoid wasting an entire production run. Clearly, the later in a processing or manufacturing run that issues are discovered, the greater the potential waste. To limit this, organizations needed near real-time visibility into relevant food safety and EMP data.

By automating EMP workflows, they solved this issue and created value. By tracking and analyzing data in near real time, production teams were able to keep up with ever-moving production schedules. They could define rules to trigger the system to automatically analyze diagnostic results data and alert stakeholders to outliers. Impacted food product could be quickly identified and quarantined when needed before an entire production run was wasted.

Companies included in the study realized substantial benefits from the increased efficiencies in their testing program. According to a food safety quality assurance manager at a large U.S. protein manufacturer, “Our environmental monitoring program has reached new heights in terms of accuracy, communication, visibility and efficiency. Manual, time-intensive tasks have been automated and optimized, such as the ability to search individual sample or submittal IDs, locate them quickly and make any necessary changes.”

Quantifying the ROI of Food Waste Reductions

Figure 3 shows how measuring the business impact of gaining back just 10% of scrapped food per week. For the purposes of this analysis, the “sample organization” depicted operates two facilities where there are 500 lbs. of finished product scrapped each week, and the value per pound of finished product is valued at a cost of $1 per pound.

Sample Waste Reduction ROI Calculation
Figure 3. Sample Waste Reduction ROI Calculation.

Conclusion

Automating EMP workflows decreases the time required to receive and analyze critical EMP data, helping food manufacturers achieve significant improvements in production performance, waste reduction and overall testing efficiency. By using these same ROI calculations, food brands can better illustrate how improved food safety processes can build value, and help leaders see food safety as a brand imperative rather than a cost center. As food organizations progress through each stage of digital transformation, studies like this can show real-world examples of business challenges and how other organizations uncovered value in adoption of new technologies and tools.

References

  1. CSIMarket, Inc. (2021). Total Market Profitability.
  2. Senkbeil, T. (2014). Built to Last: Maintaining Reliability and Uptime of Critical Connected Systems in Industrial Settings. Anixter.
  3. USDA. Food Waste FAQs.
Stephen Dombroski, QAD
FST Soapbox

Food Insecurity Vs. Food Waste: Producers and Manufacturers Can Affect the Balance

By Stephen Dombroski
No Comments
Stephen Dombroski, QAD

As the population continues to grow and the effects of climate change, global warming, pollution and other factors impact humanity’s ability to grow and provide enough food for itself, the concern that the world could run out of food is increasing.. The COVID-19 pandemic has put more focus on how fragile the food supply chain is and how easy it is to disrupt the process of feeding the world. For years, it has been mostly a topic of discussion. But with so many disruptions, it is now an issue that needs to be acted on. Social groups, civic associations, government bodies and food manufacturers have taken notice of the problem and are attempting to get their hands around the issues. One of the key points in this discussion revolves around the amount of food and food sources that will be needed in the future. It always starts with the same question: “Will there be enough food?” Most people immediately say no. But is that 100% true? This is where the debate between food insecurity and food waste begins.

What is Food Insecurity?

According to the Office of Disease Prevention and Health Promotion, food insecurity is defined as “the disruption of food intake or eating patterns due to lack of money or other resources…Food insecurity does not necessarily cause hunger, but hunger is a possible outcome.” The debate about whether there is or isn’t enough food can get pretty contentious. There are many people in many countries that are “food insecure.” The problem in many cases, however, is due to affordability rather than availability. There are distinct issues and differences between availability and affordability. Go to any grocery store or purchasing venue in most developed countries and for the most part, the shelves are well stocked. The obvious conclusion is that there is enough food. However, can the entire population afford that food? Now, go to countries that are not as developed and you would be hard-pressed to find a grocery store that is as well stocked. Even if the population can afford to buy it, there simply is not enough food to buy. The difference between these two scenarios is where the debate begins. People talk about climate change making it challenging to produce enough food to meet the world’s needs, but store shelves in developed countries are full. All the while edible food is getting thrown away and destroyed in ridiculous amounts each day.

The world agrees that manufacturers, governments and consumers have a social responsibility to do their part to combat world hunger. Consumers are becoming more aware of food security and the threat that climate change poses. There are trends supporting sustainability in daily diets, with meals lower in environment impact and awareness of plate portions and food waste. Government agencies are working with manufacturers to resize portions and package sizes to align with scientific research on the necessary amount of food and nutrients needed in diets. Manufacturers and their customers (retail channels) are working more closely to create accurate and realistic “best by dates” to reduce the amount of food that is thrown out as “expired.”

World health organizations are increasing their focus as well. The U.N. World Food Program (WFP) is addressing hunger and emphasizing “food security.” WFP provides 15 billion meals to nearly 100 million people suffering from the effects of life-threatening hunger in over 80 countries. Manufacturers are expanding their participation in this area by increasing and improving donation programs, developing nutritional foods from new sources and incorporating limited perishability to make foods last longer and minimize food waste.

Wasted Food: An Understated and Complex Problem

If you think about it, the two largest consumers of food are garbage disposals and landfills. Both are well fed. Landfills receive both expired food that is not used and consumer food waste. Obviously, garbage disposals are used by consumers for cooked food that is not eaten or saved. I bring this up because it sparks the discussion of defining food waste. People use this term often and many times it is about food that consumers discard. But food waste has multiple categories and mirrors the supply chain. Food waste occurs at the following levels:

  • Growers/agricultural
  • Supplier
  • Primary producer/manufacturer
  • Distribution/transportation
  • Retail
  • Foodservice providers
  • The consumer

Approximately one-third of the total food produced globally—about 1.4 billion tons—is wasted. In addition to the loss of a great deal of edible food, there are other consequences to this waste. Food waste and food loss impact climate change, accounting for roughly 10% of the world’s greenhouse gas emissions. Human behavior is a significant contributor to climate change. Luckily, habits can be changed through education, like encouraging composting or recycling. Portion control at restaurants and in the home can make us healthier and also help to reduce food waste. Another trend in recent years is the migration for many consumers to healthier eating. This typically consists of using and consuming fresh ingredients with less processing and chemical additives. These ingredients, however, typically have shorter shelf lives and end up contributing to the growing amount of food waste. Over the last 10 years, food manufacturers, suppliers and the greater agricultural community have focused on efforts to reduce food and other wastes that fall into the sustainability category such as energy, water, materials used in packaging, etc. Food producers have figured out ways to repurpose unused ingredients, by-products and waste. Many sell to farms to be converted to feed and fertilizer. Some is sold to pet and animal feed producers to convert into sellable products. It is actually quite a profitable business for many manufacturers.

Balancing Between Food Insecurity and Food Waste

Analyzing both concepts requires a balancing act. On one hand, you can argue that if you recoup 1.4 billion tons of wasted food, or let’s say, even half of it, we might eliminate the hunger problem. But then consider the issue of food costs. When people go shopping for food, an often-heard comment is, “I can’t believe how much this food costs.” You have said it, and I have too. However, I have spent a significant amount of time in food manufacturing facilities of almost every vertical segment and I have a hard time not saying, “I can’t believe this only costs this much.” The entire process from field to fork for most food items is extraordinarily complex and comes with a wide array of costs. Most food manufacturing businesses are meager margin. They turn a profit but most feel the social responsibility to provide quality food at reasonable prices.

The industry is making significant progress, however, and more can be done. With new technology including IoT, Industry 4.0 and Smart Agriculture, resources such as land, water and space are being utilized much more efficiently to increase supply. This reduces costs. Through the use of technology, farmers are growing healthier more sustainable crops that minimize waste. Food and beverage manufacturers are now using business systems and processes to better communicate with suppliers. Adaptive ERP and integrated business planning are simplifying the supply chain, helping to maximize shelf lives and minimize food waste. As we move into 2021 and beyond, technology and integrated business systems and processes throughout the entire food supply and value chain will help minimize food waste and hopefully reduce costs. This should bridge the gap between food insecurity and food waste.

Stephen Dombroski, QAD
FST Soapbox

8 Reasons Sustainability is Critical in Food and Beverage Manufacturing

By Stephen Dombroski
No Comments
Stephen Dombroski, QAD

Sustainability pushes a lot of our hot buttons—it’s a political issue, an economic concern, and a social conversation. Some people even see it as a moral matter. Sometimes it’s on the back burner, but then it blazes back into the headlines. Sustainability is, arguably, an industry unto itself, since the economic impact on companies trying to adhere to government guidelines or react to consumer preferences can be in the billions of dollars across a wide range of markets. Sustainability demands are hitting a variety of industries, not just food and beverage. For example, the move from the internal combustion engine to the electric vehicle can be called a “sustainability” issue.

The Eight Elements of Sustainability
1. Consumer preferences
2. Climate change
3. Food insecurity
4. Food waste
5. New foods
6. Packaging
7. Regenerative agriculture
8. Transportation and regulatory restrictions
In light of the many disruptors in the food and beverage industry and most recently, due to the impact of the COVID-19 pandemic, sustainability is now front-page news. This article will discuss eight reasons why sustainability is now one of the defining issues in food and beverage manufacturing. Future articles in this series will examine each issue in more detail.

Consumer Preferences

The green consumer wants brands to embrace purpose and sustainability, and they want their purchases to contribute to the greater good, or at least, do no harm. The demand started among millennials and Gen Zers, but with the influence of social media, it’s expanded to all demographics.

The industry has been forced to introduce healthier products, with more ethically-sourced ingredients and more transparent supply chains. Younger consumers, especially, often trace a brand’s sustainability record with QR codes or smart labels. They want to know from where their food originates.

These consumer actions and attitudes are now influencing the development of new food items and packaging designs as manufacturers realize consumers are taking notice.

Climate Change

Warming is causing the earth’s poles, permafrost and glaciers to melt and the oceans to rise. Average sea levels have swelled more than eight inches since 1880, with about three of those inches gained in the last 25 years. Here’s the impact on sustainability—when sea levels rise and warm, flooding can occur, causing coastal seawater contamination and erosion of valuable farmland. Higher air temperatures may also rule out the cultivation of some valuable crops (gasp, chocolate!).

Hotter temperatures can also cause insect body temperatures to rise; they need to eat more to survive and may live through the winter instead of dying off. A larger, more active insect population could threaten crops. And changes to water, soil and temperature could affect the complex ecosystems of the world’s farms, causing plant stress and increasing susceptibility to disease. The food manufacturing and farming industries are starting to investigate new ways of growing food in environments that can protect crops from these changes.

Food Insecurity

Food demand is expected to increase anywhere from 59% to 98% by 2050. Populations are growing and due to rising incomes, demand is ramping up for meat and other high-grade proteins. At the same time, climate change is putting pressure on natural and human resources, making it challenging to produce enough food to meet the world’s needs.

The world agrees that governments, manufacturers and consumers have a social responsibility for to do their part to combat world hunger. Consumers are becoming more aware of food security and the threat that climate change poses. People are attempting to eat sustainably with meals designed to have a lower environmental impact, and incorporating an awareness of plate portions and food waste.

World health organizations are also stepping up. The United Nations World Food Programme (WFP) is the food-assistance branch of the United Nations and the world’s largest humanitarian organization, addressing hunger and promoting food security. The WFP works to help lift people out of hunger who cannot produce or obtain enough food for themselves, providing food assistance to an average of 91.4 million people in 83 countries each year. Food brands worldwide are offering support through donation programs, new product development to provide more nutrition with less and new sources of food.

Food Waste

Around one-third of the total food the world produces—around 1.3 billion tons—is wasted. It’s more than just the direct loss; food waste contributes heavily to climate change, making up around eight percent of total global greenhouse gas emissions. Food manufacturers are making significant efforts to reduce their food waste footprint. Is it possible to anticipate and plan for potential glitches in frozen food processing? Sustainable brands make contingency plans in advance so that food can be stored safely while a broken line is fixed, rather than let it go to waste. What should be done with raw materials left over after processing? Perhaps there are other creative uses for it—vegetable waste, for example, has been used for fertilizer.

Human behavior is a main contributor to climate change and the motivator for new sustainable practices. Over time, community attitudes can change habits, like encouraging commitments to composting or recycling. In certain communities, grocery stores and restaurants contribute leftover food to charities. Portion control at restaurants and in the home can make us healthier and also help to reduce food waste.

New Foods

In response to changing food preferences and the demand by consumers for healthier options, food and beverage companies have the opportunity to develop new foods and build a reputation for sustainability.

Brands have been working on protein alternatives, but one can argue that plant-based protein went mainstream when news broke in 2019 that both McDonald’s and Burger King were testing plant-based burgers. And with veganism and vegetarianism growing, tofu, seeds, nuts and beans are also showing up in kitchens more frequently, as are products made from them.

Did it surprise you the first time you heard about cauliflower pizza crust? Food manufacturers have been actively introducing new products like this, substituting vegetables for carbohydrate-rich grains. Product manufacturers have brought us new product options like zoodles made from squash as a substitute for spaghetti. Utilizing products differently is a sustainable tactic. In addition, it opens up new markets, expands the value chain and increases business opportunities for food and beverage manufacturers.

Packaging

Sustainability also involves sustainable or “eco-friendly” packaging. Packaging with a reduced environmental impact is becoming a consumer priority.

What is sustainable packaging? It can mean packaging made with 100% recycled or raw materials, packaging with a minimized carbon footprint due to a streamlined production process or supply chain, or packaging that is recycled or reused. There is also biodegradable packaging like containers made from cornstarch being used for takeout meals.

To help fight food waste, intelligent packaging for food can use indicators or sensors to monitor factors outside the packaging like temperature and humidity, or internal factors like freshness. Smart labels can tell an even more complete story about what sustainable practices have been used in packaging manufacturing or along the supply chain via a QR code or webpage.

Optimizing product density for transport is another sustainability technique. Minimizing packaging can reduce shipping weight and packaging waste to minimize an organization’s carbon footprint. An added benefit is that manufacturers can deliver more in less time thus improving customer service and keeping the supply chain moving.

Regenerative Agriculture

Sustainability may call for practices that maintain soil health, but regenerative agriculture goes further; it looks to reverse climate change. Regenerative techniques promote the need to restore soil health, rebalance water and carbon cycles, create new topsoil and grow food in a regenerative way—so nature has the boost it needs to sustain improvement. If the quantity of carbon in farm soils increases 0.4% each year, says the European “4 Per 1000” initiative, it could offset the 4.3 billion tons of CO2 emissions that humans pump into the atmosphere annually.

The regenerative food system market has drawn investors, wedding the benefits to both water and soil to economic incentives. Unhealthy soil requires more water to produce the same amount of food. Healthy soil resulting from regenerative agricultural practices holds more water and therefore requires less water to be added. Underground and hydroponic versions of regenerative agriculture are also emerging.

Transportation and Regulatory Restrictions

Sustainability is also dependent on transportation and the supply chain. Governments are evaluating current practices and implementing changes that can positively affect climate change.

The food and beverage industry is actively embracing other changes that affect sustainability. Electric trucks fit well with their distribution hub model, with clean, quiet, short run deliveries. Fuel usage during transportation is being considered from every angle. Local and regional food systems, where farmers and processors sell and distribute their food to consumers within a given area, use less fossil fuel for transportation because the distance from farm to consumer is shorter, and therefore reduce CO2 emissions.

These eight areas are the defining issues facing food and beverage manufacturers today in sustainability. Sustainability impacts all of us, everywhere, and food and beverage manufacturing is right in the middle of it. What this means to the manufacturing world is that they must prepare their processes, systems, infrastructure and mindset to evolve their business in tune to the evolving issue of sustainability.

Mikael Bengtsson, Infor

As COVID-19 Stresses Food Suppliers, Technology Steps In

By Maria Fontanazza
No Comments
Mikael Bengtsson, Infor

The theme of better traceability and more transparency is a theme that will only grow stronger in the food industry. Just last week we heard FDA Deputy Commissioner for Food Policy and Response Frank Yiannas talk about the agency’s recently proposed FSMA rule on food traceability during the 2020 Food Safety Consortium Virtual Conference Series. In a recent Q&A with Food Safety Tech, Mikael Bengtsson, industry & solution strategy director for food & beverage at Infor, explains yet another role that technology can play in helping companies maintain agility during changes that affect the supply chain such as the coronavirus pandemic.

Food Safety Tech: How can food suppliers mitigate the risks of foodborne illness outbreaks under the stress of the COVID-19 pandemic and with limited resources?

Mikael Bengtsson: Food safety must always be a top priority for any food and beverage company. The risks associated with contamination can have a severe impact for public health, brand and company reputation. Safety routines are therefore always of the highest priority. In today’s situation with COVID-19, the stress on safety is further increased. Now, it’s not only about keeping products safe but also keeping employees healthy. One progression and resource that all food suppliers must follow is the FDA [FSMA rules], which require suppliers to be diligent and document their compliance. Especially now, while suppliers are faced with limited resources and additional stress during the pandemic, they must rely on the basics—ensuring masks are worn in and out of the workplace, washing hands for at least 20 seconds prior to touching any food, and remaining six feet apart from co-workers. When it comes to a crisis like COVID, take solace in knowing suppliers can rely on the basics—even when conditions are strained.

This year we have seen many companies having to adapt and change quickly. Demand has shifted between products, ingredients have been in shortage and many employees have had to work from home. Some were better prepared than others in adapting to the new situation. Technology plays a big role when it comes to agility. Regarding food safety, there are many proactive measures to be taken. The industry leaders establish transparency in their supply chain both upstream and downstream, use big data analysis to identify inefficiencies, as well as couple IoT with asset management systems to foresee issues before they happen.

FST: How can technology help suppliers meet the growing consumer demand for transparency in an end-to-end supply chain and improve consumer trust?

Mikael Bengtsson, Infor
Mikael Bengtsson, industry & solution strategy director for food & beverage at Infor

Bengtsson: Communication with consumers is changing. It is not only about marketing products, but also to educate and interact with consumers. This requires a different approach. Of course, consumers are loyal to brands, but are also tempted to try something new when grocery shopping. After a new study is published or a new story is written, consumers are likely to shift their shopping preferences.

It is therefore important to build a closer connection with consumers. Companies who have full supply chain visibility, transparency and traceability have detailed stories to tell their consumers. One way they can build these stories is by including QR codes on their packages. The consumer can then easily scan the code and be brought to a website that shows more product details—e.g. who was the farmer, how were the animals cared for and what sustainability efforts were involved. These are all important aspects to build consumer trust. According to researchers at MIT Sloan School of Management, investing in supply chain visibility is the optimal way to gain consumer trust, and can lead to increased sales.

FST: What technologies should suppliers leverage to better collaborate with trading partners and ensure consistent food safety procedures?

Bengtsson: When a food safety problem arises, batches, lots, and shipments need to be identified within minutes. Manufacturers must be able to trace all aspects of products throughout the entire supply chain—with complete visibility at the ingredient level—from farm to table, and everything in-between. An efficient and transparent food supply chain requires extensive collaboration and coordination between stakeholders. New technologies can extend both amount of collaboration possibilities and the impact of those collaborations. In order to maintain a transparent, efficient food supply chain, companies need to invest in modern cloud-based ERP and supply chain systems that incorporate the increased visibility of the Internet of Things (IoT) with data sharing, supplier and customer portals, and direct links between systems—all aimed at facilitating joint awareness and coordinated decision-making. Modern technologies that enable transparency will also have the added benefits of meeting consumer demand for product information, identifying and responding to food safety issues, reducing food waste, and supporting sustainability claims.

Megan Nichols
FST Soapbox

COVID-19 Led Many Dairy Farmers to Dump Milk

By Megan Ray Nichols
No Comments
Megan Nichols

Much of the news coverage surrounding the COVID-19 pandemic mentions infection numbers and fatalities. Those are undoubtedly important for showing parts of the overall impact. However, it’s easy to overlook the ramifications felt by some professionals. One recent example concerns the instances of dairy farmers dumping milk.

Numerous Factors Contributing to the Problem

The pandemic drastically and dramatically disrupted life. Many of the associated changes affected milk producers, but perhaps not in the ways people expect. As schools closed and restaurants operated on delivery or a takeaway-only basis, the demand for milk typically consumed in the food and educational sector went down.

Consider, too, that the pandemic forced the closure of enterprises that did not necessarily serve large quantities of milk every day but still likely placed ongoing orders with suppliers. For example, a daycare center might give toddlers boxes of dairy beverages each day during snack time. Coffee shops often add milk to their lattes or set out bottles for people who want to put some in their coffee.

When coronavirus cases emerged in the United States, many people panicked and flocked to grocery stores for essentials. Milk is often one of the staples people buy before winter storms hit, and they wanted it to prepare for the pandemic, too. One Target store in New Jersey sold out of its entire stock of milk in only five minutes. Stores responded by imposing per-person limits on the product.

If the demand exists, what caused the milk surplus? Part of it boils down to a lack of space at milk processing plants. A related issue is that processors typically serve particular markets. One might cater to retail buyers while another primarily addresses needs in the food service sector. They lack the infrastructure to pivot and begin accepting milk orders from a new type of customer, particularly if the milk-based product is substantially different, like sour cream versus ice cream.

A First-Time Phenomenon

Farmers discarding milk is not unheard of, but it’s not something many producers do regularly. Andrew Griffith, a professor at the University of Tennessee, said that some farmers had to do it recently for the first time in careers spanning decades. He explained, “It’s not that [dumping] hasn’t occurred from farm to farm.” Adverse weather conditions can delay pickups, and unexpected supply spoilages might lead to too much milk.

“But we’re talking about a level of dumping that is not common at all. There [are] a lot of farmers that are experiencing dumping milk for the first time in their 30- or 40-year careers,” Griffith said in an article published on The Counter.

The highly perishable nature of milk poses another problem contributing to the milk surplus. That aspect hit dairy harder than some other types of agricultural goods. People could put grain into silos, but storage is more complicated for dairy products.

Any exposure to higher-than-recommended temperatures causes spoilage. The subsequent risk to consumers means farmers must throw it away. Cold storage facilities are essential for the dairy industry. Statistics from 2018 indicated an average of 10.67 cents per kilowatt-hour for energy consumption at commercial facilities. However, cold storage facilities operate 24/7, so their energy needs are often higher than those of other commercial buildings.

Cows, dairy, farms
The coronavirus is only one of the challenges likely to impact the dairy industry in the coming months and years. Dairy consumption has been trending down for years. (Pexels image)

The delicate nature of the product is another unfortunate aspect that may lead to dumping milk. If a processor has no room to accept the raw goods, there’s nowhere for them to go. In April The Wall Street Journal reported that in one week, producers threw out as much as 7% of the milk in the United States from that period. The same story highlighted how a specialty cheese factory saw sales of its chèvre and ricotta drop by 95% in one day.

Coping With Dairy Industry Fluctuations

The coronavirus is only one of the challenges likely to impact the dairy industry in the coming months and years. A Statista chart profiles the progressive decline of milk consumption in the United States. The average amount of milk per person in 1975 totaled 247 pounds. It plunged to 149 pounds by 2017.

There’s also the issue of people showing a growing preference for plant-based milk alternatives. One industry analysis tracked sales of traditional and oat milk during mid-March. Purchases for the first category rose by 32%, while oat milk sales soared by 476%. A potential reason for that huge increase in the latter category is that supermarkets sell shelf-stable milk alternatives. Those often stay in date for months when unopened.

People can get them in the refrigerated section, too, but they may have preferred not to as they cut down their shopping trips due to COVID-19. Consumers also noticed the increasing number of milk-like beverages made from hemp, hazelnuts and other options. If a person tries one and doesn’t like it, they may try a different option.

Despite those challenges, some dairy farmers anticipated favorable trends—at least before the coronavirus hit. Producers get paid per 100 pounds of milk. Katie Dotterer-Pyle, owner of Cow Comfort Inn Dairy, said 2013 was a particularly good year for the rates. Back then, farmers received about $30 for every 100 pounds, although the price has stayed at approximately $17 per 100 over the past two years.

When Might the Milk Surplus Ease?

This coverage emphasizes the lack of a quick fix for the dairy industry strain. As restaurants reopen, that change should help address the problem, but it won’t solve it entirely. Some enterprises refocused their efforts to better meet current demands. One Dallas-based plant that handles dairy products more than halved its output of cardboard milk cartons and increased production of whole and 2% milk for the retail sector. It is now back to normal manufacturing runs.

As mentioned earlier, though, many processors can’t make such changes. Dumping milk becomes a heart-wrenching practice for hard-working producers. Many tried to compensate by selling their least-profitable cows for slaughter or making feeding changes to reduce the animals’ production. Some private entities committed to purchasing milk from farms and getting it to food banks. Other analysts say the government should step in to help.

People in the farming community support each other with tips and reassurance, but most know they could be in for a long struggle. As supply chains recovered from the initial shock of COVID-19, most people stopped panic buying, and stores no longer set product limits. Things are moving in the right direction, but the impacts remain present.

A Complicated Issue

Many state leaders have let businesses reopen, and others are following. Any step toward a new kind of normal is a positive one that should gradually help the dairy sector. However, much of what the future holds remains unknown, mainly since this is a new type of coronavirus, and scientists still have plenty to learn about mitigating it.

Wendy Stanley, Radley Corp.
FST Soapbox

The Future of Food Production: IoT and Blockchain

By Wendy Stanley
1 Comment
Wendy Stanley, Radley Corp.

Since the early 20th century, food safety has been a paramount concern for consumers in the United States. Upton Sinclair’s The Jungle, which painted a bleak, brutal, and downright disgusting picture of turn-of-the-century food processing facilities led to the creation of some of the country’s first food safety laws. Today, federal agencies and statutes make up a comprehensive food safety system to ensure that the growth, distribution and consumption of foods are safe from start to finish.

While food safety has significantly improved in the century since Sinclair’s time, stories of major outbreaks of foodborne illnesses continue to pop up across the country. Over the past few years, a significant number of outbreaks as a result of pathogens have made the headlines. To mitigate the threat of public health crises and ensure food production and distribution is safe and secure, companies must rely on modern technology to trace the movement of food across the entire supply chain.

How Technology Is Changing the Food Industry

Technology is a powerful, innovative force that has changed the way even well established companies must do business in order to stay relevant. From easier access to nutritional information to digital solutions that make food manufacturing and distribution more efficient, greater consumer awareness driven by technology empowers consumers to make decisions that can greatly affect the food industry’s bottom line.

Technology-driven accountability is playing one outsized role in allowing consumers to make better choices about the foods they consume and purchase. Social media and smartphone apps connect consumers to a wealth of resources concerning the harmful effects of certain ingredients in their food, the source of products, and how particular items are made and produced. In 2015, for example, The Campbell Soup Company removed 13 ingredients from its traditional soup recipes as a result of a greater public demand to understand food sources. Neither food giants nor small producers should expect to remain immune from greater public scrutiny over food health and safety.

Nutritional research is also helping change the conversation around food, granting nutritionists and consumers alike greater access to food-related data. Through easily accessible scholarly journals, apps that provide real-time nutrition information, and meal tracking apps that help users log and understand what they’re eating, consumers can gain a better understanding of nutrition to make more informed choices about their daily food intake. Researchers can also use food-tracking apps to make discoveries about consumer behavior and foods that are eaten.

Technology is also being used to tackle food waste, one of the most pervasive problems facing the food industry. One-third of the total amount of food produced globally, amounting to nearly $1.2 trillion, goes to waste every year. Solving this pervasive crisis has become an industry imperative that is being tackled through a variety of innovative technologies to improve shelf-life, dynamically adjust pricing based on sell-by dates, and allow restaurants to automatically monitor their daily waste.

In the food manufacturing sector, digitally-connected supply chain systems are providing greater visibility into the production of foods and beverages. Supplier management technology delivers data that can be used to optimize processes and improve quality in real-time, making it easy to adjust to consumer demands, respond to logistics challenges, and boost government compliance. The enhanced operational benefits offered through improved supply chain visibility allows manufacturers to produce products faster, safer, and with greater transparency.

Online ordering has also ushered in a new era of food industry behavior. The growing assortment of online ordering apps has just given the consumer more control over quickly ordering their next meal. The trend in online ordering has also allowed restaurants to experiment with new business models like virtual kitchens that offer menus that are only available online.

Connected Factory, manufacturing
The IoT adds a layer of technology to the food manufacturing process. (All photos licensed through Adobe Stock)

IoT: The Future of Food Safety

From the farm to the carryout bag, the impact of technology on the greater food industry is already evident in daily practice. Through enhanced access to data, food producers can run an efficient supply chain that reduces waste, boosts productivity, and meets consumer demand in real-time. Using a variety of online resources, consumers are empowered to quickly make well-informed food purchases that are healthier, more convenient and more sustainable than ever before.

The Internet-of-Things (IoT) adds a layer of technology to the food manufacturing process to ensure greater food safety. A broad series of networked sensors, monitors, and other Internet-connected devices, IoT technology can oversee the entire food manufacturing and distribution process from the warehouse to the point of sale. Boosting transparency across the board, intelligent sensors and cameras can transform any food manufacturing operation into a highly visible, data-backed process that allows for better decision-making and improved real-time knowledge.

While IoT technology is a powerful tool that can improve the efficiency of restaurants and provide enhanced customer experiences, some of its greatest potential lies in its ability to safely monitor food preparation and production. Live data from IoT devices makes it possible to closely monitor food safety data points, allowing manufacturers and restaurants to reduce the risks of foodborne illness outbreaks through enhanced data collection and automated reporting.

Domino’s Pizza, for instance, embraced IoT technology to enhance management processes and monitor the food safety of its products. In the past, restaurants have relied on workers to record food temperatures, a practice that was occasionally overlooked and could lead to issues with health inspectors. Using IoT devices for real-time temperature monitoring, Domino’s automatically records and displays temperature levels of a store’s production, refrigeration, and exhaust systems, allowing employees to view conditions from a live dashboard.

In addition to boosting food safety, the comprehensive monitoring offered by IoT technology can help food companies reduce waste, keep more effective records, and analyze more data for improved operations.

IoT isn’t just a safe solution for improving food safety: It’s a smart solution.

Blockchain: The Future of Food Traceability

The ubiquity of QR codes has made it easy for consumers to quickly gain access to information by scanning an image with their smartphone. From accessing product manuals to downloading songs, QR codes make it simple to provide detailed and relevant content to users in a timely manner.

Blockchain enhances the safety of the business of food production itself.

Blockchain technology provides a powerful opportunity to provide consumers with similar information about food safety. Able to instantaneously trace the lifecycle of food products, blockchain can report a food’s every point of contact throughout its journey from farm to table. By scanning a QR code, for instance, users can quickly access relevant information about a food product’s source, such as an animal’s health, and welfare. Shoppers at Carrefour, Europe’s largest retailer, area already using blockchain traceability to track the stage of production of free-range chickens across France.

Walmart piloted a blockchain implementation by tracing a package of sliced mangoes across every destination until it hit store shelves, from its origin at a farm in Mexico to intermittent stops at a hot-water treatment plant, U.S processing plant, and cold storage facility. Real-time product tracing can be conducted in just two seconds, enabling Walmart and other vendors to provide consumers with access to food safety information that could easily be updated should an outbreak or contamination occur.

Blockchain’s inherent transparency not only makes it possible to identify the safety of food production; it also enhances the safety of the business of food production itself. Because blockchain is based upon an immutable, anonymous ledger, record keeping and accounting can be made more secure and less prone to human error. Payments to farmers and other food suppliers can also become more transparent and equitable.

The High Tech Future of Food

Unlike the days of Sinclair’s The Jungle, food transparency is the name of today’s game. As consumers continue to demand greater access to better food on-demand, food producers must continue to find innovative ways of providing safe, healthy, and ethical solutions.

IoT devices and blockchain present food manufacturers with powerful technological solutions to solve complex problems. Brands choosing to rely on these innovations, such as Domino’s and Walmart, are helping ensure that food is produced, prepared and distributed with a foremost emphasis on health and safety. As these technologies continue to become more intelligent, well-connected, and embraced by leading food producers, consumers should rest assured that they’ll always be able to know exactly what they’re eating, where it’s from, and whether it’s safe.

Roelof Koopmans, Semtech
Retail Food Safety Forum

How Technology Simplifies Food Safety Operations

By Roelof Koopmans
No Comments
Roelof Koopmans, Semtech

To get to the restaurant table, food must travel great lengths to preserve that farm fresh quality and in many cases, IoT-enabled sensors are being used to do this. This is especially important as the World Health Organization estimates that one in 10 people fall ill every year from eating contaminated food.

When we think of our favorite dish, we often associate it with delicious flavors, pleasant scents and even memories of a night out with friends. What we likely don’t consider is technology, something that’s critical in ensuring the meal on our plate is safe to consume. Technology plays an essential role in guaranteeing that restaurants are serving fresh food to customers. From identifying operational deficiencies to protecting the overall brand of an organization, there are certain measures restaurants are taking—whether local or country-wide chains—to ensure food quality remains a top priority.

Restaurants are perhaps held to an even higher standard than your local supermarket when it comes to the quality of food on the table. Therefore, it’s imperative that perishables are cared for properly throughout the entirety of the food supply chain and that starts well before the food ever enters the restaurant’s front door. With long-range, low-power wireless IoT technology, farmers can get insights into a number of variables that may impact the growth of their crops. Armed with that knowledge, they can make real-time decisions to optimize crop growth and ultimately produce a greater yield. For example, farmers today can set up a series of sensors throughout their farm to measure real-time soil conditions, including humidity and pH levels. If they notice an especially high pH, for example, they can immediately remedy the situation and provide the crop with the proper nutrients or conditions it needs to grow.

For food safely to arrive at restaurants, it must be kept in a controlled environment during its journey from the farm or warehouse, and carefully monitored during that time. The temperature of refrigerated shipping units or storage facilities is an incredibly important factor, as bacteria growth can increase even by simply opening the refrigerator door or with a slight temperature shift, and employees are often tasked with managing this. With large facilities comes increased labor for employees, which can lead to inefficient temperature monitoring. To eliminate food waste and contamination, IoT sensors deployed throughout facilities can eliminate human error, and deliver more consistent monitoring, via real-time updates when temperatures enter unsafe territories.

Numerous international food handling and food safety laws have been implemented to reduce the risk of foodborne illness resulting from bacterial growth. A major component of most “farm-to-fork” regulations is the ability to track, report and maintain appropriate temperature conditions inside refrigeration and freezer units throughout the entire cold chain—including when the food finally makes it the restaurant.

This is a universal priority for restaurants around the world, including Hattie B’s Hot Chicken, a southern-style food chain, which started in Nashville and now has locations nationwide. To successfully do this, the restaurant turned to technology. They used a supplier of wireless connectivity solutions with integrated long range, low power technology for temperature monitoring sensors. The sensors, which are capable of penetrating stainless steel doors and concrete walls, can monitor temperatures in refrigerators and freezers. This is essential, as the technology eliminates possible human error in manually checking temps and other food safety procedures. In instances where refrigerator temperatures shift out of range, the technology remotely notifies restaurant managers in real-time, allowing them to act quickly, ensuring their perishables remain fresh and safe for customers at all times.

Food waste in restaurants is closely tied to food safety. In the United States alone, food waste is estimated to be between 30–40% of the food supply, according to the USDA. In the restaurant industry in particular, human error is one of the most notable reasons for food waste. To eliminate the human error when handling food and monitoring storage, an IoT solution provider for the industrial, smart city and smart energy segments, integrated long-range low power technology into smart refrigeration solutions for restaurant applications. This IoT solution is designed for humidity and temperature monitoring, delivering real-time updates to managers to ensure the shelf life of food is maximized and it remains safe to consume, ultimately leading to a decrease in food waste.

From farm to table, technology plays an essential role in ensuring restaurants are delivering the highest quality of fresh, safe food. It allows organizations to identify operational deficiencies and reduce overall food safety risk, which is imperative when maintaining a strong business in a competitive industry.

GREG BALESTRIER, Green Rabbit
Retail Food Safety Forum

Solving Food Safety Challenges in Today’s eCommerce Driven World

By Greg Balestrieri
No Comments
GREG BALESTRIER, Green Rabbit

Think about this number for a second: Consumers spent more than $19 billion on online grocery in 2019. While this is still a small segment of the overall $800 billion U.S. grocery market, more consumers than ever before are turning to eCommerce for the fulfillment and delivery of perishable goods, positioning the grocery delivery market to grow dramatically, especially as companies like Amazon continue to innovate in this area.

Adding to this, a recent survey found that 68% of consumers feel the freshness of perishable items is the number one quality they look for in online grocery retail. This is where things become complicated, as shipping perishables introduces an entirely new set of quality challenges for eCommerce brands. This is hindering the market from reaching its full potential until the biggest problem is solved: Ensuring food safety and freshness in every order.

This is a double-edged sword for retailers, grocers and CPGs: Interest in their service is taking off, but it takes just one package of spoiled meat or wilted vegetables to potentially lose a customer to a competitor—or even worse, get someone sick.

Today, spoilage and food safety issues are primarily driven by breakdowns in the cold chain, and it only takes one mishap to affect the quality of food throughout the rest of the delivery lifecycle. To achieve optimal freshness and keep customers happy, grocers, retailers and their trusted partners need to focus on three primary food freshness factors: Temperature, storage and packaging.

Controlling each of these issues starts at the warehouse.

Freshness Starts at the Warehouse

For most parcels, such as clothing, books and other commonly ordered goods, temperature control is rarely an issue. However, facilities that store perishable foods have a constant component to manage—temperature fluctuation.

According to the NRDC, cooling and refrigeration inconsistency is one of the biggest contributors to food spoilage and waste. This is because every food item has a definable maximum shelf life, and storing them at less than optimal or constantly changing temperatures can exacerbate and drastically shorten its timeline.

Mistakes with heightened temperatures on items like meat and poultry can also lead to bacteria growth and foodborne illnesses. In fact, the CDC estimates that 48 million people get sick, 128,000 are hospitalized and 3,000 die from foodborne diseases each year in the United States, putting a spotlight on how seriously food safety issues need to be taken.

The Need for Proper Rotation Processes

First expiration, first out (FEFO) is a motto all organizations should live by when stocking inventory. In addition, it is a critical process when working to avoid the food spoilage crisis. It may come as a surprise, but not all distribution centers have this type of rotation system in place. This means organizations could send spoiled food to consumers because an item was pushed to the back of a refrigerator during the re-stocking process and unknowingly shipped passed its expiration date. Not only does this create massive amounts of food waste, tarnish a brand and eat into a company’s profits by replacing low margin products, but consuming a spoiled food item can also be detrimental to one’s health.

While it helps to keep these types of costly errors in mind, as warehouse operations grow, there’s no possible way to manually scale this system.

Luckily, breakthroughs in cold chain technology have produced automated solutions that help organizations track everything from expiration dates to potential recalls. These types of technology support the entire cold chain lifecycle and ensure that warehouses and their grocery partners have the visibility they need to ensure freshness from fulfillment to the customer’s doorstep.

However, when the product is ready to leave the warehouse, it’s arguably about to enter the hardest portion of the cold chain lifecycle: Delivery.

Key Considerations for Packaging

For fragile items, packaging is all about keeping the item protected from drops and damage, but for food the focus should be on keeping the item fresh and at optimum temperatures throughout the duration of transit.

Given many grocers outsource delivery, they have little interest in whether food spoils, mainly because they are unaware of the package contents and are more focused on getting the item to the right location fast and effectively.

Yet there are many obstacles that need to be addressed during the last leg of delivery. What is the temperature in the delivery vehicle? If no one is home or at the office, will the package spoil outside in the heat?

For perishables, it is imperative that spoilage rates, delays in shipping schedules and unattended delivery scenarios are important factors in determining the amount of cold pack and protective stuffing that goes into the package. If these factors are not considered, customers could return to spoiled, melted or even crushed perishables.

Getting Food Fast and Fresh

Today, grocers and retailers are bullish on building out omnichannel food initiatives. However, balancing brick and mortar locations while developing profitable and efficient online delivery systems is often more than one organization can take on. While there are trusted partners designed to support eCommerce fulfillment and delivery, few are purpose-built to handle perishable foods.

Either way, in order to see wide-scale adoption of online grocery initiatives, grocers, retailers and ecosystem partners need to start prioritizing the key temperature, storage and packaging considerations and challenges associated shipping perishable foods. Acknowledging these challenges and implementing solutions for them will not only keep your products and deliveries fresh, but they will also keep customers coming back for more.

Marc Pegulu, Semtech
FST Soapbox

Increasing Food Safety and Spoilage Prevention in the IoT Era

By Marc Pégulu
No Comments
Marc Pegulu, Semtech

According to the Food and Agriculture Organization of the United Nations, it is estimated that nearly one third of the food produced (about 1.3 billion tons) globally is not consumed. To help tackle this billion-dollar problem, an innovative solution is being deployed to detect one of the key factors driving food waste: Spoilage due to fluctuations in temperature.

To get to the dinner table, food must travel great lengths to preserve that farm fresh quality. Refrigerated shipping units and storage facilities are essential to reducing bacteria growth and by using an automated smart-refrigeration solution, a food-safe environment can be maintained throughout the journey with little supervision. Traditional food temperature monitoring is reliant on staff to periodically check temperature levels and make adjustments as necessary. This process is not scalable, meaning that with a larger facility or an increased number of food displays, it becomes increasingly labor intensive and inefficient. If employees are preoccupied, periodic check-ins may be delayed or missed entirely, leading to gaps where temperature fluctuations are not addressed, opening the door for increased bacteria growth and food waste.

LoRa fights food waste
LoRa devices and LoRaWAN protocol are being integrated into smart refrigeration solutions to fight food waste. Image courtesy of Semtech.

To solve this issue, Internet of Things (IoT) sensors can be deployed in shipping vehicles, displays, refrigerators, and storerooms to provide accurate and consistent monitoring of temperature data. When a temperature fluctuation occurs, the sensors will send a signal to a low power, wide area network (LPWAN) gateway application. The information is then relayed to a network server, where it is routed to application servers or Cloud IoT services. The data is then processed and sent to the end user through a desktop or smartphone application. What’s more, in the event of a power outage, these long range, low power wireless enabled IoT devices are battery powered and consume minimal energy, allowing for consistent off-grid temperature tracking.

These connected devices can be found globally in a variety of use cases ranging from quick service restaurants to full service grocery stores, with an end goal of ensuring appropriate temperature levels for food. To support connectivity for these devices, an open network protocol is used to ensure the devices can be scalable and globally deployed. Two recent use cases where the long range, low power wireless devices and LoRaWAN protocol were used to actively monitor temperature fluctuations are Axino Solutions (Axino) and ComplianceMate.

Axino recently integrated LoRa devices and LoRaWAN protocol into its line of smart refrigeration solutions with the goal of combatting food waste. The solution combines sensor technology with automated data communication providing a substantial increase in measurement quantity and quality. Additionally, stores found a significant reduction in metering and operating costs after sensor deployment. This smart refrigeration solution has been globally deployed and is currently used by Switzerland’s largest supermarket chain, Migos. Axino’s sensors can be quickly installed, utilizing a magnet to attach to a refrigerator’s infrastructure. The sensors monitor temperature in real time, are accurate to one degree Celsius and can be pre-programmed to adjust refrigerator temperatures to ensure that food is stored in a safe environment. By having access to real time data and automatic temperature adjustment, supermarkets were able to eliminate human error, prolong shelf life and pass energy savings off to the customers.

The challenge for any wirelessly connected device is the presence of physical barriers that will block signals. Steel doors, concrete and insulation are some of the key considerations when developing a smart solution, especially in restaurants using large freezers. ComplianceMate partnered with Laird Connectivity and found that devices on a LoRaWAN-based network produces a more reliable signal than its Bluetooth counterpart. This IoT solution has been deployed in some of your favorite restaurant chains such as Shake Shack, Five Guys, Hard Rock Café, City Barbeque, and Hattie B’s and has already proved to be a huge asset. For instance, a sensor deployment saved $35,000 to $50,000 worth of inventory in a Hattie B’s location when downtown Nashville experienced a sudden power outage in 2018. The LoRa-based alert system immediately notified store management, allowing them to act quickly and prevent food spoilage.

Reducing global food spoilage is a monumental task. From farms to grocery stores and restaurants, technology must play a critical role, ensuring food remains at a safe temperature, preventing unnecessary spoilage. In the era of connectivity, businesses will turn to LoRa-based IoT deployments for its flexibility, durability and ability to provide real-time information to employees and decision makers to not only maintain strict industry standards in food safety, but to also pass savings on to their valued customers.

food waste

New IBM Challenge Puts Solving Food Waste in the Hands of Developers

By Maria Fontanazza
No Comments
food waste

Nearly 40% of U.S.-produced food is not consumed, according to a 2018 report by The Center for Biological Diversity. In addition, retailers are named as the largest culprits when it comes to food waste. IBM estimates that supermarkets tossed about 16 billion pounds of food last year alone. The technology company is working to get more involved in this problem and is holding the Food Waste Developer Challenge in an effort to find solutions to help reduce waste.

John Walicki, IBM
John Walicki, senior technical staff member, CTO IoT developer advocacy at IBM

“Often, innovation comes from unexpected places. IBM’s sponsorship of the Food Waste Developer Challenge encourages developers to use their unique expertise toward solving some of society’s hardest problems,” says John Walicki, senior technical staff member, CTO IoT developer advocacy at IBM. “We hope to ignite an open community of impassioned developers to create solutions that improve the food supply chain and reduce food waste.” In a Q&A with Food Safety Tech, Walicki explains the important role that technology could play in stopping the ongoing food waste problem.

Food Safety Tech: What are the biggest challenges in addressing food waste?

John Walicki: One big issue is that the data around a product’s age, origin and journey lies with different parties or isn’t being tracked at all. Without shared visibility into these product attributes, at all stages of their life, it’s hard for grocers and producers to optimize how they sell and fulfill each item to guard against waste. And while less waste has a direct impact for the bottom line, more than ever, it has just as big of an impact in the mind of the increasingly belief-driven customer. According the 2018 Edelman Brand Survey, nearly two-thirds of consumers now choose, switch to or boycott a company based on its stand on societal issues, up from 51% in 2017.

FST: What is the goal of IBM’s Food Waste Developer Challenge?

Walicki: The goal of the challenge is to excite and crowd-source the minds of the developer community to create creative cloud-based, AI-enabled solutions for reducing food waste. For example, developers in the challenge have access to open-source code patterns for IoT, blockchain, AI-enabled bots, and more from IBM they can leverage in creating a solution. Nearly all of these capabilities are available for free on the IBM Cloud.

FST: Where are the key areas in which the food industry should be collaborating to solve these issues?

Walicki: The supply chain is the area [that] a lot of food retailers and producers are looking at. Better visibility into where the food is coming from, when, and its conditions are key in understanding when food will perish, etc. This involves collaboration from every partner all the way from the farm to when the customer purchases the product. The food chain is such a connected eco-system today. It’s really a team game in terms of generating solutions.

In addition, retailers are working to get better visibility into real-time on-hand inventories, so they can better know exactly how much of a certain product they have, so they can take prescriptive action if needed. More and more this type of insight requires the integration of data across many systems, both cloud-based and not. This means tight collaboration for food retailers internally and with suppliers.