Tag Archives: LIMS

Tim Daniels, Autoscribe Informatics
In the Food Lab

Using LIMS to Get In Shape for FDA’s Visit

By Tim Daniels
No Comments
Tim Daniels, Autoscribe Informatics

FSMA is a major reform of the U.S. food safety laws. It shifts the emphasis for food safety to preventing contamination during manufacture instead of just responding to it. As part of the implementation process, the FDA will enforce these new rules during routine random inspections at food manufacturing sites. With such a significant change in emphasis, Shawn K. Stevens of Food Industry Counsel LLC, released an FDA Inspection Checklist. The checklist is designed to help food and beverage manufacturers to prepare for an agency inspection and to ensure they have the required controls and checks in place. Before we look in more detail at the checklist, it is worth reviewing some of the underlying requirements.

Some Basic Requirements

One of the fundamental requirements of FSMA is the establishment of an environmental monitoring program at each facility. It defines the testing protocols for appropriate microorganisms and verifies that the preventative measures undertaken are effective. Clear procedures and systems are required to identify the test microorganisms most suited to the risks in their systems. They need procedures to identify the locations from which samples will be collected and the number of sites to be sampled, since the number and location must be adequate to determine whether the preventative controls are effective. They also need to identify the timing and frequency for collecting and testing samples. The tests to be conducted must be specified, including the analytical methods used and the corrective action procedures in the event that testing detects an environmental pathogen or an indicating organism. Just as importantly, all of the data associated with this testing program needs to both be recorded and accessible for audit purposes.

Acquiring and Managing Environmental Monitoring Data

Any environmental monitoring program will come at a cost to the food manufacturer. While the program itself will need to be set up by experts in the field, much of the implementation can be carried out by lesser-qualified technicians. So a key aspect is having the tools to implement a program where the most effective use is made of each resource available, as this keeps costs down. In principle, one such tool is a Laboratory Information Management System (LIMS).  The use of a LIMS is commonplace in QA Labs to record and monitor laboratory samples, tests and results in order to simplify and automate processes and procedures. There is a variety of ways in which a LIMS could facilitate the environmental monitoring process to enable best practice even by non-specialist staff. For example, analysis can be simplified if each set of test results can be automatically linked to respective sampling points in the facility. Out-of-specification test results could be linked to corrective and preventive actions (CAPA). Test failures at a particular sampling point could be used to trigger more frequent testing at that point according to pre-set criteria.

  • The data management capabilities within a LIMS make it possible to:
  • Implement data management strategies that increase security and availability of data
  • Eliminate manual assembly of data for analysis and audit
  • Make data more useful with easy retrieval/visibility

Perhaps most importantly, a properly configured LIMS can provide a suitable framework for set-up and adjustment by the environmental monitoring expert, while reducing the expertise required to operate it on a daily basis.

Laboratory Information Management Systems
The Matrix Gemini Environmental monitoring solution is an example of an information management system that uses the capabilities of a LIMS to record and monitor laboratory samples, tests and results to simplify and automate environmental monitoring in QA Labs. Image courtesy of Autoscribe Informatics

FDA Inspection Checklist

This comprehensive document highlights the steps that companies need to take to prepare for the inspection process, navigate the inspection itself and respond to any criticisms arising from the inspection.

There are three main areas in the checklist where a LIMS could help satisfy FSMA requirements:

  1. Finalizing written food safety systems and making sure certain employees know the plans. LIMS provides the framework to set up documented food safety sampling requirements and track microbial test results over time. This facilitates recall and more detailed investigation should a sample fail.
  2. Well organized and maintained data, and ease of records access. LIMS should be capable of date and time stamping every entry and since it will contain all the test data over time, this can be easily recalled should the need arise. Typically a standard operating procedure would be developed, which will increase testing and start “out-of-specification” actions if abnormal microbial contamination is detected. LIMS can provide a full audit trail for all test data and produce reports showing result trends over time, highlighting variance and peaks in data.
  3. Proper documentation of corrective actions. In the event of failures, investigators will want to focus on the particular sample points and the “out-of-specification” actions that were initiated to investigate and resolve these failures. Typically three months of data is requested around these sample points, although up to two years’ worth of data could be requested. LIMS should allow data to be instantly pulled from the database as a report for further investigation.

FDA investigators will be most interested in what happens in the event of a failure and what learning gets incorporated into your regular regime. What happens when an out-of-specification result is obtained is the crux of preventive testing regimes. Actions might include changing sanitation methods, increasing test frequency or locations in areas of concern, segregating traffic patterns, re-training staff and so forth. Some of these actions, such as increasing test frequency, can be automated. All actions must be clearly documented, which can be done by adding appropriate records directly into the LIMS. This captures the actions that each quality improvement cycle needs in order to discover the likely root cause of any problems and how they may be avoided in the future.

All corrective actions should identify the root cause of the deviation, actions taken to prevent recurrence and, if product safety is not affected, a written conclusion (supported by factual and scientific data) that the deviation “does not create an immediate food safety issue.”

The emphasis should always be on preventive actions to remove potential points of failure before issues get into the final delivered products causing stock loss and costly recalls.

Configuring a LIMS for Environmental Monitoring

While most LIMS in principle provide the capability to handle the requirements of environmental monitoring, the system will need to be configured to do so, and this may not be a trivial exercise. The software will need to be configured to represent user requirements in terms of workflows, screen designs, menu designs, terminology, numbering schemes, report designs and much more. For many LIMS, full configuration for specific applications requires custom coding, which will require re-validation.

Once configured, LIMS can offer a practical way for food and beverage companies to document their sanitation/safety programs and instantly show written evidence of both testing and corrective actions when the FDA comes knocking.

Jacob Bowland, Heateflex
In the Food Lab

FSMA to Increase Role for Food Microbiology Testing Laboratories

By Jacob Bowland
No Comments
Jacob Bowland, Heateflex

As a result of the finalization of FSMA regulations on September 10, 2015, increasing requirements for procedures, documentation and testing will soon be impacting the food industry. The major effects on the food microbiology testing market will come in the form of an increase in the volume of samples that must be processed in accordance with the new FSMA rules, along with an improved emphasis on accurate and complete record keeping. The goals of FSMA are to create a new safety standard across the entire food chain. Increasing food pathogen testing will minimize possible recalls and the probability that dangerous food outbreaks occur.

Food manufacturers’ testing labs and third-party accredited testing labs can meet the demand for increased testing and improved record keeping in one of two ways: Via facility expansion or via implementing new technologies into the laboratory. While facility expansion might be an ideal long-term solution, it will not address the immediate surge in lab demand brought on by the new FSMA requirements, as it takes time to build new laboratories and hire employees. Implementing new technologies in the lab, then, makes the most sense, and where automation can be introduced into traditionally-manual processes, higher throughput may be realized using existing personnel and facilities.  Automation further removes human error and improves the quality of the test being performed. The challenge for lab managers will be to objectively look at the current production bottlenecks in their testing operations and determine where technology may be introduced to increase throughput.

In addition to mandating additional testing, the FSMA regulations will require improved lab record keeping, as well as a new accreditation process that FDA will implement. The food testing industry faces the same dilemma that the healthcare industry faced some years ago in migrating from manual files to electronic health records.  Lab notebooks have a real purpose in the lab, but their purpose should be more as a backup system to information that is gathered and stored electronically. While Laboratory Information Management Systems (LIMS) have been around for many years, their full potential in pathogen testing has yet to be realized. A properly designed LIMS provides an electronic database that not only aids in the accreditation process, but also allows samples to be traced throughout the testing facility.  This allows positive test results to be screened from false positives or false negatives, and points to which equipment or procedures in the testing process need to be improved upon.  LIMS technology for recording digital information can also trace user, operation time and performance specifications more accurately than lab notebook-based processes.

In summary, many changes are coming to the food industry as a result of increased regulations, presenting exciting opportunities to develop new products and technologies to alleviate the pain points within testing labs.  The industry of food pathogen testing must change alongside the regulatory atmosphere in order to be competitive in a post-FSMA era.

Laboratory Information Management System

How LIMS Facilitates ISO 17025 Certification in Food Testing Labs

By Dr. Christine Paszko
No Comments
Laboratory Information Management System

In order to ensure that a food testing laboratory maintains a quality management system that effectively manages all aspects of laboratory operations that affect quality, there are numerous records, reports and data that must be recorded, documented and managed.

Gathering, organizing and controlling all the data that is generated, managed and stored by food testing laboratories can be challenging to say the least. As the ISO Standards and regulatory requirements for food testing laboratories evolve, so does the need for improved quality data management systems. Historical systems that were very efficient and effective 10 years ago, may no longer meet the demanding requirements for ISO 17025 certification. One way to meet the challenge is to turn to automated solutions that eliminate many of the mundane tasks that utilize valuable resources.

There are many reasons for laboratories to seek this certification, including to enhance reputation, gain a competitive advantage, reduce operational costs, and meet regulatory compliance goals. A major advantage for food testing laboratories to obtain ISO 17025 Certification is that is tells prospective clients that the laboratory has a strong commitment to quality, and they hold the certification to prove it. This certification not only boosts a laboratory’s reputation, but it also demonstrates an organization’s commitment to quality, operational efficiency and management practices. Proof of ISO 17025 Certification eliminates the need for independent supplier audits, because the quality, capability and expertise of the laboratory have been verified by external auditors. Many ISO Certified laboratories will only buy products (raw materials, supplies and software) and services from other ISO-certified firms so that they do not need to do additional work in qualifying the vendor or the products.

There are many areas in which a LIMS supports and promotes ISO 17025 compliance. Laboratories are required to manage and maintain SOPs (standard operating procedures) that accurately reflect all phases of current laboratory activities such as assessing data integrity, taking corrective actions, handling customer complaints, managing all test methods, and managing all documents pertaining to quality. In addition, all contact with clients and their testing instructions should be recorded and kept with the job/project documentation for access by the staff performing the tests/calibrations. With a computerized LIMS, laboratory staff can scan in all paper forms that arrive with the samples (special instructions, chain of custody (CoC), or any other documentation). This can be linked to the work order and is easy assessable by anyone who has  the appropriate permissions. The LIMS provides extensive options for tracking and maintaining all correspondence, the ability to attach electronic files, scanned documents, create locked PDFs of final reports, COAs (Certificate of Analysis), and CoCs.

Sample Handling and Acceptance

Laboratories are required to have a procedure that defines all processes that a sample is subjected to while in the possession of the laboratory. Some of these procedures will relate to sample preservation, holding time requirements, and the type of container in which the sample is collected or stored. Other information that must be tracked includes sample identification and receipt procedures, along with acceptance or rejection criteria at log-in. Sample log-in begins and defines the entire analysis and disposal process, therefore it is important that all sample storage, tracking and shipping receipts as well as sample transmittal forms (CoC) are stored, managed and maintained throughout the sample’s analysis to final disposal. To summarize, the laboratory should have written procedures around the following related to sample preservation:

  • Preservation
  • Sample identification
  • Sample acceptance conditions
  • Holding timesShipping informationStorage
  • Results and Reporting
  • Disposal

The LIMS must allow capture and tracking of data throughout the sample’s active lifetime. In addition, laboratories are also required to document, manage and maintain essential information associated with the analytical analysis, such as incubator and refrigerator temperature charts, and instrument run files/logs. Also important is capturing data from any log books, which would include the unique sample identifier, and the date and time of the analysis, along with if the holding time is 72 hours or less or when time critical steps are included in the analysis, such as sample preparations, extractions, or incubations. Capturing the temperature data can be automated such that the data can be directly imported into the LIMS. If there is an issue with the temperature falling outside of a range, an email can automatically be spawned or a message sent to a cell phone to alert the responsible party. Automation saves time and money, and can prevent many potential problems via the LIMS ability to import and act on real-time data.

If any instrumentation is used in the analysis, the following information must also be recorded in the instrument identification (to ensure that it is in calibration, and all maintenance and calibration records are current), operating conditions/parameters, analysis type, any calculations, and analyst identification. In addition to analyst identification, laboratories must also keep track of analyst training as it relates to their laboratory functions. For example, if an analyst has not been trained on a particular method or if their certification has expired, the LIMS will not allow them to enter any result into the LIMS for the method(s) that they have not been trained/certified to perform. The LIMS can also send automated alerts when the training is about to expire. Figure 1 shows a screen in the LIMS that manages training completed, scheduled, tests scores, and expiration dates of the training, along with the ability to attach any training certificates, exams, or any other relevant documentation. Laboratory managers can also leverage the LIMS to pull reports that compare analyst work quality via an audit report. If they determine that one analyst has a significant amount of samples that require auditing, they can then investigate if there is a possible training issue. Having immediate access to data allows managers to more rapidly identify and mitigate potential problems.

Laboratory Information Management System
LIMS manages a variety of aspects in training, including when it has been completed, scheduled, tests scores, and expiration dates. (Click to enlarge)

Another major area that a LIMS can provide significant benefit is around data integrity. There are four main elements of data integrity:

  1. Documentation in the quality management system that defines the data integrity procedure, which is approved (signed/dated) by senior management.
  2. Data integrity training for the entire laboratory. Ensures that the database is secure and locked and operates under referential integrity.
  3. Detailed, regular monitoring of data integrity. Includes reviewing the audit trail reports and analyzing logs for any suspicious behavior on the system.
  4. Signed data integrity documentation for all laboratory employees indicating that they have read and understand the processes and procedures that have been defined.

The LIMS will enhance the ability to track and manage data integrity training (along with all training). The LIMS will provide a definition of the training, the date, time, and topic (description); instructor(s); timeframe in which the training is relevant, reminders on when it needs to be repeated; along with  certifications, quiz scores, copies of quizzes, and more. With many tasks, the LIMS can provide managers with automated reports that are sent out at regular time intervals, schedule training for specific staff, provide them with automatic notification, schedule data integrity audits, and to facilitate FDA’s CFR 21 part 11 compliance (electronic signatures). The LIMS can also be configured to automatically have reports signed and delivered via fax or email, or to a web server. The LIMS manages permissions and privileges to all staff members that require access to specific data and have the ability to access that data, along with providing a secure document control mechanism.

Laboratories are also required to maintain SOPs that accurately reflect all phases of current laboratory operations such as assessing data integrity test methods, corrective actions and handling customer complaints. Most commercial LIMS provide the ability to link SOPs to the analytical methods such that analysts can pull down the SOP as they are doing the procedure to help ensure that no steps are omitted. Having the SOPs online ensures that everyone is using the same version of the locked SOPs, which are readily available and secure.

Administrative Records, Demonstration of Capability

Laboratories are required to manage and maintain the following information on an analyst working in the laboratory: Personal qualifications and experience and training records (degree certificates, CV’s), along with records of demonstration of capability for each analyst and a list of names (along with initials and signatures) for all staff that hold the responsibility to sign or initial any laboratory record. Most commercial LIMS will easily and securely track and manage all the required personnel records. Individuals responsible for signing off on laboratory records can be configured in the LIMS to not only document the assignment of responsibility but also to enforce it.

Reference Standards and Materials

Because the references and standards that laboratories use in their analytical measurements affect the correctness of the result, laboratories must have a system and procedures to manage and track the calibration of their reference standards. Documentation that calibration standards were calibrated by a body that can prove traceability must be provided. Although most standards are purchased from companies that specialize in the creation of reference standards, there are some standards that laboratories create internally that can also be traced and tracked in the LIMS. Most commercial LIMS will also allow for the creation, receipt, tracking, and management of all supplies in an inventory module, such that they document the reference material identification, lot numbers, expiration date, supplier, and vendor, and link the standard to all tests to which it was linked.

The ISO 17025 Standard identifies the high technical competence and management system requirements that guarantee your test results and calibrations are consistently accurate. The LIMS securely manages and maintains all the data that supports the Quality Management System.

Key advantages of food testing laboratories that have achieved ISO 17025 Certification with a computerized LIMS that securely and accurately stores all the pertinent data and information:

  • Proof of ISO 17025 Certification eliminates the need for supplier audits, because the quality, capability and expertise of the laboratory have been demonstrated by the certification.
  • Knowledge that there has been an evaluation of the staff, methods, instrumentation and equipment, calibration records and reporting to ensure test results are valid.
  • Verification of operational efficiency by external auditors that have validated the quality, capability and expertise of the laboratory.
  • Defines robust quality controls for the selection and authentication of methods, analyzing statistics, controlling and securing data.
  • Clearly defines each employee’s roles, responsibilities and accountability.
  • Confidence that the regulatory and safety requirements are effectively managed and met in a cost efficient-manner.

Traceability: Leveraging Automation to Satisfy FSMA Requirements

By Dr. Christine Paszko
No Comments

In America’s food supply chain, food is sourced globally. Since ingredients often come from multiple countries, inspection and quality control is challenging, as regulations, policies and processes differ in each country. Product management begins with the suppliers, from the fields where the foods are grown, to the pesticides and fertilizers used, to harvesting, washing, shipping, storing, and processing (manufacturers), and finally, to packaging and delivery to consumers.

Figure 1. LIMS will facilitate FSMA by providing complete traceability from farm to table, in addition to accelerating collaboration, communication and providing operational insight.
Figure 1. LIMS will facilitate FSMA by providing complete traceability from farm to table, in addition to accelerating collaboration, communication and providing operational insight. (Click to enlarge)

Figure 1 shows each step of the product management process can introduce contamination due to unsafe practices or other risks. As such, test data and traceability must begin in the field and end when the final product is delivered to the consumer. The Laboratory Information Management System (LIMS) captures all information to ensure that quality data is effectively managed, communicated, and easily and quickly accessible in the event of a contamination issue. The LIMS allows producers to provide authorities with the required sampling and testing documentation to prove compliance.

U.S. consumers expect their food products to be affordable, consistent, safe and unadulterated. Consumers have seen numerous food recalls in the news, and it has shaken their confidence. The CDC estimates that about one in six Americans (or 48 million people) get sick, 128,000 are hospitalized, and approximately 3,000 die of foodborne diseases each year. Global food directives for international food initiatives include CODEX, ISO (International Standards Organization), and the Global Food Safety Initiative (GFSI).

The U.S. Government has implemented various food safety programs, from Hazard Analysis & Critical Control Points (HACCP) to FSMA in order to identify and correct potential contamination in the food supply. In fact, one of the primary focuses of FSMA is preventive action based on risk assessment.

The food landscape has changed significantly, especially over the past decade, as consumers demand year-round fresh fruits, vegetables and juices, along with more exotic foods. The fact that U.S. food is globally sourced has resulted in numerous challenges in quality assurance, shipping, traceability, labeling, storage, blending, testing, and reporting.

Use LIMS to track and manage information in a relational SQL Server LIMS database
Use LIMS to track and manage information in a relational SQL Server LIMS database. (Click to enlarge)

For example, upon reading the labeling on an apple juice can, it is not uncommon to learn the juice has been possibly sourced from numerous countries including the United States, China, Brazil, Argentina, Chile and many other countries from the European Union. Oftentimes, labels state that ingredients may come from some of the countries listed, but it does not specify what percentage comes from each country or exactly from which country the product was sourced. Figure 2 shows how LIMS can track and manage this information in a relational SQL Server LIMS database.

A similar scenario is true for tracking hamburger meat: The meat that was used to make burgers can come from multiple ranches and hundreds of cows. Many consumers don’t understand why their food/beverage is blended in large ton batches, and producers want to reach the required final product specifications, while offering a consistent product and experience to the consumer. Blending has become commonplace in the food industry, and it makes traceability much more challenging. The same is true in blending different meats, for example regulators have found pork in products marked 100% beef, this has led to the use of molecular tests to determine if meat has been adulterated.

FSMA and Traceability

FSMA focuses on a preventive approach rather than reaction and response to foodborne outbreaks. A central focus is on traceability, involving a complete understanding of the complex food chain and conducting testing at the key control points that can introduce contamination. It is important to understand the source of all the raw ingredients that make up a final product as well as the details of where they are sourced, the CoA (Certificate of Analysis) report, other test results, and all associated documentation. These elements are especially important, because each region of the world has different approved testing methods and is challenged with different potential contaminants and processes. As a result, food manufacturers must manage a significant amount of information on all raw materials that they receive, along with the associated paperwork, which includes the CoA, confirmatory test data, and all plant, production and final product test data.

Case example. As operations scale, so does the testing. In order to manage all the testing, most laboratories turn to LIMS and laboratory automation to manage high throughput screening. A client that was performing nearly 1,000 Listeria tests per day was using an automated microbiological screening platform to complete this testing. They were struggling to hire more resources to manage and run the instrument, as the time was short and the increased sample volume was imminent. The goal was to automate testing from the nine plants that were submitting samples to the main laboratory, such that the entire process could be automated from the laboratory knowing how many samples were coming from each plant and from deploying pre-configured worklists to upload to the instruments. The instruments would then run the samples and send the result back into the LIMS. This integration alone saved more than six hours per day. In addition, the electronic data transfer was fast and error-free, and since the data was imported into the LIMS, any positives were automatically flagged in real time. This approach allows immediate action.

In addition, all data from shelf life studies and additional testing on the food product (i.e., pesticide testing, environmental testing for Listeria sp., mold, yeast, etc., formulations, and blending) can be managed in the LIMS, one centralized database.

How LIMS Supports FSMA

Over the years some manufacturers have relied on less-robust tools to manage and maintain testing data, from multiple Excel spreadsheets to paper log books. Challenges with using these tools include data corruptions, data loss, typographical errors, and accidental or malicious data changes. These systems are often costly, especially from a resource standpoint (i.e., data errors, hours spent interacting with the data for calculations, tracking samples, and manual report creation alone). In addition, creating reports for regulating authorities can be time-consuming and because there is no control over changes to the Excel sheets or logbooks, there is typically no audit trail, and because the data is not in the database, querying the data can be very difficult.

A quality LIMS will ensure that the organization is bullet-proof when it comes time for regulatory audits. It also provides a complete and secure solution to manage, track and monitor batches of product from farm to table. LIMS not only helps clients manage their regulatory compliance goals, but it also facilitates communication across the organization and provides laboratory intelligence that gives buyers insight into the best suppliers to purchase from, based on final product specification, consistency and pricing. Managers can also better understand when it is time to outsource testing based on workload data, allowing them to maximize their resources and profitably through more efficient operations. The system also accelerates communication: As soon as testing is completed, reports can be automatically emailed and alerts sent to cell phones, if any issues arise.

When dealing with perishable products, time is of the essence, LIMS save time. Table 1 lists just a few of major benefits of the LIMS in FSMA regulatory compliance.

Process/Requirement Advantage
Sample tracking and management Integrated barcode support (both 1D and 2D), manage all batch data, tests, from raw materials, in process testing to final packaged product testing
21 CFR Part 11 Compliance with electronic signature requirements
CoA Easily, automatically generate the CoA report once testing is completed, validated and approved
Specification Management Manage final product, supplier and customer specifications and pricing
Document Management Link all paperwork to Work Order for ready access and retrieval
Full Chain of Custody Automatically generated and linked to the order
Records data and all paperwork associated with product All paperwork that arrived with the raw ingredients, CoA, and shipping documentation or additional test data
Records all test results Automatic data import from instruments as well as hand entered data
Shelf-life Studies Setup, manage and track all aspects of shelf life studies
Formulations and Blending Manage and track as components and specifications for final product blends, and leverage predictive tools for optimal purchase options from suppliers
Audit Trail Track actions in the system and generate a report of all audits made to any result data
CAPAs (Corrective and Preventative Actions) Track and manage open CAPAs in the LIMS, and tie to testing results for easy management to increase customer satisfaction
Traceability back to the source (farm, country) and  forward to the store that it was shipped to, with key data (lot number, ship date, etc.) Users can view all components and associated test results, along with any notes on the final product, back to the supplier and forward to locations that offer the product to the consumer
Employee Training Manage employee training records and view Standard Operating Procedures online to ensure access to work instruction and provide evidence for audits
Instrument Management Manage all quality control data on the instruments used in the testing, as well as documented calibration data, maintenance, any repairs, or any issues. Users can link the PDF manual in the LIMS
Enterprise integration (ERP, SAP, SCADA, MES, SAS JMP) Data sharing allows users with permissions access to data when they need it, so that they can quickly view and monitor information they need to perform their job. Users can also view data with integrated statistical tools to view trends that may not be readily evident
Table I

A LIMS is a critical tool to the success of food companies. It organizes and securely manages all aspects of food testing, facilitates regulatory compliance, enhances communication within the organization, and maximizes productivity. Many food producers are concerned about protecting their brand and providing a high quality, consistent, and safe product to consumers while operating efficiently and at a profit. An LIMS allows them to meet these goals.

Why Should Food Manufacturers Consider Lab Automation?

By Dr. Christine Paszko
No Comments

Food manufacturers that think strategically understand that labor efficiency is a measure of how effectively a workforce completes a task in comparison to industry. Companies frequently access efficiency and other metrics to identify weak points in their operations, with the end goal of enhancing data quality and streamlining costs. This approach has led many food and beverage manufacturers to embrace lean manufacturing and six sigma programs in their organizations. These leaders have a clear understanding that labor is money (or money is stored labor), and money equals margins. Food and beverage manufacturers often acquire several raw materials and convert them into finished products for consumers to purchase. These manufacturers have found that robotics and automation have greatly increased productivity and enhanced product quality while maximizing resources and profitability.

LIMS offer a variety of benefits. Image courtesy of ATL
LIMS offer a variety of benefits. Image courtesy of ATL

Ease Operations with Automation

Analytical testing laboratories within food manufacturing firms leverage LIMS to realize automation savings. LIMS is an acronym for Laboratory Information Management System, which can also be a manual paper/Excel based solution, however, this article will focus on completely automated, computerized, enterprise, software solutions. Manual systems are cumbersome, costly, and lack efficiency.

Just as automation and robotics have transformed the food manufacturing process, intelligent laboratory operations leverage LIMS, because it enables increased quality and faster turnaround, while providing significant cost savings. LIMS are computerized systems that organize, manage and communicate all of the laboratory test data and related information such as Standard Operating Procedures (SOPs) and Certificates of Analysis (COAs), final analysis reports, invoices, nutritional labels, formulations and information to support an organization’s operations and meet regulatory compliance goals.

Traditional LIMS facilitate overall laboratory organization, from sample management to test data to final reporting and disposal. LIMS begin with sample management and typically the generation of barcoded labels (of a unique identification number), testing is automatically assigned based on project or sample type (Note: Additional tests can be added or deleted, and ad hoc samples can also be logged). Some laboratories test all raw materials that arrive to confirm acceptance criteria against the COA, in addition to in-process, final product testing and environmental testing. Once samples are logged into the system, worklists are created in the LIMS of the samples to be run and the information is scanned via barcode and sent to the instrument controller. Tests that include associated quality control data are run by loading instruments. Results are electronically imported back into the LIMS from instrumentation (this is the most common and most efficient method). For manual, subjective tests that require interpretation, results must be entered into the LIMS by hand. Managers can also manage and track samples that have been subcontracted to other laboratories (i.e., for testing capabilities that do not exist internally). Once the subcontracted data is submitted back to the laboratory in an electronic format, it can be directly imported into the LIMS, and all data related to the sample is stored in a single, secure database.

Automation significantly reduces cost, enhances quality and provides a means to rapidly scale production. This image shows a cheese processing plant. Image courtesy of ATL
Automation significantly reduces cost, enhances quality and provides a means to rapidly scale production. This image shows a cheese processing plant. Image courtesy of ATL

This approach offers a major advantage, especially to global operations, due to the ability to deliver real-time data across an enterprise. End-users can leverage the technology to make intelligent buying decisions based on product specifications of incoming raw materials, customer demand, specification criteria and blending simulations.

Managers can view a variety of metrics, including the number of samples that have been run for a particular product, statistical process control charts, instruments in service for workload management, and supplier performance in any given period. Complete product traceability is possible.

LIMS has evolved to manage many additional functions, such as communications with ERP/SAP systems, shelf life studies, performing skip lot testing, formulations, and field and plant data collection by integration with tablets and smartphones for real-time updates, managing competitive analysis data as well as special projects. A few of the major areas in which LIMS are leveraged include:

  1. Sample management of all testing initiated
  2. Quality assurance (including in process quality checks)
  3. Workflow management (optimization of processes)
  4. Regulatory compliance (FSMA, GFSI, HACCP, FDA)
  5. Specification management, formulations and blending
  6. Dashboards for real-time updates (in a single site or across operations)
  7. Customer relationship management (organizing and responding to customer inquiries)
  8. Reporting (COA, final analysis and invoice reports)
  9. Inventory management and product release

Enabling Standardization

A LIMS not only enhances communication across a laboratory, but also across a global organization with multiple sites, ensuring effective cooperation and relationships between suppliers, production and customers. A LIMS promotes standardization in global firms and gives management teams real-time data access from site to site, so that data is readily available for better management and resource allocation decisions. Standardization makes business and financial sense, as organizations can realize cost savings in buying testing equipment and supplies in larger quantities, exchanging staff to different sites (potentially reducing training costs), and managing a user-friendly, single secure database that supports localization (each site can implement LIMS in its native language). Standardization does not mean that systems must be ridged; each facility can leverage its own unique workflows and terminology while saving data to a standard database format.

A LIMS can manage an entire organization’s laboratory SOPs or work instructions, and documents associated with the following:

  • Laboratory testing
  • Assets
  • Inventory
  • Laboratory chemicals
  • Supplies
  • Formulations
  • Blending
  • Automated calculations
  • Customer interactions
  • Employee training records
  • Laboratory instrumentation
  • Purchase orders
  • Sample storage
  • Reporting
  • Invoicing
  • Facilitating governmental laboratory compliance requirements

Today, LIMS’ have expanded to manage all aspects of laboratory operations and have significant overlap with ERP, SAP systems and other enterprise solutions. The goal is to move away from multiple separate databases and distinct islands to one centralized data management solution. Amazingly, some laboratories do not make the investment in new LIMS technology and continue use in-house created database systems, manual paper systems and Excel spreadsheets (or a combination of these systems) to manage portions of the critical product testing data. These systems are often costly, labor intensive, subject to data loss, and difficult to manage and maintain.

A LIMS ensures that analytical resources have been best utilized to maximize productivity and efficiency to generate high-quality data to support operations, while facilitating regulatory compliance goals. Organizations that embrace quality often leverage technology such as LIMS, and typically hold ISO 17025 certification and embrace six sigma, lean manufacturing and other best practices.

Robotics has transformed food manufacturing to allow greater volumes of final product to be produced, with an emphasis on speed, standardization, consistent product quality and volume, with increased efficiency and cost savings. LIMS’ have transformed the manufacturing process and the laboratory analysis process from raw material testing to in-process /environmental testing and finished product testing. For example, on-line monitors can feed data into an LIMS (i.e. flow, temperature from freezers or incubators), and if there are any alarming data points, instant notification is provided to the team via email or a phone call. This rapid response saves time for a corrective action to be put into place. Within the laboratory, if a shelf life study is underway and the incubator fails, an alert can be sent after one out-of-range temperature measurement, allowing the problem to be corrected and the study saved, versus having to start over.

The analytical testing group in any food and beverage testing facility generates hundreds, thousands, even millions of data points a year. They gather data on raw materials (based on COAs), in-process manufacturing (quality checks, statistical process control and specification confirmation), environmental monitoring, and finished product testing as well as performing competitive analysis. These are some of the main areas that are impacted by sample collection and testing. LIMS and laboratory automation have transformed the way that data is collected, monitored and analyzed. Today’s LIMS’ are based on modern technology, providing a valuable tool to ensure that product is within specification, and collected and disseminated in real-time to improve efficiency, reduce costs, increase profitability.

Why LIMS Is a Necessity, Not a Nicety

By Dr. Christine Paszko
No Comments

How a laboratory information management system can facilitate safety testing and regulatory compliance within a food processor’s lab.

The food industry is under pressure to produce high-quality products while adhering to stringent microbiological testing standards controlling costs and meeting regulatory compliance goals. Food companies face a number of regulations and requirements, including those related to Good Manufacturing Practices, nutritional labeling, HACCP (Hazard Analysis and Critical Control Points), public health security, the Bioterrorism Preparedness and Response Act of 2002, and FSMA. For laboratories that offer products globally, the Global Food Safety Initiative focuses on continuous improvement of food safety management systems to ensure confidence in the delivery of safe food to consumers. Many companies face these regulatory challenges armed with a stable and secure laboratory information management system (LIMS) and laboratory automation solutions. LIMS solutions can provide a cost-effective means to ensure that product standards are met, product is delivered as quickly as possible, and managers and staff have the tools to effectively do their jobs. While there are many commercially available LIMS solutions, it is critical that laboratory managers perform due diligence to ensure that the system they select will be successful in the lab. Some ways in which an LIMS vendor can differentiate itself includes: having ISO 9001 certification offering a qualified staff, being a certified Microsoft Gold Partner, and offering software solutions based on the latest technology that allows users to leverage the Internet, tablets and smartphones.

Implementing an LIMS: The problem and the solution

A microbiology laboratory of a meat processor was looking for ways to eliminate transcription errors, and shorten its analysis turnaround time and reporting time through automation. The company was experiencing increasing sample volume, which would require hiring additional resources that had to be trained and deployed. However, taking on more personnel was not an option. To manage its growing sample volume, the company was seeking an LIMS that could also interface with its laboratory instruments and manage plant samples from multiple remote sites. An evaluation of current processes revealed multiple opportunities to automate data entry, reporting, and eliminate dual and triple entry while accelerating and automating data handling and test scheduling.

Samples, including raw materials, finished products and plant samples, were sent from multiple plants to the laboratory daily for environmental monitoring. The current manual system was labor intensive and required that all processes be manually checked and re-checked for accuracy prior to data release. Data was entered into the manual systems multiple times. Instrument data was not integrated with the reporting and the lab was increasing its sample volume for the instruments alone by up to 900 samples per day. Primary reasons for investing in LIMS automation included:

•    Having the ability to do more work with the same resources (removing manual tasks)
•    Enhancing data management into a single, secure data base
•    Meeting regulatory compliance goals
•    Operating under enhanced efficiency and data quality
•    Facilitation of standards and increased communication across their operations
•    Cost savings

Automation reduces transcription errors, increases productivity, enhances data quality and accelerates result delivery. Faster turnaround translates into faster product release, longer shelf-life and ultimately, cost savings.

Then: Prior to implementing the LIMS, samples would arrive at the food processor’s laboratory each morning. From there, they were manually sorted, paperwork was organized, and checks were conducted to verify receipt of samples.

Now: LIMS has significantly streamlined the process. Each morning, a work list is printed from the LIMS, identifying which samples will be received from the plants. The samples are organized and prepared for analysis and placed on the instruments with barcoded work lists for rapid and accurate set up.

The microbiology laboratory leveraged an automated food pathogen detection system to test for Listeria spp., Salmonella spp. and E.coli:0157:H7 on various sample types. Prior to automation, the manual steps of loading the sample IDs, scanning the print outs from the instruments, and then entering the data into reports with secondary review required 40 to 45 minutes per batch of 60 samples.

 Two of the four instruments interfaced with a LIMS.

Implementation of the LIMS has reduced report review time to five minutes. The data is received by the LIMS, and the email is automatically parsed and ready to receive the samples. The emailed worksheets, which are also automatically imported into the LIMS, eliminate several manual steps, including the time in which the laboratory team spent cross-checking samples with the paperwork and calling for missing samples. In this case, the automation has reduced the amount of paperwork and significantly streamlined the process. Now the laboratory knows which samples it will be receiving each day and can quickly match the samples to previously imported work lists.

Once the samples are loaded on the pathogen detection instrument to match the work list from the LIMS, the screening is conducted and the data is sent back to the LIMS, with the final analysis report completed automatically.

 
 An example of a final report automatically generated from the system, which is also automatically emailed.

 

Conclusion

Primary enhancements to implementing an LIMS include higher data quality and significant time savings (a conservative estimate: LIMS typically saves customers between 25-45% of time on their operations). On the instrument integration alone, the automation saved 35 to 40 minutes of work per batch (a batch contains 60 samples), and a typical day includes 10 to12 batches, or up to 720 test results per day. Conservatively, if we allot 35 minutes per batch and 10 batches per day, the time savings are nearly six     hours daily, and this is only from interfacing four instruments. Additional time savings are also realized as a result of reducing data errors.

An alternative solution to hiring additional staff to work in the lab involved examining the benefits of automation to leverage existing resources and allowing them to be more productive. This path eliminated mundane tasks and allowed existing lab staff to focus on the LIMS  (managing, tracking and organizing data) and automation (barcoding, scanning, instrument integration, automated email imports and automated reporting). Laboratory staff was trained on-site and received follow-up training at the LIMS Boot Camp. As a result, workflows were streamlined, sample throughput was accelerated, and the lab experienced faster turnaround times.

Other benefits of deploying a new LIMS in the laboratory include increasing data security, having an audit trail if any approved and validated results required a change, full traceability, facilitating standardization across the organization, reducing the amount of paper forms, and automating the release and reporting process.


About the Author

Dr. Christine Paszko has extensive expertise in LIMS, laboratory automation and food safety testing. She is currently the VP of Sales and Marketing at Accelerated Technology Laboratories, Inc., (ATL). Prior to joining ATL, she worked at Applied Biosystems. She was responsible for the creation, marketing and sales of molecular test kits that leveraged the TaqMan technology to detect major foodborne pathogens such as Salmonella, Listeria, and E. coli 0157.

Getting Ready for FSMA: How a Laboratory Information Management System Can Help

Investing in a LIMS will give food testing labs, growers, producers and manufacturers the traceability they need to keep their products safe from contamination and to conform to the stricter regulations and reporting required by FSMA.

Do you know where your food comes from? How sure are you that it was grown, processed or produced with your safety as the priority? Increasingly this issue is headline news as we struggle with managing the outbreak of food-borne illnesses caused by the very stuff of our daily lives: salmonella contaminated peanut butter; e-coli contaminated beef and pork; contaminated spinach, lettuce and strawberries; melamine in milk.

In each instance, the grower or producer had inadequate methods in place to trace the original source of the contamination. The Mexican tomato business was devastated in 2009 when tomatoes were wrongly blamed for an outbreak of salmonella that was actually caused by tainted jalapeño peppers. Without proper systems in place to provide traceability, there was no way to know the contamination source. Several people died, many more became ill and a major business was destroyed for lack of information. The ultimate price for those food producers is that not only have they lost revenue due to product recalls, but, more importantly, they have also lost the trust of the buying public – and governments around the world have taken notice.

In the United States, the oversight of food had fallen under a fractured network of agencies responsible for different parts of the production process, from site inspections and safe processing methods, to the documentation of calorie counts and ingredient listings. Some grown and produced foods fell under the auspices of the U.S. Food and Drug Administration (FDA), while food groups that contained a combination of meat, dairy and produce fell under the oversight of the Department of Agriculture. Compound this regulatory environment with the fact that staffing for food inspections had been low compared to the volume of inspection needed to manage safe production. This lack of manpower and the separation of responsibilities exacerbated the ineffectiveness of the regulatory agencies and caused confusion among the consuming public.

The FDA Food Safety Modernization Act (FSMA), the most sweeping reform of our food safety laws in more than 70 years, aims to ensure the U.S. food supply is safe by shifting the focus from responding to contamination to preventing it. The result of this legislation for consumers should be greater safety of their grown and produced foods. The impact for food producers will be mandates for upgraded business and operations plans, investments in instrumentation, software and manpower, and a safer food supply chain. This white paper discusses how to respond to FSMA, the role that traceability plays in it, and how leading food producers have implemented best practice solutions.

Employing a LIMS to meet the demanding FSMA requirements

The most important common thread throughout the FSMA is traceability. Laboratory Information Management Systems (LIMS) play a critical role in the traceability of quality in the production process from farm to fork, providing such capabilities as:

  • Automated data collection from testing and delivering the records of proof that are required for regulatory compliance;
  • A secure environment for monitoring batch relationships between raw materials, processed materials and packaged goods;
  • A centralized system that collects, stores, processes and reports all the data generated within food laboratories, allowing a complete overview of the quality of any product;
  • Automated checks for out-of-specification results and identification of suspect products to prevent release pending investigation; and
  • Assurance that all (standard, fast turnaround and condition sensitive) samples are handled and processed correctly.

Furthermore, a LIMS provides the producer with the knowledge that the quality of the product meets the standards set by the regulator, while recording that data for any subsequent inspection. Auditors can review uniform compliance reports and the certificates of inspection stored within the LIMS whenever required to confirm consumer safety.

Ultimately, a LIMS plays a key role in the integration of the laboratory environment with critical enterprise systems to facilitate faster, more informed decisions. This makes laboratory data available to process control systems, giving managers immediate accessibility to results, as well as cascading any release data through to enterprise resource planning systems.

For some food testing laboratories, commercial LIMS have been too costly for the business to absorb and support, forcing them to rely on inefficient manual and error-prone home-grown systems, spreadsheets or paper-based methods. The new legislation will put enormous strain on these labs to remain compliant. Investing in a LIMS will give food testing labs, growers, producers and manufacturers the traceability they need to keep their products safe from contamination and to conform to the stricter regulations and reporting required of the FSMA.

Case Studies: LIMS providing traceability for food worldwide

Chr. Hansen is one of the world’s top food ingredient companies. The company standardized on Thermo Scientific LIMS across all of its six culture production sites in the United States, Denmark, France and Germany to ensure optimum quality control in starter culture production. The LIMS implementation has delivered considerable benefits, including real-time, automated entry and processing of laboratory data, and fast extraction of results, leading to increased laboratory productivity and accelerated sample turnaround. Chr. Hansen has also integrated the LIMS with its existing ERP system, so that test results authorized in the LIMS by lab personnel can be immediately available for the processing facilities technicians and laboratory administrators.

Molkerei Alois Müller produces more than a third of all yogurt eaten in the UK from the Market Drayton factory. The Müller UK labs focus mainly on production Quality Control. Every step in the process undergoes quality checks, which are managed and stored with the LIMS. Müller UK selected Thermo Scientific LIMS to manage their QC data for raw materials, in -process, and finished dairy desserts. The LIMS reduced the amount of error-prone manual paperwork processes and expedited testing, while providing the necessary reports and documentation for a complete audit trail during regulatory inspections. By using a LIMS, Müller is able to trend all data and make quality and safety decisions, as well as any necessary improvements, much faster and more reliably.

Sino Analytica in Qingdao City, China is a world-class food analysis laboratory that provides contract analytical services to a wide range of food suppliers, trading companies, and retailers from China and all over the world. Sino Analytica historically managed data manually in the laboratory with a monthly load of over 1,200 samples. The company chose Thermo Scientific LIMS to support its food safety contract laboratory and meet the internal quality standards and accreditation requirements for food exports to countries including the United States. The LIMS has helped laboratory managers achieve faster assembly, collation, and review of information and data relating to QA/QC activities. The LIMS also demonstrates that the company meets the requirements of auditors and provides documentation for processing internal QC data.

This article has been adapted from a white paper presented by Thermo Fisher Scientific. Click here to access the white paper. For More Information about Thermo Scientific informatics solutions for the food and beverage industry, visit: www.thermoscientific.com/foodsafetyresources.

Sangita Viswanathan, Former Editor-in-Chief, FoodSafetyTech

The Value of Effective LIMS

By Sangita Viswanathan
No Comments
Sangita Viswanathan, Former Editor-in-Chief, FoodSafetyTech

With the announcement of proposed rules under the Food Safety Modernization Act (or FSMA), the burden of food safety testing and record keeping placed on smaller and medium size food companies and use of contract testing labs is growing tremendously. So how do these labs manage growing requests for testing, and increasing volumes of data and demand for records? 

Here is where Laboratory Information Management Systems or LIMS play an important role, in helping labs manage the testing requests, handle all the data and records, be better prepared for audits, and comply with changing regulations, says Anthony Uzzo, President & Co-Founder of Core Informatics.

Uzzo has extensive experience in software engineering, informatics, laboratory automation, project management and science. He co-founded Core Informatics in 2006, along with Jim Gregory (Executive VP of Customer Solutions). A biomedical engineer, Uzzo started his career as a pharmaceutical lab scientist, and in that role, realized that most LIMS solutions were rigid in their scope. 

“This exposed me to different labs having different data management requirements, and gave me a profound appreciation of the impact of data management and having effective LIMS in labs. When starting Core Informatics, my goal was to provide labs with the opportunity to tailor their data management system to their needs without having to change their workflow, systems, personnel etc.,” he describes. 

We present below some excerpts from an interview with Food Safety Tech (FST).

FST: Why are LIMS so important for food and beverage companies in the current environment?

Uzzo:The food and beverage industry faces increasing regulatory scrutiny, pressures to control costs, and the challenge of maintaining quality throughout a global supply chain. A LIMS solution needs to be a solution to aid companies in the delivery and discovery of products, while complying with industry and government regulations.

The LIMS need to identify hazards, determine and monitor critical control points, and establish corrective actions and verification procedures to ensure that standards are met and the system is functioning properly. Our HACCP compliant system helps companies in the F&B industry to monitor products and make sure they do not become contaminated with chemicals or food pathogens. 

FST: How can food companies and labs choose the ideal LIMS solution?

Uzzo: According to me, the top criteria for choosing a LIMS solution would be flexibility; being web-based (able to use the LIMS with smart devices for data entry and access and no antiquated client server technology); and total cost of ownership.

There are now all sorts of novel testing methodologies being applied for food safety, and as a result, the data management requirements are constantly changing. Solutions would need to facilitate administrators to use the LIMS without writing a new code, and easily and quickly enable multi-site collaboration. For instance, there are new rapid detection technologies, such as PCR technologies for Salmonella detection, now in the market. An ideal LIMS should be able to rapidly process these results and use that data analysis, come up with efficient reports and enable lab scientists to do their job in a cost-effective manner. 

Cloud-based solutions offer great advantages in providing the ability to auto-scale, handle any amount of data, send out samples to other labs, support multi-site collaboration etc. Core Informatics, for instance, is fully embracing the power of the cloud. 

An ideal LIMS solution should address chain of custody from registration to report. The final report needs to be mentioned and be able to track who had handled that sample and every derivative of it, how it has been handled, under which condition it has been stored and for how long, and if appropriate procedures have been followed for storage and handling. Downstream, if there’s any problem, we need to be able to go back upstream and identify the correct source material.

LIMS solutions need to be prepared as new laws come into play in the next few years. Industry trends are accelerating the use of contract food testing labs. How effectively companies are able to process their data management requirements such as automatically receiving and recording test requests, preparing for their audits and complying with their food safety management programs, will all become critical.

Future Demand on Food Lab Managers

By Sangita Viswanathan
No Comments

How will food labs meet the demands of the future? What role will FSMA regulations play? And how are labs dealing with globalization of the food chain?

Food labs – both within food manufacturing companies and external contract labs – are facing a multitude of challenges: Increasing regulatory changes and compliance pressures; greater volume of testing; newer technologies and testing methods; demand for faster, and more efficient results….. How are labs and lab managers keeping track of, and apace with, all these changes? 


David White
, Chief Science Officer and Research Director at U.S. Food and Drug Administration (left, in the picture); Dave Evanson, President, EMS (middle); and Alvin Lee, Director, Center for Processing Innovation at the Institute for Food Safety and Health (IFSH), Illinois Institute of Technology (right), talked about these issues in a panel discussion moderated by Marc Carter, President of MC2, Inc. at Food Safety Tech’s Food Labs Conference organized last month in Chicago. We present some excerpts from the discussion below. 

 

What’s keeping you up at night?

Globalization of the food chain is a significant concern. FDA’s David White talked about the emphasis that FDA places on testing food products globally, increasing standards to get global labs on par with FDA’s accepted levels of testing, and using equivalent methods. 

“Southeast Asia and China, and the testing done in such regions, will be critical. This will need time and resources, but we should all collectively aim to get there,” White added. 

What keeps him up at night? White described that food labs of the future need to help companies be one step ahead of the next contamination. “Who would have thought about melamine, for instance? We need to consider which other products would be ideal for substitution and companies need to identify where their vulnerabilities lie. Everyone has a part to play in food safety – FDA doesn’t have the resources to do everything by themselves. Testing for the unknown, what’s the next melamine, that’s what keeps me up at night,” White explained. 

 

What’s the impact of FSMA regulations on the food lab market?

Getting labs to have in place specific food testing methodologies, HACCP and verification, plans to reduce contamination etc., will all improve under FSMA regulations. 

All these will take some time, says White, “but we are communicating to labs about where we stand and how the new rules can help take them to where they need to be.” 

IFSH’s Alvin Lee feels that there will be a lot more demand for documentation because of the new regulations: “Labs will have to establish certain processes or steps with a plan for preventive control, and find effective ways to control and manage data and documentation.” 

Echoing this sentiment, White said that labs need to figure out figure out how to manage databases more efficiently. “How do we create and store data, and produce it in a format that’s user-friendly? All these will be key challenges,” White described. 

 

How do food labs manage data currently?

Dave Evanson felt that there is a good history of LIMS being available and used. “Some labs have done a pretty good job of embracing that. But at the other end of the spectrum, there are some labs that still use a lot of paper. But many of these are starting to make changes. 

“There is also a lot of interest in going beyond just getting data, and learning more. And there is a push toward the producer of the data to get more information. New generation LIMS need to address this,” Evanson explained.