Tag Archives: metals

Karen Everstine, Decernis
Food Fraud Quick Bites

Food Authenticity: 2020 in Review

By Karen Everstine, Ph.D.
No Comments
Karen Everstine, Decernis

It is fair to say that 2020 was a challenging year with wide-ranging effects, including significant effects on our ongoing efforts to ensure food integrity and prevent fraud in the food system. COVID-19 caused major supply chain disruptions for foods and many other consumer products. It also highlighted challenges in effective tracking and standardization of food fraud-related data.

Let’s take a look at some of the notable food fraud occurrences in 2020:

  • Organic Products. The Spanish Guardia Civil investigated an organized crime group that sold pistachios with pesticide residues that were fraudulently labeled as organic, reportedly yielding €6 million in profit. USDA reported fraudulent organic certificates for products including winter squash, leafy greens, collagen peptides powder, blackberries, and avocados. Counterfeit wines with fraudulent DOG, PGI, and organic labels were discovered in Italy.
  • Herbs and Spices. Quite a few reports came out of India and Pakistan about adulteration and fraud in the local spice market. One of the most egregious involved the use of animal dung along with various other substances in the production of fraudulent chili powder, coriander powder, turmeric powder, and garam masala spice mix. Greece issued a notification for a turmeric recall following the detection of lead, chromium, and mercury in a sample of the product. Belgium recalled chili pepper for containing an “unauthorized coloring agent.” Reports of research conducted at Queen’s University Belfast also indicated that 25% of sage samples purchased from e-commerce or independent channels in the U.K. were adulterated with other leafy material.
  • Dairy Products. India and Pakistan have also reported quite a few incidents of fraud in local markets involving dairy products. These have included reports of counterfeit ghee and fraudulent ghee manufactured with animal fats as well as milk adulterated with a variety of fraudulent substances. The Czech Republic issued a report about Edam cheese that contained vegetable fat instead of milk fat.
  • Honey. Greece issued multiple alerts for honey containing sugar syrups and, in one case, caramel colors. Turkey reported a surveillance test that identified foreign sugars in honeycomb.
  • Meat and Fish. This European report concluded that the vulnerability to fraud in animal production networks was particularly high during to the COVID-19 pandemic due to the “most widely spread effects in terms of production, logistics, and demand.” Thousands of pounds of seafood were destroyed in Cambodia because they contained a gelatin-like substance. Fraudulent USDA marks of inspection were discovered on chicken imported to the United States from China. Soy protein far exceeding levels that could be expected from cross contamination were identified in sausage in the Czech Republic. In Colombia, a supplier of food for school children was accused of selling donkey and horse meat as beef. Decades of fraud involving halal beef was recently reported in in Malaysia.
  • Alcoholic Beverages. To date, our system has captured more than 30 separate incidents of fraud involving wine or other alcoholic beverages in 2020. Many of these involved illegally produced products, some of which contained toxic substances such as methanol. There were also multiple reports of counterfeit wines and whisky. Wines were also adulterated with sugar, flavors, colors and water.

We have currently captured about 70% of the number of incidents for 2020 as compared to 2019, although there are always lags in reporting and data capture, so we expect that number to rise over the coming weeks. These numbers do not appear to bear out predictions about the higher risk of food fraud cited by many groups resulting from the effects of COVID-19. This is likely due in part to reduced surveillance and reporting due to the effects of COVID lockdowns on regulatory and auditing programs. However, as noted in a recent article, we should take seriously food fraud reports that occur against this “backdrop of reduced regulatory oversight during the COVID-19 pandemic.” If public reports are just the tip of the iceburg, 2020 numbers that are close to those reported in 2019 may indeed indicate that the iceburg is actually larger.

Unfortunately, tracking food fraud reports and inferring trends is a difficult task. There is currently no globally standardized system for collection and reporting information on food fraud occurrences, or even standardized definitions for food fraud and the ways in which it happens. Media reports of fraud are challenging to verify and there can be many media reports related to one individual incident, which complicates tracking (especially by automated systems). Reports from official sources are not without their own challenges. Government agencies have varying priorities for their surveillance and testing programs, and these priorities have a direct effect on the data that is reported. Therefore, increases in reports for a particular commodity do not necessarily indicate a trend, they may just reflect an ongoing regulatory priority a particular country. Official sources are also not standardized with respect to how they report food safety or fraud incidents. Two RASFF notifications in 2008 following the discovery of melamine adulteration in milk illustrate this point (see Figure 1). In the first notification for a “milk drink” product, the hazard category was listed as “adulteration/fraud.” However, in the second notification for “chocolate and strawberry flavor body pen sets,” the hazard category was listed as “industrial contaminants,” even though the analytical result was higher.1

RASFF

RASFF, melamine detection
Figure 1. RASFF notifications for the detection of melamine in two products.1

What does all of this mean for ensuring food authenticity into 2021? We need to continue efforts to align terminology, track food fraud risk data, and ensure transparency and evaluation of the data that is reported. Alignment and standardization of food fraud reporting would go a long way to improving our understanding of how much food fraud occurs and where. Renewed efforts by global authorities to strengthen food authenticity protections are important. Finally, consumers and industry must continue to demand and ensure authenticity in our food supply. While most food fraud may not have immediate health consequences for consumers, reduced controls can lead to systemic problems and have devastating effects.

Reference

  1. Everstine, K., Popping, B., and Gendel, S.M. (2021). Food fraud mitigation: strategic approaches and tools. In R.S. Hellberg, K. Everstine, & S. Sklare (Eds.) Food Fraud – A Global Threat With Public Health and Economic Consequences (pp. 23-44). Elsevier. doi: 10.1016/B978-0-12-817242-1.00015-4
Michael Bartholomeusz, TruTag
In the Food Lab

Intelligent Imaging and the Future of Food Safety

By Michael Bartholomeusz, Ph.D.
1 Comment
Michael Bartholomeusz, TruTag

Traditional approaches to food safety no longer make the grade. It seems that stories of contaminated produce or foodborne illnesses dominate the headlines increasingly often. Some of the current safeguards set in place to protect consumers and ensure that companies are providing the freshest, safest food possible continue to fail across the world. Poorly regulated supply chains and food quality assurance breakdowns often sicken customers and result in recalls or lawsuits that cost money and damage reputations. The question is: What can be done to prevent these types of problems from occurring?

While outdated machinery and human vigilance continue to be the go-to solutions for these problems, cutting-edge intelligent imaging technology promises to eliminate the issues caused by old-fashioned processes that jeopardize consumer safety. This next generation of imaging will increase safety and quality by quickly and accurately detecting problems with food throughout the supply chain.

How Intelligent Imaging Works

In broad terms, intelligent imaging is hyperspectral imaging that uses cutting-edge hardware and software to help users establish better quality assurance markers. The hardware captures the image, and the software processes it to provide actionable data for users by combining the power of conventional spectroscopy with digital imaging.

Conventional machine vision systems generally lack the ability to effectively capture and relay details and nuances to users. Conversely, intelligent imaging technology utilizes superior capabilities in two major areas: Spectral and spatial resolution. Essentially, intelligent imaging systems employ a level of detail far beyond current industry-standard machinery. For example, an RGB camera can see only three colors: Red, green and blue. Hyperspectral imaging can detect between 300 and 600 real colors—that’s 100–200 times more colors than detected by standard RGB cameras.

Intelligent imaging can also be extended into the ultraviolet or infrared spectrum, providing additional details of the chemical and structural composition of food not observable in the visible spectrum. Hyperspectral imaging cameras do this by generating “data cubes.” These are pixels collected within an image that show subtle reflected color differences not observable by humans or conventional cameras. Once generated, these data cubes are classified, labeled and optimized using machine learning to better process information in the future.

Beyond spectral and spatial data, other rudimentary quality assurance systems pose their own distinct limitations. X-rays can be prohibitively expensive and are only focused on catching foreign objects. They are also difficult to calibrate and maintain. Metal detectors are more affordable, but generally only catch metals with strong magnetic fields like iron. Metals including copper and aluminum can slip through, as well as non-metal objects like plastics, wood and feces.

Finally, current quality assurance systems have a weakness that can change day-to-day: Human subjectivity. The people put in charge of monitoring in-line quality and food safety are indeed doing their best. However, the naked eye and human brain can be notoriously inconsistent. Perhaps a tired person at the end of a long shift misses a contaminant, or those working two separate shifts judge quality in slightly different ways, leading to divergent standards unbeknownst to both the food processor and the public.

Hyperspectral imaging can immediately provide tangible benefits for users, especially within the following quality assurance categories in the food supply chain:

Pathogen Detection

Pathogen detection is perhaps the biggest concern for both consumers and the food industry overall. Identifying and eliminating Salmonella, Listeria, and E.coli throughout the supply chain is a necessity. Obviously, failure to detect pathogens seriously compromises consumer safety. It also gravely damages the reputations of food brands while leading to recalls and lawsuits.

Current pathogen detection processes, including polymerase chain reaction (PCR), immunoassays and plating, involve complicated and costly sample preparation techniques that can take days to complete and create bottlenecks in the supply chain. These delays adversely impact operating cycles and increase inventory management costs. This is particularly significant for products with a short shelf life. Intelligent imaging technology provides a quick and accurate alternative, saving time and money while keeping customers healthy.

Characterizing Food Freshness

Consumers expect freshness, quality and consistency in their foods. As supply chains lengthen and become more complicated around the world, food spoilage has more opportunity to occur at any point throughout the production process, manifesting in reduced nutrient content and an overall loss of food freshness. Tainted meat products may also sicken consumers. All of these factors significantly affect market prices.

Sensory evaluation, chromatography and spectroscopy have all been used to assess food freshness. However, many spatial and spectral anomalies are missed by conventional tristimulus filter-based systems and each of these approaches has severe limitations from a reliability, cost or speed perspective. Additionally, none is capable of providing an economical inline measurement of freshness, and financial pressure to reduce costs can result in cut corners when these systems are in place. By harnessing meticulous data and providing real-time analysis, hyperspectral imaging mitigates or erases the above limiting factors by simultaneously evaluating color, moisture (dehydration) levels, fat content and protein levels, providing a reliable standardization of these measures.

Foreign Object Detection

The presence of plastics, metals, stones, allergens, glass, rubber, fecal matter, rodents, insect infestation and other foreign objects is a big quality assurance challenge for food processors. Failure to identify foreign objects can lead to major added costs including recalls, litigation and brand damage. As detailed above, automated options like X-rays and metal detectors can only identify certain foreign objects, leaving the rest to pass through untouched. Using superior spectral and spatial recognition capabilities, intelligent imaging technology can catch these objects and alert the appropriate employees or kickstart automated processes to fix the issue.

Mechanical Damage

Though it may not be put on the same level as pathogen detection, food freshness and foreign object detection, consumers put a premium on food uniformity, demanding high levels of consistency in everything from their apples to their zucchini. This can be especially difficult to ensure with agricultural products, where 10–40% of produce undergoes mechanical damage during processing. Increasingly complicated supply chains and progressively more automated production environments make delivering consistent quality more complicated than ever before.

Historically, machine vision systems and spectroscopy have been implemented to assist with damage detection, including bruising and cuts, in sorting facilities. However, these systems lack the spectral differentiation to effectively evaluate food and agricultural products in the stringent manner customers expect. Methods like spot spectroscopy require over-sampling to ensure that any detected aberrations are representative of the whole item. It’s a time-consuming process.

Intelligent imaging uses superior technology and machine learning to identify mechanical damage that’s not visible to humans or conventional machinery. For example, a potato may appear fine on the outside, but have extensive bruising beneath its skin. Hyperspectral imaging can find this bruising and decide whether the potato is too compromised to sell or within the parameters of acceptability.

Intelligent imaging can “see” what humans and older technology simply cannot. With the ability to be deployed at a number of locations within the food supply chain, it’s an adaptable technology with far-reaching applications. From drones measuring crop health in the field to inline or end-of-line positioning in processing facilities, there is the potential to take this beyond factory floors.

In the world of quality assurance, where a misdiagnosis can literally result in death, the additional spectral and spatial information provided by hyperspectral imaging can be utilized by food processors to provide important details regarding chemical and structural composition previously not discernible with rudimentary systems. When companies begin using intelligent imaging, it will yield important insights and add value as the food industry searches for reliable solutions to its most serious challenges. Intelligent imaging removes the subjectivity from food quality assurance, turning it into an objective endeavor.

Kraft Recalls Mac & Cheese Due to Possible Metal Pieces

The company is voluntarily recalling approximately 242,000 cases of select code dates and manufacturing codes of the Original flavor of Kraft Macaroni & Cheese Dinner – due to the possibility that some boxes may contain small pieces of metal.

Kraft Foods Group is voluntarily recalling approximately 242,000 cases of select code dates and manufacturing codes of the Original flavor of Kraft Macaroni & Cheese Dinner – due to the possibility that some boxes may contain small pieces of metal.

Approximately 6.5 million boxes of original flavor Kraft Macaroni & Cheese are involved in the recall.

KraftMac-CheeseThe recalled product is limited to the 7.25-oz. size of the Original flavor of boxed dinner with the “Best When Used By” dates of September 18, 2015 through October 11, 2015, with the code “C2” directly below the date on each individual box. The “C2” refers to a specific production line on which the affected product was made.

Some of these products have also been packed in multi-pack units that have a range of different code dates and manufacturing codes on the external packaging (box or shrink-wrap), depending on the package configuration (see table).

Recalled product was shipped to customers in the U.S. and several other countries, excluding Canada. The affected dates of this product were sold in only these four configurations:

  • 7.25 oz. box, Original flavor
  • 3-pack box of those 7.25 oz. boxes Original flavor
  • 4-pack shrink-wrap of those 7.25 oz. boxes, Original flavor
  • 5-pack shrink-wrap of those 7.25 oz. boxes, Original flavor

No other sizes, varieties or pasta shapes and no other packaging configurations are included in this recall. And no products with manufacturing codes other than “C2” below the code date on the individual box are included in this recall.

Kraft has received eight consumer contacts about this product from the impacted line within this range of code dates and no injuries have been reported. The recalled product was shipped by Kraft to customers nationwide in the U.S. The product was also distributed to Puerto Rico and some Caribbean and South American countries — but not to Canada.

Consumers who purchased this product should not eat it. They should return it to the store where purchased for an exchange or full refund. Consumers also can contact Kraft Foods Consumer Relations at 1-800-816-9432 between 9 am and 6 pm (Eastern) for a full refund. 

Click here for more information.