Everybody has to eat. That is the mantra of many companies involved in the food and beverage industry. It sounds so simple. Yet, in recent years, especially this one, it is becoming more challenging than we ever thought it could be. Disruptions from the beginning to the end of the food supply chain are making the task of feeding the masses more difficult. The COVID-19 pandemic has made people in all walks of life question the food supply chain. It is being evaluated in new ways with the goal of ensuring that there is food available in not just crisis times but in normal circumstances, too, as the population continues to grow and more disruptions interrupt the supply chain. Climate change is one disruption that is impacting the food and beverage industry and is possibly the biggest threat to overall food sustainability. When people think about climate change they only think about weather events and global warming, but if you look at the definition of “climate,” other issues need to be considered in addition to looking out the window and checking the thermometer.
Global warming, greenhouse gases, carbon emissions, the earth’s normal evolution and consumer behaviors can all contribute to climate change. Everyone talks about limiting greenhouse gases and carbon emissions but is it really happening? Almost every day, some government agency or industrial company announces policy changes touting the drive to 100% sustainable packaging by this year and that year. “Company X announced today that it will use fully-sustainable packaging by 2035.” Fully sustainable packaging; what does that even mean? And 2035, what’s the hurry?! There are other programs in the works, but the question is, are they quick fixes that are really just Band-Aids on a gunshot wound? Are they actually long-term solutions and are they happening fast enough? The adoption of electric vehicles could have a huge impact on our climate but it is just a small piece of the solution for total carbon emission elimination. Water to be used in non-farming consumption is getting harder to come by due to climate change. Land space is eroding and available farm space is decreasing. The process of raising and harvesting livestock is getting more complex and costly, making plant-based substitution options more attractive. But is that really a long-term solution if we are already running out of traditional farming space? Consumers hope that recycling will help combat the problem but it is barely making a dent and their changing food habits impact the climate as well. The earth itself is constantly going through a geological evolution in spite of what we humans do to the planet.
Global warming is accelerating climate change and causing a number of serious issues. The earth’s poles are warming, which is promoting permafrost, causing glaciers to melt and oceans to rise, which is impacting sea levels, irrigation methods and land temperatures that promote erosion. Higher than average temperatures can potentially impact the growing of certain crops in terms of yields and even where they are grown. Climate change is impacting all areas of agriculture, the environment and the total ecosystem. Insect behaviors are evolving and these changes affect crops. The food manufacturing and farming industries have realized that a “new way” needs to be implemented to grow food in environments that can combat these changes.
Sustainability initiatives call for practices that maintain or improve soil conservation and improve the overall health of soil. Two processes, regenerative agriculture and precision agriculture, working in conjunction, may actually provide a long-term solution by combining environmental and farm science with technology. Regenerative agriculture goes beyond soil conservation. It is a process that looks to reverse the effects of climate change. The regenerative process focuses on restoring soil health, solving water issues, reversing carbon cycles, and creating new topsoils and growing environments.
Precision agriculture focuses on increasing the land used for farming as well as increasing the productivity of that land. It utilizes newly available IoT devices like GPS services, guidance systems, mapping tools and variable rate technologies (VRT) to optimize crop yields. These new management systems collect data that transmit valuable metrics to farmers. Every aspect of farming, from planting to harvesting, can benefit from these emerging technologies. The information about the moisture of soil, for example, is sent to a computer, which then identifies signs of health or stress. Based on these signals, farmers can provide water, pesticide or fertilizer in adequate dosages. As a result, precision farming can help conserve resources and produce healthier crops.
Climate-smart agriculture, which is an approach to dealing with the new realities of climate change, is another smart agricultural method. Climate-smart agriculture improves agricultural systems by enhancing sustainability, which leads to improved food security. Food production has struggled to keep up with erratic weather patterns and natural resources have been stretched alarmingly thin, signaling a call for action. With this new approach, crop yields can adapt accordingly and productivity will increase.
The regenerative food system market has drawn a great deal of interest from investment groups. Initial investments have focused on water and soil reconstitution and development. Restoring soil strength reduces water usage and at the same time produces stronger and more available food sources. Underground and hydroponic versions of regenerative agriculture are also emerging.
Advanced technologies like these are making their way into the food, beverage and agriculture industries. Traditional agricultural methods are being replaced with climate-smart methods. Peripheral areas like streamlining the supply chain and optimizing manufacturing operations can receive “sustainable” benefits from these new agri-methods. The good news is that smart agricultural methods are making progress in counteracting climate change and revolutionizing farming worldwide.
Regenerative and precision agriculture are without question the leading processes and philosophies being used today to help all food industries combat climate change and other disruptors to the total food supply chain. These new technologies will continue to efficiently solve farming practices. In addition, there will be rollover benefits to food processors and manufacturers who will now have improved access to data. This will enable better communication, and improved traceability at all levels of the supply chain and throughout operations, distribution and procurement. This data will allow all involved in growing and producing food to communicate better and enable society to adapt to these changes.