Tag Archives: monitoring

John McPherson, rfxcel
FST Soapbox

End-to-End Supply Chain Traceability Starts with High-Quality Data

By John McPherson
No Comments
John McPherson, rfxcel

End-to-end traceability technology across the food and beverage (F&B) supply chain has many benefits for companies at all nodes of the chain, not least of which is the ability to act to prevent problems such as irreversible damage, loss, and theft. For these technologies to best deliver on their promise, however, they need standardized and quality-assured data. F&B supply chain stakeholders need to take steps to achieve effective data management to truly take advantage of the benefits of traceability and real-time monitoring technologies.

Since FSMA was introduced in 2011, actors across the F&B supply chain have had to change their behavior. Prior to FSMA, companies tended to react to events; today, proactive and preemptive measures are the norm. This is in line with what the legislation was designed to do: Encourage the prevention of foodborne illness instead of responding after their occurrance.

F&B manufacturers and distributors rely on technology to help predict potential obstacles and mitigate issues along their supply chains. But expressing a desire to embrace technologies such as real-time monitoring solutions and predictive analytics isn’t enough to achieve ultimate supply chain efficiency. Only by taking the necessary steps can companies get on track to ensure results.

Any company that is thinking about deploying a traceability solution has a lot to consider. Foremost, data must be digitized and standardized. This might seem challenging, especially if you’re starting from scratch, but it can be done with appropriate planning.

Let’s examine what F&B companies stand to gain by adopting new, innovative technologies and how they can successfully maximize data to achieve end-to-end supply chain traceability.

New Technologies Hold Huge Potential for F&B Supply Chains

The advantages of adopting new technologies far outweigh the time and effort it takes to get up and running. To smooth the process, F&B companies should work with solution providers that offer advisory services and full-service implementation. The right provider will help define your user requirements and create a template for the solution that will help ensure product safety and compliance. Furthermore, the right provider will help you consider the immediate and long-term implications of implementation; they’ll show you how new technologies “future-proof” your operations because they can be designed to perform and adapt for decades to come.

Burgeoning technologies such as the Internet of Things (IoT), artificial intelligence (AI) and blockchain are driving end-to-end traceability solutions, bridging the gap between different systems and allowing information to move seamlessly through them.

For example, real-time tracking performed by IoT-enabled, item-level sensors allows companies to detect potential damage or negative events such as theft. These devices monitor and send updates about a product’s condition (e.g., temperature, humidity, pressure, motion and location) while it is in transit. They alert you as soon as something has gone wrong and give you the power to take action to mitigate further damage.

This is just one example of how data from a fully implemented real-time, end-to-end traceability platform can yield returns almost immediately by eliminating blind spots, identifying bottlenecks and threats, and validating sourcing requirements. Such rich data can also change outcomes by, for example, empowering you to respond to alerts, intercept suspect products, extend shelf life, and drive continuous improvement.

As for AI technologies, they use data to learn and predict outcomes without human intervention. Global supply chains are packed with diverse types of data (e.g., from shippers and suppliers, information about regulatory requirements and outcomes, and public data); when combined with a company’s internal data, the results can be very powerful. AI is able to identify patterns through self-learning and natural language, and contextualize a single incident to determine if a larger threat can be anticipated or to make decisions that increase potential. For example, AI can help automate common supply chain processes such as demand forecasting, determine optimal delivery routes, or eliminate unforeseeable threats.

Blockchain has garnered a lot of buzz this year. As a decentralized and distributed data network, it’s a technology that might help with “unknowns” in your supply chain. For example, raw materials and products pass through multiple trading partners, including suppliers, manufacturers, distributors, carriers and retailers, before they reach consumers, so it can be difficult to truly know—and trust—every partner involved in your supply chain. The immutable nature of blockchain data can build trust and secure your operations.

To date, many F&B companies have been hesitant to start a blockchain initiative because of the capital risks, complexity and time-to-value cost. However, you don’t have to dive in head-first. You can start with small pilot programs, working with just a few stakeholders and clearly defining pilot processes. If you choose the right solution provider, you can develop the right cultural shift, defining governance and business models to meet future demands.

To summarize, new technologies are not disruptive to the F&B industry. If you work with an experienced solution provider, they will be constructive for the future. Ultimately, it’s worth the investment.

So how can the F&B industry start acting now?

How to Achieve End-to-End Traceability

Digitize Your Supply Chain. We live in a digital world. The modern supply chain is a digitized supply chain. To achieve end-to-end traceability, every stakeholder’s data must be digitized. It doesn’t matter how big your company is—a small operation or a global processor—if your data isn’t digitized, your supply chain will never reach peak performance.

If you haven’t begun transitioning to a digitalized supply chain, you should start now. Even though transforming processes can be a long journey, it’s worth the effort. You’ll have peace of mind knowing that your data is timely and accurate, and that you can utilize it to remain compliant with regulations, meet your customer’s demands, interact seamlessly with your trading partners, and be proactive about every aspect of your operations. And, of course, you’ll achieve true end-to-end supply chain traceability.

Standardize Your Data. As the needs of global F&B supply chains continue to expand and become more complex, the operations involved in managing relevant logistics also become more complicated. Companies are dealing with huge amounts of non-standardized data that must be standardized to yield transparency and security across all nodes of the supply chain.

Many things can cause inconsistencies with data. Data are often siloed or limited. Internal teams have their own initiatives and unique data needs; without a holistic approach, data can be missing, incomplete or exist in different systems. For example, a quality team may use one software solution to customize quality inspections and manage and monitor remediation or investigations, while a food safety team may look to a vendor management platform and a supply chain or operations team may pull reports from an enterprise resource planning (ERP) system to try and drive continuous improvement. Such conflict between data sources is problematic—even more so when it’s in a paper-based system.

Insights into your supply chain are only as good as the data that have informed them. If data (e.g., critical tracking events) aren’t standardized and quality-assured, companies cannot achieve the level and quality of information they need. Data standards coming from actors such as GS1 US, an organization that standardizes frameworks for easy adoption within food supply chains, can help with this.

There are many solutions to ensure data are standardized and can be shared among different supply chain stakeholders. With recent increases in recalls and contamination issues in the United States, the need for this level of supply chain visibility and information is even more critical.

Data Security. Data security is crucial for a successful digital supply chain with end-to-end traceability, so you must plan accordingly—and strategically. You must ensure that your data is safe 24/7. You must be certain you share your data with only people/organizations who you know and trust. You must be protected against hacks and disruptions. Working with the right solution provider is the best way to achieve data security.

Incentive Structures. Incentives to digitize and standardize data are still lacking across some parts of the F&B supply chain, increasing the chances for problems because all stakeholders are not on the same page.

Companies that continue to regard adopting traceability as a cost, not an investment in operations and brand security, will most likely do the minimum from both fiscal and regulatory standpoints. This is a strategic mistake, because the benefits of traceability are almost immediate and will only get bigger as consumers continue to demand more transparency and accuracy. Indeed, we should recognize that consumers are the driving force behind these needs.

Being able to gather rich, actionable data is the key to the future. Industry leaders that recognize this and act decisively will gain a competitive advantage; those that wait will find themselves playing catch-up, and they may never regain the positions they’ve lost. We can’t overstate the value of high-quality digitized and standardized data and the end-to-end traceability it fuels. If companies want to achieve full visibility and maximize their access to information across all nodes of their supply chains, they must embrace the available technologies and modernize their data capabilities. By doing so, they will reap the benefits of a proactive and predictive approach to the F&B supply chain.

Jeremy Schneider, Controlant

Using Technology for Traceability Adds Dimension to Supply Chain, Promises ROI

By Maria Fontanazza
No Comments
Jeremy Schneider, Controlant

“As food safety leaders, it is our responsibility to actively investigate the newest technologies in the market with the goal of providing the highest level of safety for our customers. The regulatory environment is rapidly evolving from a position of hazard management to preventative control, which challenges the status quo while promoting innovation. In addition, we are actively working to build food safety cultures within our operations,” says Jeremy Schneider, business development director, food safety and quality assurance at Controlant. “On top of these mandates, we are consistently being challenged to find ways to improve quality, reduce waste, and assure supply. When taken as a collective mandate, this can be considered a challenge that allows the industry to solve previously unsolvable business problems in new and exciting ways. Utilizing the newest technologies for enhanced supply chain visibility is the solution to some of our most challenging industry-wide problems.”

Schneider has more than 15 years of experience in the food quality, safety, and regulatory sector. His experience spans managing food safety and quality systems within several fast-casual restaurant chains as well as food manufacturing. In a Q&A with Food Safety Tech, Schneider discusses some of the issues that food companies are experiencing surrounding traceability in their supply chain.

Jeremy Schneider, Controlant
Jeremy Schneider, business development director, food safety and quality assurance at Controlant

Food Safety Tech: What challenges are food companies and retailers facing when it comes to real-time monitoring of their supply chain?

Jeremy Schneider: One of the biggest challenges that the industry faces when it comes to real-time monitoring of the supply chain is where to start. As you can imagine, implementing a program that allows for an organization to monitor all shipments, including those that are shipped internationally, by ship, air freight, over the road or by rail, can be daunting.

As with all food safety programs, it is advised to take a risk-based approach to the project. Begin with the highest-risk items within your supply chain and work to your second- and third-tier items or suppliers. When implemented by category over time, you will find implementation less challenging. It is important to remember that when you begin a real-time program, you will start to discover eye-opening information about your supply chain. It’s important that you develop strategies to deal effectively with these incidents.

Another primary concern for the food industry is the cost of implementation, as well as the return on investment. We have found that, by implementing a real-time monitoring solution, an organization is able to dramatically reduce shipping loss because of temperature abuse. Oftentimes, the program provides a net savings for the organization. When considering the cost of wasted food, freight, liability, lost sales and labor, a real-time supply chain visibility solution becomes a cost-effective program very quickly.

FST: Are there any lessons learned from recent outbreaks or recalls regarding traceability?

Schneider: Over the last several years, the industry has made real progress towards a transparent supply chain. However, it must be said that much work is needed to meet regulatory standards and consumer expectations when it comes to traceability. As we have become accustomed to having information that provides insights into all facets of our life, the same is becoming true of the supply chain.

Being able to have business-critical data immediately, such as real-time supply chain and traceability data, is revolutionizing the industry and is allowing enterprise-wide improvements. During a crisis situation, being able to have insights into your supply chain is paramount. Unfortunately, it has become all too common for organizations to take the ‘’out of an abundance of caution’’ approach and remove all products from the supply chain, regardless of lot code or other data, to ensure consumer safety.

The consequence of such an approach is that much more product is removed than necessary, which compounds the effects of the incident. Having had the appropriate traceability information allows organizations to take a precision-focused approach, allowing for organizations to minimize the impact as much as is safely possible.

To help organizations solve this dilemma, there are a variety of technology offerings available to help companies collect and transform data so that it can be easily used. In addition, layering rich data, such as that which is created from real-time Internet-of-Things (IoT) devices and cloud-enabled software technology, helps provide dimensional insights into your supply chain information.

FST: How can companies leverage technology to be proactive in maintaining consistent tracking and tracing throughout the supply chain?

Schneider: As we enter an era of smarter food safety, each organization will be challenged to solve some of the most pressing concerns using state-of-the-art technology. The great thing about having actionable traceability data, beyond its uses to support food safety, is that it allows an organization the ability to gain insights into their supply chain at both the micro- and macro-levels.

As an example, when an organization implements a real-time temperature monitoring program, not only are they able to identify and resolve temperature deviations before they become food safety or quality incidents, logistics can then utilize the data to optimize the shipping lane to reduce costs, and purchasing is able to know exactly where a truck is located on its route. Being able to show the value that location traceability data provides across an enterprise helps to improve the organization at every level.

Chelle Hartzer, Orkin
Bug Bytes

Stay Audit-Ready, Anytime with Integrated Pest Management

By Chelle Hartzer
No Comments
Chelle Hartzer, Orkin

The unlimited supply of food sources that manufacturing facilities provide can make pest management a daunting task, especially with the scrutiny of third-party auditors, government regulators and customers. These high standards, along with yours, mean that diligence is a key ingredient in the recipe for pest management success.

Why is this important? The steps you take to prevent pests, and how issues are resolved if pest activity is detected, affects the overall credibility of your business. After all, pest management can account for up to 20% of an audit score.

Auditors look for an integrated pest management (IPM) plan, which includes prevention, monitoring, trend reports and corrective actions. If you want to stay audit-ready, all the time, implement the following five principles.

Open Lines of Communication

A successful pest management partnership is just that: A partnership. Create an open dialogue for ongoing communication with your pest management provider. Everyone has a role to play from sanitation to inspection to maintenance. For example, if there are any changes in your facility, such as alteration of a production line, let your provider know during their next service visit. During each visit, it’s important to set aside time to discuss what was found and done during the visit, including new pest sightings and concerns.

Communication shouldn’t be limited to the management team; your entire staff should be on board. During their day-to-day duties, employees should know what to look for, and most importantly, what to do if they notice pests or signs of pests. Reporting the issue right away can make a huge difference in solving a pest problem before it gets out of hand. Also, most pest management providers offer staff training sessions. These can be an overview of the basics during your next staff meeting or a specialized training on a pertinent issue.

Inspect Regularly

A thorough inspection can tell you a lot about your facility and the places most at risk for pests. Your pest management provider will be doing inspections every visit, but routine inspections should be done by site personnel as well. Everyone at the site has a set of eyes, so why not use them? This way, you can identify hot spots for pests and keep a closer eye on them. Pests are small and can get in through the tiniest of gaps, so some potential entry points to look out for are:
• Windows and doors. Leaving them propped open is an invitation for all sorts of pests. Don’t forget to check the bottom door seal and ensure it is sealed tight to the ground.

  • Floor drains. Sewers can serve as a freeway system for cockroaches, and drains can grant them food, water and shelter.
  • Dock plates. A great entry point for pests, as there are often gaps surrounding dock plates.
  • Ventilation intakes. These are a favorite spot for perching, roosting or nesting birds, as well as entry points for flying insects.
  • Roof. You can’t forget about the roof, as it serves as a common entry point for birds, rodents and other pests.

Another thing to look for is conducive conditions, such as sanitation issues and moisture problems. These are areas where there may not be pests yet, but they provide a perfect situation that pests could take advantage of if they aren’t dealt with. Make sure to take pictures of deficiencies so that can be shared with the maintenance department or third-party who can fix it. You can also take a picture of the work when it has been finished, showing the corrective action!

Keep It Clean

Proper sanitation is key to maintaining food safety and for preventing and reducing pests. You need a written sanitation plan to keep your cleaning routine organized and ensure no spots are left unattended for too long. The following are some additional steps consider:

  • Minimize and contain production waste. While it’s impossible to clean up all the food in a food processing site (you are producing said food!), it’s important to clean up spills quickly and regularly remove food waste.
  • Keep storage areas dry and organized.
  • Remember FIFO procedures (first in, first out) when it comes to raw ingredients and finished products.
  • Clean and maintain employee areas such as break rooms and locker rooms.
  • Ensure the outside of your facility stays clean and neat with all garbage going into trash cans with fitted lids.
  • Make sure dumpsters are emptied regularly and the area around them kept clean.

Monitoring

Monitoring devices for many pests will be placed strategically around your facility. Some common ones are insect light traps (ILTs), rodent traps and bait stations, insect pheromone traps and glue boards. It’s important to let employees know what these are there for and to respect the devices (try not to run them over with a fork lift or unplug them to charge a cell phone). These devices will be checked on a regular basis and the type of pest and the number of pests will be recorded. This data can then be analyzed over time to show trends, hot spots, and even seasonal issues. Review this with your pest management provider on a regular basis and establish thresholds and corrective actions to deal with the issues when they reach your threshold. The pest sighting log can also be considered a monitoring tool. Every time someone writes down an issue they have seen, this can be quickly checked and dealt with.

Maintain Proper Documentation

Pest management isn’t a one-time thing but a cycle of ongoing actions and reactions. Capturing the process is extremely important for many reasons. It allows you to analyze, refine and re-adjust for the best results. It’s a great way to identify issues early. Also, it’s a critical step for auditors. Appropriate documentation must be kept on hand and up-to-date. There’s lots of documentation to keep when it comes to pest management and your provider should be keeping all of that ready—from general documentation like your annual facility assessment and risk assessment to training and certification records, pest sighting reports, safety data sheets and more.

The documentation aspect may seem like a lot at first, but a pest management provider can break it down and make it easier. It’s absolutely necessary for food and product safety and will become second nature over time.

FDA

FDA Updates Food Defense Plan Builder to Support Compliance with Intentional Adulteration FSMA Rule

By Food Safety Tech Staff
No Comments
FDA

Attend the Food Defense Plenary Panel Discussion at the 2019 Food Safety Consortium | Tuesday, October 1, 2019Today FDA released an updated version of its Food Defense Plan Builder in efforts to help companies comply with the International Adulteration FSMA rule. Version 2.0 of the tool includes the following sections to help food facility owners and operators in developing a facility-specific food defense plan:

  • Facility Information
  • Process/Product Description
  • Vulnerability Assessment
  • Mitigation Strategies
  • Food Defense Monitoring Procedures
  • Food Defense Corrective Action Procedures
  • Food Defense Verification Procedures
  • Supporting Documents
  • Signature

The tool is for use on a computer, and FDA states that it does not have access to any content or documents used with the tool, nor does it track or monitor how the tool is being used. The agency also emphasizes that use of this tool is not required by law and its use does not mean that a company’s food defense plan is FDA approved or compliant with the IA rule requirements.

The original version of this tool was released in 2013. FDA will be conducting a demonstration of the Food Defense Plan Builder v. 2.0 during a webinar on October 10.

Marc Pegulu, Semtech
FST Soapbox

Increasing Food Safety and Spoilage Prevention in the IoT Era

By Marc Pégulu
No Comments
Marc Pegulu, Semtech

According to the Food and Agriculture Organization of the United Nations, it is estimated that nearly one third of the food produced (about 1.3 billion tons) globally is not consumed. To help tackle this billion-dollar problem, an innovative solution is being deployed to detect one of the key factors driving food waste: Spoilage due to fluctuations in temperature.

To get to the dinner table, food must travel great lengths to preserve that farm fresh quality. Refrigerated shipping units and storage facilities are essential to reducing bacteria growth and by using an automated smart-refrigeration solution, a food-safe environment can be maintained throughout the journey with little supervision. Traditional food temperature monitoring is reliant on staff to periodically check temperature levels and make adjustments as necessary. This process is not scalable, meaning that with a larger facility or an increased number of food displays, it becomes increasingly labor intensive and inefficient. If employees are preoccupied, periodic check-ins may be delayed or missed entirely, leading to gaps where temperature fluctuations are not addressed, opening the door for increased bacteria growth and food waste.

LoRa fights food waste
LoRa devices and LoRaWAN protocol are being integrated into smart refrigeration solutions to fight food waste. Image courtesy of Semtech.

To solve this issue, Internet of Things (IoT) sensors can be deployed in shipping vehicles, displays, refrigerators, and storerooms to provide accurate and consistent monitoring of temperature data. When a temperature fluctuation occurs, the sensors will send a signal to a low power, wide area network (LPWAN) gateway application. The information is then relayed to a network server, where it is routed to application servers or Cloud IoT services. The data is then processed and sent to the end user through a desktop or smartphone application. What’s more, in the event of a power outage, these long range, low power wireless enabled IoT devices are battery powered and consume minimal energy, allowing for consistent off-grid temperature tracking.

These connected devices can be found globally in a variety of use cases ranging from quick service restaurants to full service grocery stores, with an end goal of ensuring appropriate temperature levels for food. To support connectivity for these devices, an open network protocol is used to ensure the devices can be scalable and globally deployed. Two recent use cases where the long range, low power wireless devices and LoRaWAN protocol were used to actively monitor temperature fluctuations are Axino Solutions (Axino) and ComplianceMate.

Axino recently integrated LoRa devices and LoRaWAN protocol into its line of smart refrigeration solutions with the goal of combatting food waste. The solution combines sensor technology with automated data communication providing a substantial increase in measurement quantity and quality. Additionally, stores found a significant reduction in metering and operating costs after sensor deployment. This smart refrigeration solution has been globally deployed and is currently used by Switzerland’s largest supermarket chain, Migos. Axino’s sensors can be quickly installed, utilizing a magnet to attach to a refrigerator’s infrastructure. The sensors monitor temperature in real time, are accurate to one degree Celsius and can be pre-programmed to adjust refrigerator temperatures to ensure that food is stored in a safe environment. By having access to real time data and automatic temperature adjustment, supermarkets were able to eliminate human error, prolong shelf life and pass energy savings off to the customers.

The challenge for any wirelessly connected device is the presence of physical barriers that will block signals. Steel doors, concrete and insulation are some of the key considerations when developing a smart solution, especially in restaurants using large freezers. ComplianceMate partnered with Laird Connectivity and found that devices on a LoRaWAN-based network produces a more reliable signal than its Bluetooth counterpart. This IoT solution has been deployed in some of your favorite restaurant chains such as Shake Shack, Five Guys, Hard Rock Café, City Barbeque, and Hattie B’s and has already proved to be a huge asset. For instance, a sensor deployment saved $35,000 to $50,000 worth of inventory in a Hattie B’s location when downtown Nashville experienced a sudden power outage in 2018. The LoRa-based alert system immediately notified store management, allowing them to act quickly and prevent food spoilage.

Reducing global food spoilage is a monumental task. From farms to grocery stores and restaurants, technology must play a critical role, ensuring food remains at a safe temperature, preventing unnecessary spoilage. In the era of connectivity, businesses will turn to LoRa-based IoT deployments for its flexibility, durability and ability to provide real-time information to employees and decision makers to not only maintain strict industry standards in food safety, but to also pass savings on to their valued customers.

Chelle Hartzer, Orkin
Bug Bytes

Stored Product Insects Are Costly Consumers

By Chelle Hartzer
No Comments
Chelle Hartzer, Orkin

How much can pest issues cost? The truth is, it changes based on the pest, the size of the population and the prevalence throughout your food processing facility and products. If you want to protect your bottom line, you need to know which pests are the biggest threat and take steps to prevent them. Let’s focus on one major threat to food processing facilities: Stored product insects.

Believed by some pest control providers to be the costliest pests for food manufacturing and processing businesses, stored product insects can put a huge dent in your profits. What’s worse, these pests can be tough to discover by an untrained eye, and they’re incredibly difficult to control without the help of a pest management professional.

According to the USDA and the University of Wisconsin, “stored product pests can damage, contaminate, or consume as much as 10% of the total food produced in the U.S. alone, while in developing countries that rate has been estimated at 50% or more.”

That’s an astronomical figure for such small insects! Can you imagine the impact on your bottom line if 10% of your product was ruined?

For any business in need of an updated prevention plan, the first step is to review the current integrated pest management (IPM) program to ensure a proactive approach has been implemented to monitor for, and react quickly to, any pest issues around the facility. There’s no one-size-fits-all strategy for an IPM program; each program should be customized to meet the needs of the individual business. Different geography, construction and food products being produced can all create different pest pressures.

According to another study conducted by CEBR on the impact of pests on the global food supply, disruptions caused by pest infestations resulted in $9.6 billion in operating costs in the countries surveyed and 84% of U.S. businesses reported a net impact on revenue due to pest infestation across a five-year period. Diving deeper, 28% of food manufacturers and processors reported pest-related costs associated with contamination of raw materials leading to replacement costs.

In other words, having stored product insects around is expensive. If there were ever any doubts about the value of a proactive IPM program, these statistics prove it. So, let’s take a closer look at how you can work to protect your business against stored product insect—some of the most likely and costly invaders.

Types of Stored Product Insects

The term stored product insect covers a range of insect species that can be broken up into three main subcategories: External feeders, internal developers and secondary feeders. Each category has its own distinct characteristics, which are important to know for detection and proper identification.

External Feeders

This group develops on the outside of products, including damaged grains and processed foods. As they feed, they damage product and leave behind frass (insect droppings) as they make their way through.

Some of the most common external feeders include Indian meal moths and flour beetles.

Adult Indian meal moths are roughly 9 mm long and have a wingspan of 14–20 mm. The front wings on the adults are bicolored, with two main tones: Reddish-brown at the wing tip and silver-grey at the base. If you don’t see the pest itself, you may notice a messy silk webbing spun by the larvae.

Red and confused flour beetles, two of the most common beetle species, are 3–4 mm in length and also have a reddish-brown color. They’re rectangular-shaped beetles and can often be found in grain bins infested with internal developers. This is because flour beetles like to feed on the kernels other stored product insects, like borers, have already broken up. They can also be found in processing lines and finished products.

Internal Feeders

Internal feeders lay eggs inside or outside of kernels of grain but develop entirely inside those kernels. As they develop, they hollow out the kernel, then the adults can go on to damage other kernels.

Some of the most commonly encountered internal developers are lesser grain borers and rice, maize and granary weevils. Weevils measure about 5 mm in length and are usually brown in color with a distinct elongated “snout.” Lesser grain borers, the most common internal feeder across the United States infesting wheat, are a bit smaller and don’t have the snout that weevils do. Both weevils and lesser grain borers have pitted patterns on their bodies, and all can fly except the granary weevil. As the larvae and pupae develop inside grain kernels, damage becomes especially evident when the adult chews out and leaves a distinctive perfectly round hole.

Secondary Feeders

This group typically eats from the outside in and feeds on the mold and fungus that can grow on out-of-condition grain and damp product.

Two of the most common secondary feeders are the foreign grain beetle and sawtoothed grain beetle. Foreign grain beetles love mold, and resemble flour beetles in size and color. To tell them apart, look for two “bumps” on the top corners of the thorax. Eliminating molds and damp conditions that facilitate mold growth is generally enough to help prevent infestations from secondary feeders.

Sawtoothed grain beetles can feed on many types of products and while they can’t physically penetrate packaging, the adults will find holes less than 1 mm in diameter, lay eggs, and the larvae will squeeze through the tiny openings to get to the product. They prefer processed food products like bran, chocolate, oatmeal and even pet foods, but will feed on whatever they can access. Sawtoothed grain beetles are smaller than flour beetles (3 mm) and have distinctive “teeth” on the margins of the thorax.

Prevention, Monitoring & Detection, and Removal

The best way to protect a facility from stored product insects is to employ numerous different tactics. Specifically, it’s important to proactively mitigate pest attractants, monitor for activity in key areas around the facility, and establish thresholds and action plans when pests are detected.

First and foremost, educate all employees about the pests most common around your facility and what to do should they spot one. Your pest sighting log is a great tool, but only if people use it! Have a clear escalation plan for any pest issues spotted. In addition, create a sanitation schedule to ensure all areas and equipment are cleaned to remove food and moisture buildup attractive to pests on a regular basis. While you can’t possibly eliminate all food (you are of course storing and processing food!), the aim is to minimize the amount and the access these insects have to that food source.

Next, make sure all incoming shipments and packages are inspected closely in a sealed off unloading area away from other products. Make sure employees know to check for signs of damage, especially holes caused by boring pests. Taking the time to inspect anything entering your facility in this way will give you a chance to spot pests before they have the chance to spread to your other products. Use the first-in, first-out (FIFO) approach for all goods to ensure older product doesn’t sit. The longer product sits, the more chance it can be infested and it may start deteriorating, and this is especially attractive to stored product insects.

For ongoing monitoring, talk to a pest management professional about deploying pheromone traps strategically around your facility. Pheromone traps are the best tool to monitor for stored product insects, as they will give you an idea of which pests are present, in what numbers, where they are, and they can help you track trends in pest activity over time. If any stored product insects are ever spotted, contact your pest management professional immediately. If there’s a chance of having stored product insects on your product, you absolutely should have pheromone trap monitoring in place.

The Total Cost of Stored Product Pest Problems

The impact of pest issues caused by stored product insects isn’t limited to the cost of paused operations and replacing contaminated product. These pests are tough to spot, and could be passed along to partners further down the supply chain. Naturally this could hurt the trust between supply chain partners, which is never a good thing!

If your facility gets a reputation of having problems with stored product insects, it’s going to hurt your brand—and that’s going to be another knock to your bottom line. Stored product insects can spread quickly between products placed closely together. So, if pests are mistakenly shipped to a partner’s facility or a store and then on to a customer, now THEY are going to have to deal with stored product insects, too. Being proactive is the best approach, and careful documentation can help you and your supply chain partners track pest issues to the source so they can be resolved quickly and minimize the impact on profits.

It becomes easy to see stored product insects can cause both short-term and long-term effects on the profitability of a business. Don’t let that be your facility and your reputation! Be proactive and partner with a pest management provider to help ensure your facility operations run smoothly and your customers stay happy.

Glen Ramsey, Orkin
Bug Bytes

Using Monitoring Devices to Protect Products from Pests

By Glen Ramsey
No Comments
Glen Ramsey, Orkin

They’re sneaking in through your windows, crawling through your front door when nobody is looking and squeezing through tiny openings to steal your food. They’re tough to catch, and even tougher to spot.

Naturally, we’re talking about pests. They come in all shapes and sizes, but have the same goal: To find a reliable, safe place to call home where they have abundant access to food, water and shelter. Unfortunately, food processing facilities offer pests all three of these things, making them susceptible to infestations that can compromise products and hurt the bottom line.

You probably already have an integrated pest management (IPM) program in place to mitigate the risk of pests inside your facility. While these programs are great for offering proactive, preventive solutions that use chemical solutions as a last resort, they shouldn’t be the beginning and end of your pest management efforts.

First and foremost, facility staff should always be familiar with the warning signs of pest issues and what to do if they spot something crawling around the building. Most pest management companies will offer complimentary training sessions for you and your staff, which is a great first step. Then, during your weekly/monthly staff meetings, let your employees know which pests are most likely to cause a problem and include some images of warning signs. Empower them to call out problems, explain the risks of pest damage to your products, and you’ll have a better chance of catching pest problems early.

But your staff can’t be expected to spot everything, and there are always pests that slip through the cracks.

That’s why pest management professionals frequently recommend using a variety of tools to closely watch pest activity and detect emerging hot spots around facilities. Tools like IR thermometers, moisture meters and telescoping cameras help pest management professionals identify these high-risk areas. Once these areas have been identified, your pest management professional can take the next step in advanced detection using monitoring devices to paint the picture of pest activity around your facility.

Monitoring devices make it easier to see where pests are traveling and give an idea for how many may be present. These devices capture pests for identification, assist in early detection and will help to mitigate the risk of infestation through early warning. If you’re particularly worried about an upcoming audit or the recent enforcement deadlines for FSMA, these devices will give you a better chance of scoring well and can help you demonstrate compliance by shifting your pest management plan to a more proactive approach as mandated by these new regulations.

There could be quite a few of these monitoring devices you’d like to start using around your facility today.

Fly Lights

A popular device found in many food processing facilities, fly lights attract flying pests by emitting strong UV lights that draws insects in, at which point they become trapped on a sticky glue board in the back of the light—out of sight and away from your products. They work best when placed inside near doorways and windows where pests might be able to squeeze inside, but they’re effective just about anywhere. Discuss placement with your pest management provider.

Why does it work?

The leading theory on why flying pests are attracted to lights has to do with their reliance on the sun and moon as navigational guides. In the past, insects could use the sun and moon as a guide because it stayed at a constant angle, allowing them to move in a consistent direction. However, artificial light confuses them and causes them to circle around the light source. Insects that move towards light in this way are called positively phototactic, while pests like cockroaches who move away from light are called negatively phototactic.

Mechanical Traps

Most commonly used for rodents, mechanical traps can allow for the humane capture and removal of rats and mice. These traps sound simple, and that’s because it is; the concept hasn’t changed for years. Why? Because it’s effective! Rodent curiosity or bait can draw the rodent inside one of these stations, which have a mechanical door ready to close as soon as it enters. There is also new technology on the way that will instantly notify both customer and pest management professional when this occurs, so the creature can be removed immediately. These stations are most frequently used around the interior perimeter of a facility to keep rodents from getting further than the exterior walls.

Why does it work?
Simply put, rodents will often run along walls. They’re extremely athletic and very clever, which is why it’s never recommended to try to place traps yourself. They can learn from close calls with unsuccessful trapping techniques, which is why it isn’t worth the risk to handle rodent issues alone. With proper knowledge and placement, they can be outsmarted.

Sticky Traps and Glue Boards

Perhaps the simplest tools in the pest professional’s shed, sticky traps and glue boards are meant to reduce the population of crawling insects around a facility. Because they’re not very large, they can be used just about anywhere inside a facility.

Why does it work?

These are usually used for small population control in areas where crawling pests are already present. Sticky traps and glue boards are generally coated with a substance that attract pests, which then ensnares them when they step on the surface of the trap. These are great for catching pests like cockroaches, and give you a sense of how many pests are coming through an area over a period of time. Over time, you’ll be able to see if the population is trending downwards or if the problem is getting worse based on the number of pests captured.

Pheromone Traps

Great for combating the stored product pests that pose a huge threat to food processing facilities with large inventories, pheromone traps trick pests into getting trapped. While sticky traps can be used all over, pheromone traps are more effectively used by placing them strategically around storage areas to help monitor for any stored product pests.

Why does it work?

This type of trap uses synthetically replicated versions of insect pheromones, which are secreted chemicals that insects put out to communicate with each other. In this case, the pheromone traps lure pests out from their hiding/feeding areas. There are also probe-type pheromone traps that are best used in bulk grain storage if necessary.

Now this isn’t an exclusive list of all the monitoring devices a pest management professional can recommend around your facility, but it does give you an idea of the most common, effective devices out there. Keep in mind that sanitation and exclusion must also be a big part of any IPM program, but monitoring devices (along with detailed documentation) can take your program to the next level and give you a better feel for the pest issues your facility deals with the most.

Any time you’re using these tools and devices to detect pest hot spots, it’s important to record the results over time. Your pest management professional will keep a logbook of findings on site, and you should reference that regularly. Also, consider requesting or creating a trend map of pest activity over time to help you see which pests are plaguing your facility the most. That way, it will be easy to work towards improving the pest management program you have in place, which in turn will help protect your products from contamination and protect your bottom line.

Megan Nichols
FST Soapbox

Blockchain Improves Visibility In the Food Supply Chain

By Megan Ray Nichols
2 Comments
Megan Nichols

Cryptocurrency is a favorite topic in the business world currently, but it’s not the coins or currency that are the star of the show. Bitcoin in and of itself is exciting and promising from several perspectives. However, the foundation of what these technologies run on is much more important. You likely already know what we’re going to talk about next: Blockchain.

To understand why blockchain is considered so crucial, you first need to delve into the core components of the technology. It’s basically a digital ledger, except it has some incredibly useful properties that make it uniquely lucrative. For starters, it’s public and transparent, so anyone with access to the network can see what’s happening in the moment, or what has been happening while they were away. However, the parties involved in a transaction or entry remain private, as do the materials or items exchanging hands.

Finally, because of the nature of blockchain, it’s secured and valid. The ledger itself is thoroughly protected, and no one can alter data save the parties involved. Even then, the relevant parties only weigh in with pertinent information such as time and date of the transaction and the amount transferred.

Most of what we’re talking about here is in reference to currencies and more traditional transactions. But it’s important to remember that we’re merely scratching the surface. As we speak, various organizations are working to adapt this technology for alternate industries and applications.

Still, what does any of this have to do with your average food supply chain?

Blockchain May Evolve the Food Supply Chain As We Know It

Believe it or not, blockchain can help improve the transparency and management of the food supply chain. It’s definitely needed. The world’s population continues to grow, and it’s expected to reach 10 billion by 2050. In food requirements, that means we’ll need to be increasing food production by as much as 70% to keep up. This puts a demand on the food supply chain to evolve and become more efficient, more accurate and more reliable.

The following are several ways blockchain can help achieve better transparency in and management of the food supply chain.

Preventing Foodborne Outbreaks, Enabling Fresher Goods

IBM has teamed up with several major suppliers including Wal-Mart, Dole and Nestle to come up with a blockchain-powered system that can be used to track a product’s journey from farm to store shelves. The goal is to create a more transparent deployment and transportation process so that interested parties can see exactly when and where certain foods might become contaminated.

Tracking this information will achieve a couple of things. For starters, public health officials, suppliers and management teams can help limit and prevent contagions from spreading. After the detection of Salmonella, for instance, they could mark all related goods as a risk and stop both stores from selling them and consumers from buying faster than ever before.

Second, it will help identify problematic systems and processes, hopefully cutting down on the risk of contamination in the future. If they know certain foods are going bad in transport, they can discern that it’s something to do with how they’re handled or stored along that segment of the journey. This would further enable them to identify and fix or optimize the issue. In other words, suppliers and retailers will use blockchain to keep food fresh. This is especially important since FSMA calls for reliable hygiene and storage methods during transportation.

More Accurate Inventory Tracking for Distributors

Unexpected shortages pose significant challenges to the food supply chain. A variety of external factors can contribute to a supply block, including inclement weather, poor soil, insect infestations, equipment failures and much more. When this happens, distributors are left to pick up the slack, but sadly, they often can’t do much to fix the problem.

Blockchain technologies, however, make the supply chain more transparent, which helps distributors get the information they need to address shortages. Through the use of blockchain, they’ll know exactly how much supply is available and what they need to do to ramp up their offerings.

For example, in the event of a shortage, they might connect with local farmers to make up the difference. Gathering the information needed to find the right partner, however, can take a long time when using traditional methods. Through blockchain, though, distributors could easily see product types, farming practices, harvest dates and amounts, treatment info, fair-trade certifications and other information. This would allow them ample time to find a suitable replacement or additional partner.

Transparent Safety Protocols

The food supply chain is lengthy, includes a lot of different parties and involves a lot of metrics and details that need to be recorded and monitored. The problem with having so many factors is that it can muddy the waters. It’s hard to keep track of what every party is doing, where problems exist and what improvements can be made.

Many modern food supply providers are as transparent as they can be with partners and colleagues, but it’s not an element you would describe as streamlined or accessible to all. Blockchain can completely alter and disrupt this for the better.

Since food safety is an enormous concern for suppliers, distributors and retailers, blockchain can offer more than just peace of mind. It can help organizations perfect the entire process, improving safety for consumers and even enhancing the freshness or quality of the products provided. Improper storage or transport, for instance, can have a detrimental effect on quality, before the goods even reach store shelves. Blockchain will enable better tracking and monitoring, and make the resulting details much more accessible and transparent.

It’s Time for the Food Supply Chain to Evolve

The coming change is warranted and welcomed by many. A more transparent process means a much more accessible system. Suppliers can better communicate with farmers and food sources. Distributors and retailers can keep a close eye on the goods they’re acquiring and offering to consumers. Furthermore, safety, quality and quantity can be more accurately monitored and measured by everyone along the way. It’s time for the food supply chain to evolve in this way — it’s been a long time coming.

Robert Rogers
FST Soapbox

Validating Your Foreign Material Inspection System

By Robert Rogers
No Comments
Robert Rogers

The Food Safety Modernization Act (FSMA) requires that food manufacturing and processing companies identify potential hazards within their production systems and then:

  • Put in place preventive controls to address those hazards,
  • Monitor those preventive controls to ensure their effectiveness &
  • Provide documentation proving compliance with these requirements.

There are also requirements for each company to develop and establish its own plan identifying potential food safety hazards and preventive controls to counter them, and to establish the monitoring procedures that will verify the efficacy and reliability of the preventive controls.

Validating, verifying and monitoring the performance of the systems that ensure that only safe food enters the market enables food manufacturers and processors to meet the specific regulatory standards mandated by the countries where they operate and sell. This enables them to avoid product recalls that are costly and that severely damage brand identity. But these processes, in addition to satisfying regulators, also play a valuable part in protecting the companies from potential liability lawsuits, which can often be even more damaging.

The preventive controls most often used to effectively deal with such identified hazards are inspection systems (checkweighers and metal detection, X-ray and machine vision inspection systems) that quickly and efficiently detect non-standard and contaminated products and defective packaging and reject them from production lines before they can enter the marketplace. The performance of these systems must be validated, verified and monitored on an ongoing basis to ensure that they are performing as intended.

These terms–validation, verification and monitoring–are often used interchangeably, creating confusion within organizations and across industries because people interpret and use these terms in different ways. In fact, each term identifies a distinct process that has a clear purpose and role to play at different points throughout the equipment lifecycle. It is important to understand the purpose of each process to make sure that validation, verification and routine performance monitoring tests are performed to comply with regulatory requirements, particularly where the equipment is designated as a Critical Control Point (CCP).

Validation

The fundamental act of “validation,” when applied to inspection systems that are part of a food manufacturing or processing production line, is conducting an objective, data-based confirmation that the system does what it was designed, manufactured and installed to do. The International Featured Standards (IFS) organization defines validation as “confirmation through the provision of objective evidences, that the requirements for the specific intended use or application have been fulfilled.” In 2008, the Codex Alimentarius Commission defined validation as, “Obtaining evidence that a control measure or combination of control measures, if properly implemented, is capable of controlling the hazard to a specified outcome.” An important part of the validation procedure is the production of detailed data that demonstrates to line managers and to regulators that the system is operating as designed.

The manufacturer of each inspection system will validate its performance before delivery, testing it with generic products and packaging similar to what the customer will be producing. But that is only the beginning of the validation process. Onsite, that same system needs to be validated when inspecting the specific products that the production line where it will operate will be processing and/or packaging. This is ideally done at the time the system is originally installed in a production line, and then becomes one element of a complete program of validation, periodic verification and ongoing monitoring that will keep the system operating as intended and ensure that products are adequately and accurately inspected, and that accurate records of those inspections are kept.

It is critical for producers to remember, however, that the original onsite validation relates only to the specific products tested at the time. As new or additional sizes of products are developed and run on the production line, or packaging (including labeling) changes, the system will need to be re-validated for each change.

Verification

Verification is the process of periodically confirming that the inspection equipment continues to be as effective as when it was first validated. The verification process uses standard, established tests to determine whether the inspection system is still under control and continuing to operate as originally demonstrated. This verification process is conducted periodically at regular intervals to provide evidence-based confirmation that the system continues to be effective as specified. Formal performance verification is typically an annual process, to support audit requirements. It should continue throughout the productive life of the system.

Both validation of an installed system and periodic verification of operating systems can be conducted either internally by the end-user, or by the supplier of the equipment. Validation and verification services are often included as part of equipment purchase contracts.

Monitoring

Routine performance monitoring, as distinct from periodic verification, consists of a series of frequent, regular performance checks, during production, completed to determine whether processes are under control and to confirm that there has not been a significant change in the system’s performance level since the last successful test. The monitoring frequency may be as often as every two hours, depending on company standards, industry standards and/or retailer codes of practice.

If the monitoring process finds that a particular device is out of specification, all product that has passed through the production line since the last successful routine performance-monitoring event must be considered suspect and re-inspected.

In many cases, it is line operators that conduct online performance monitoring. However, many of today’s more sophisticated product inspection systems incorporate built-in performance monitoring software that automates this process and alerts operators when deviations occur. This valuable software feature removes any human error factor from the monitoring activity to help ensure that inspection processes are still being performed properly. It also provides documentation that will guide the end-user company’s QA groups in their continuous improvement efforts, and that will also be a valuable asset in the event of an inspection visit from regulators.

Routine performance monitoring can also have a direct impact on the production line’s OEE. Installing a system with built-in condition monitoring capability that automatically detects when the system may need correction and communicates that information directly to line operators reduces the frequency needed for verification testing, maximizing the line’s production uptime.

Reliance on the experts

Finally, food manufacturers and processors should remember that, while they are knowledgeable experts regarding their products, it is their equipment suppliers that are the experts on the capabilities and qualification procedures of their equipment. That expertise makes them the best source of reliable recommendations on questions from the most effective inspection equipment type for specific product needs, where to place that equipment on the production line for optimum results and how to validate, verify and monitor its performance.

Relying on these experts to conduct onsite validation and to advise on conducting periodic verification and ongoing performance monitoring can reduce both the time needed for the original onsite validation time and that needed for verification and ongoing monitoring procedures, increasing productivity.

Companies can also rely on these experts to be knowledgeable on the most current food safety regulations and the technology that affect equipment validation. It is critical for their success that they stay current on those topics, and sharing that knowledge is a valuable part of their service.

8 Food Industry Trends Fueled by FSMA

By Lori Carlson
No Comments

FSMA is fostering a surge in technology solutions, analytical tools and training products marketed to the food industry in the name of achieving FSMA compliance. And while many of these products were available pre-FSMA (especially in other industries like the life sciences), FSMA’s momentum has fueled the adaptation of solutions to meet the specific needs of the food industry for achieving and maintaining regulatory compliance. This article is a summary of emerging trends in food safety management by producers, manufacturers, distributors and retailers through the application of technology, educational tools, monitoring and detection systems, and other support mechanisms.

Want to learn more about FSMA trends and compliance? Attend the 2016 Food Safety Consortium in Schaumburg, IL | December 7–8 | LEARN MOREWhether by the spark of FSMA or because it makes practical sense (and most likely, a bit of both), businesses are integrating their food safety programs with enterprise initiatives and systems for managing compliance and risk to achieve increased visibility and harmonization across the organization.  The most popular trends fueled by FSMA largely reflect technology solutions to achieve this integration.

Subsequently, solutions that support risk assessment, supply chain management, real-time monitoring, corrective action, self-assessment, traceability, and training management are most attractive and lucrative from an ROI perspective. And while it may be hard to find a one-size-fits-all technology solution depending upon the needs of the organization, technology service providers are quickly raising the bar to meet these growing needs as organizations strive to reduce risk and increase compliance. Other top trends at the periphery of technology solutions include the mobilization of food safety personnel and increased availability of on-demand training and detection tools to bring the FSMA movement full circle.

1. Software-as-a-service (SaaS) technology solutions quickly gained a following in the food industry in recent years to achieve an automated food safety and quality management system (FSQMS) solution.

The substantial management components and recordkeeping requirements of the FSMA rules has accelerated the food industry’s need for automated solutions to document program management, queue workflows and distribute notifications for corrective and preventive action (CAPA). Understanding this need, many SaaS providers evolved with FSMA to provide functionality that dovetails with new regulatory requirements.

2. Increased availability of risk and vulnerability assessment tools is of significant importance in meeting many requirements of FSMA’s rules.

The regulatory language of all FSMA rules is steeped in risk analysis to support the prevention of food safety hazards and threats. This creates a demand for user-friendly tools and training courses to help food businesses analyze and update their management systems within the context of these new requirements. Risk and vulnerability assessment tools currently available to the food industry are diverse in functionality and vary in scope and cost.

For example, FDA’s free online tool, FDA-iRISK 2.0, assesses chemical and microbiological hazards in foods through process models, which quantify risk across scenarios and predict the effectiveness of control strategies.  Commercially available food hazard assessment tools based on HACCP/ HARPC principles include Safefood 360° and EtQ, which provide risk assessment modules as a part of their SaaS platform.

Universities, trade associations, and commercial risk management and consulting firms came together to produce two very different food fraud vulnerability tools to support the industry. SSAFE by the University of Wageningen RIKILT, Vrije Universiteit Amsterdam and PricewaterhouseCoopers (PwC) is a free online tool and mobile app, which guides users through a decision tree and assessment questionnaire to determine fraud opportunities, motivators and gaps in existing controls. EMAlert by the Grocery Manufacturers Association (GMA) and Battelle is a subscription-based online tool to assess vulnerability from economically motivated adulterants (EMA’s). Individuals conducting vulnerability assessments are recommended to periodically access food risk databases such as the U.S. Pharmacopeial Convention’s (USP) food fraud database to stay informed of historical and emerging threats to the supply chain.

And in support of FSMA’s Food Defense rule, the FDA developed a free food defense software tool, Food Defense Plan Builder (FDPB), to help food businesses identify vulnerability to intentional adulterants and terrorist attacks on the food supply chain.

3. SaaS platforms, app-friendly assessment tools and FSMA recordkeeping requirements are creating a natural pathway for the increased use of mobile devices and electronic recordkeeping and verification.

From supply chain management to effective traceability to regulatory compliance, efficient document management and on-demand data retrieval is a must have of the modern FSQMS. Food businesses recognize the inherent obstacles of paper-based systems and increasingly trend towards rugged mobile devices and electronic recordkeeping to make better use of personnel resources, technology solutions and data. FSMA is helping leverage this trend two-fold through increased requirements for documentation and verification of food safety management activities and by not requiring electronic records to additionally meet the provisions of 21 CFR part 11 (electronic recordkeeping).

4. An increased demand for more effective, frequent and accessible training must be met across an organization to maintain an adequately trained workforce responsible for implementing FSMA.

To keep up with this demand—as well as the training demand imparted by GFSI schemes and fact that a company’s FSQMS is only as good as those who develop and operate it—food businesses are turning to online and blended learning courses to increase training frequency and effectiveness. In Campden BRI’s 2016 Global Food Safety Training Survey, 70% of food processors and manufacturers responded that they received training deficiencies during audits as the result of a lack of refresher training and/or lack of employee understanding.

In an effort to help close this gap and meet new implementation requirements of FSMA, food safety training providers are increasing offerings of eLearning courses, which provide targeted content in shorter duration to meet users’ needs in an interactive (and often multilingual) format. Shorter and more frequent targeted training is proven to increase knowledge retention and job performance. E-Learning training solutions can be found through dedicated training service providers as well as universities, trade associations, regulatory agencies, scheme owners, certification bodies, and other compliance organizations.

Depending upon the training provider, online training may be distributed through a learning management system (LMS) to provide additional training tools, assess training effectiveness and manage the training activities and competencies of all participants.

5. Targeted monitoring and verification activities such as product testing, environmental monitoring or water quality testing are helping to increase the demand for pathogen testing and push the frontier of improved rapid pathogen detection methods.

In a recent Food Safety Tech article, Strategic Consulting, Inc. noted more than a 13% annual increase in pathogen testing by contract food laboratories as determined by a recent industry study conducted by the group. The study additionally identified turn-around-time as the second most important factor for suppliers when choosing a contract lab. Increased access to rapid pathogen testing—and in particular, detection without time-dependent cultural enrichment—are primary needs of food businesses as regulators and customers push for enhanced monitoring and verification via testing mechanisms.

Currently, there are numerous rapid methods based on DNA, immunological or biosensor techniques. These methods can detect foodborne pathogens in relatively short amounts of time ranging from a few minutes to a few hours. But they often require pre-processing strategies to reduce matrix interference or concentrate pathogens to meet the level of detection (LOD) of the assay.1 These strategies increase the overall time of the assay and are largely the next hurdle for improved rapid detection.

6.  Food businesses are experiencing a wave of self-assessment followed by CAPA as organizations work to analyze and update their food safety systems and protocols within the context of applicable FSMA rules.

This trend has the potential to be the most beneficial to the supply chain and consumers as it provides a distinct opportunity for food businesses to reconsider previously overlooked hazards and vulnerabilities and upgrade food safety controls along with the management system. Seeing the FSQMS with fresh eyes—outside of the framework of a familiar standard—can lead to significant improvements in food safety management, product safety and quality, and even operational efficiency.

7.  For many food businesses, heightened regulation has spurned the need for dedicated staff to support compliance efforts.

Many food businesses are subject to multiple rules—some of which require a dedicated individual such as the Preventive Controls Qualified Individual (PCQI) to assume responsibility for the implementation of various provisions. And food businesses are not exempt from the acute need for qualified individuals with a food safety skill set. Across the industry, from service providers to retailers and everyone in between or at the fringe, executives understand that it takes tireless leadership and knowledgeable staff to produce safe food.

8. More than any other trend, communication on FSMA, food safety and related topics is easily the most prevalent exhibiting exponential activity over the past five years.

Whether in support or contention with the proposed (now final) rules, FSMA promulgates constant dialogue about food safety, what it means and how it should be implemented. The constant flurry of communication provides both benefits and deterrents to understanding the new regulations and identifying effective solutions for compliance. This dichotomy creates a significant need for authoritative and easy-to-understand information from consolidated sources within the industry such as trade associations, risk management organizations and food safety schemes. The divide has also helped fuel the need for information hubs like the Global Food Safety Resource (GFSR) that aggregate critical regulatory information, food safety solutions and best practices to reach a global community.

Reference

  1. Wang, Y. and Salazar, J.K. Culture-Independent Rapid Detection Methods for Bacterial Pathogens and Toxins in Food Matrices. Comprehensive Reviews in Food Science and Food Safety. 2016; 15(1): 183-205.