Tag Archives: research

Emily Newton, Revolutionized Magazine
In the Food Lab

Will a New Method of Freezing Foods Improve Food Quality and Food Processing?

By Emily Newton
No Comments
Emily Newton, Revolutionized Magazine

As the world veers on the edge of serious climate trouble, it makes sense for companies to collectively start looking into greener and more efficient alternatives. While research is ongoing, every so often, there’s a win that can make a huge difference if and when it is implemented. That’s precisely what’s happening with cutting-edge frozen food and processing technologies, thanks to scientists from the University of California-Berkeley who conducted a study on the concept with the USDA’s Agricultural Research Service.

It came at just the right time, too, as both freezing foods and standard food processing technologies have a rather large energy footprint, with extensive carbon emissions. Globally, those levels have to come down or the results will be disastrous. This new method, proposed by researchers, could reduce the global energy consumption of the frozen foods industry by up to 6.5 billion kilowatt-hours per year. Just to put that into perspective, it is the equivalent of removing one million cars from the road, and keeping them out of regular operation.

Called isochoric freezing, the method essentially involves placing foods in a sealed and rigid container. The storage container, made of hard plastic or metal, is then filled with liquid—like water—and frozen. The catch is that not all of the liquid in the container is frozen, so the food does not turn to solid ice. Only about 10% of the volume freezes during the process, and as long as the food remains within the hardened ice, crystallization will not happen. In addition, pressure that builds up inside the container naturally prevents the ice from expanding.

Isochoric freezing also has implications for fresh foods that are significantly affected by standard freezing techniques, such as small fruits, vegetables (i.e., tomatoes and potatoes), and even some meats.

The best part is that this method can be deployed “without requiring any significant changes in current frozen food manufacturing equipment and infrastructure,” according to USDA food technologist Cristina Bilbao-Sainz.

Why Is Icochoric Freezing Better?

Freezing foods may be a quick and relatively accessible way to preserve them, but many chemical changes happen during the freezing process as well as when those items thaw. Some foods deteriorate when frozen, just at slower rates. What’s more, depending on when and how you freeze or store those items, the composition may change during the entire process.

Some frozen products may develop a rancid smell or taste, after being oxidized or exposed to air. Others may see texture or size changes, and moisture loss at any time (or poor packaging) can result in freezer burn.

A lot of these same problems do not occur with isochoric freezing because the items are not frozen solid. Even more promising is that the new method also improves the quality of frozen foods, boosts safety, and reduces energy use. And during processing it actually kills microbial contaminants.

“The entire food production chain could use isochoric freezing—everyone from growers to food processors, product producers to wholesalers, to retailers. The process will even work in a person’s freezer at home after they purchase a product—all without requiring any major investments in new equipment,” said said Tara McHugh, co-lead on the study and director of the Western Regional Research Center in a USDA press release. “With all of the many potential benefits, if this innovative concept catches on, it could be the next revolution in freezing foods.”

Making the Discovery

Boris Rubinsky, a UC-Berkeley biomedical engineer and co-leader of the project, developed the freezing method while trying to cryopreserve tissues and organs that were designated for use during transplants. The goal was to better preserve these items, under more optimized conditions, with a minimal quality loss after thawing.

While this certainly does have major implications for the frozen foods, cold storage, and food processing industries, it can also be used elsewhere. For example, areas like medicine, science, or space travel can all benefit.

It may be some time before the technology is ready, but the research team is now working on developing commercially viable options, to match modern industry needs.

Will It Lower Carbon Emissions?

If the technology, and method, are adopted on a wide scale, it could vastly lower carbon emissions across many fields, and it may even lower emissions of consumer applications, too. Imagine applying isochoric freezing on a smaller scale, at home, to better preserve leftovers, frozen meals, and much more.

Of course, it will be interesting to see major organizations adopt this method, if and when the resources are available. The food processing industry could see revolutionary reductions in carbon emissions and energy consumption in the years ahead.

magnifying glass

‘Out of Sight, Out of Mind?’ Researchers Explore Produce Distribution Centers as Contamination Sources

By Food Safety Tech Staff
No Comments
magnifying glass

When looking at possible sources of contamination, far less attention has been put on produce distribution centers (DCs). “I think the DCs are a little out of sight, out of mind,” said Laurel Dunn, Ph.D., assistant professor in the department of food science & technology at the University of Georgia in a release from the Center for Produce Safety (CPS). “We have been so focused on foodborne outbreaks and what’s happening at the field level or packinghouse wash water and employees and hand hygiene.” As such, in an announcement from CPS, Dunn discusses a project that seeks to understand the contamination issues happening at the DC level, namely vented produce in breathable containers or stored in coolers. Examples of the items being examined are berries, tomatoes, and onions in mesh bags.

Dunn, along with researchers Laura K. Strawn, Ph.D. of Virginia Tech and Ben Chapman, Ph.D., of North Carolina State University, are focusing on Listeria due to the fact that biofilms can thrive indoors and be difficult to eliminate. The research project, “Environmental microbial risks associated with vented produce in distribution centers”, began on January 1 but was slowed considerably as a result of the COVID-19 pandemic. Thus far the researchers have collected samples from 11 DCs (they initially had a goal of sampling from at least 25 DCs), most of which was conducted before the pandemic. Due to travel restrictions, the researchers may only be able to get samples from operations east of the Mississippi River.

Depending on the outcome of the study, the researchers may also formulate written risk-reduction guidance for DCs. Based on the samples collected, Dunn anticipates they will be able to devise useful information to help DCs.

Sasan Amini, Clear Labs
FST Soapbox

Beyond the Results: What Can Testing Teach Us?

By Sasan Amini
No Comments
Sasan Amini, Clear Labs

The microbiology lab will increasingly be understood as the gravitational center of big data in the food industry. Brands that understand how to leverage the data microbiology labs are producing in ever larger quantities will be in the best position to positively impact their bottom line—and even transform the lab from a cost center to a margin contributor.

The global rapid microbiology testing market continues to grow at a steady pace. The market is projected to reach $5.09 billion by 2023, up from $3.45 billion in 2018. Increased demand for food microbiology testing—and pathogen detection in particular—continues to drive the overall growth of this sector. The volume of food microbiology tests totaled 1.14 billion tests in 2016—up 15% from 2013. In 2018 that number is estimated to have risen to 1.3 billion tests, accounting for nearly half the overall volume of industrial microbiology tests performed worldwide.

The food industry is well aware that food safety testing programs are a necessary and worthwhile investment. Given the enormous human and financial costs of food recalls, a robust food safety testing system is the best insurance policy any food brand can buy.

We are going through a unique transition where food safety tests are evolving from binary tests to data engines that are capable of generating orders of magnitude of more information. This creates a unique opportunity where many applications for big data collected from routine pathogen testing can help go beyond stopping an outbreak. Paired with machine learning and other data platforms, these data have the opportunity to become valuable, actionable insights for the industry.

While some of these applications will have an impact on fundamental research, I expect that big data analytics and bioinformatics will have significant opportunity to push the utilities of these tests from being merely a diagnostic test to a vehicle for driving actions and offering recommendations. Two examples of such transformations include product development and environmental testing.

Food-Safety Testing Data and Product Development

Next-generation-sequencing (NGS) technologies demonstrate a great deal of potential for product development, particularly when it comes to better understanding shelf life and generating more accurate shelf-life estimates.

Storage conditions, packaging, pH, temperature, and water activity can influence food quality and shelf life among other factors. Shelf-life estimates, however, have traditionally been based on rudimentary statistical models incapable of accounting for the complexity of factors that impact food freshness, more specifically not being able to take into consideration the composition and quantity of all microbial communities present on any food sample. These limitations have long been recognized by food scientists and have led them to look for cost-effective alternatives.

By using NGS technologies, scientists can gain a more complete picture of the microbial composition of foods and how those microbial communities are influenced by intrinsic and extrinsic factors.

It’s unlikely that analyzing the microbiome of every food product or unit of product will ever be a cost-effective strategy. However, over time, as individual manufacturers and the industry as a whole analyze more and more samples and generate more data, we should be able to develop increasingly accurate predictive models. The data generation cost and logistics could be significantly streamlined if existing food safety tests evolve to broader vehicles that can create insights on both safety and quality indications of food product simultaneously. By comparing the observed (or expected) microbiome profile of a fresh product with the models we develop, we could greatly improve our estimates of a given product’s remaining shelf life.

This will open a number of new opportunities for food producers and consumers. Better shelf-life estimates will create efficiencies up and down the food supply chain. The impact on product development can hardly be underestimated. As we better understand the precise variables that impact food freshness for particular products, we can devise food production and packaging technologies that enhance food safety and food quality.

As our predictive models improve, an entire market for these models will emerge, much as it has in other industries that rely on machine learning models to draw predictive insights from big data.

Data Visualization for Environmental Monitoring

In the past one to two years, NGS technologies have matured to the point that they can now be leveraged for high-volume pathogen and environmental testing.

Just as it has in other industries, big data coupled with data visualization approaches can play a mainstream role in food safety and quality applications.

Data visualization techniques are not new to food safety programs and have proven particularly useful when analyzing the results of environmental testing. The full potential of data visualizations has yet to be realized, however. Visualizations can be used to better understand harborage sites, identifying patterns that need attention, and visualize how specific strains of a pathogen are migrating through a facility.

Some of this is happening in food production facilities already, but it’s important to note that visualizations are only as useful as the underlying data is accurate. That’s where technologies like NGS come in. NGS provides the option for deeper characterization of pathogenic microorganisms when needed (down to the strain). The depth of information from NGS platforms enables more reliable and detailed characterization of pathogenic strains compared to existing methods.

Beyond basic identification, there are other potential use cases for environmental mapping, including tracking pathogens as they move through the supply chain. It’s my prediction that as the food industry more broadly adopts NGS technologies that unify testing and bioinformatics in a single platform, data visualization techniques will rapidly advance, so long as we keep asking ourselves: What can the data teach us?

The Food Data Revolution and Market Consolidation

Unlike most PCR and immunoassay-based testing techniques, which in most cases can only generate binary answers, NGS platforms generate millions of data points for each sample for up to tens to hundreds of samples. As NGS technologies are adopted and the data we collect increases exponentially, the food safety system will become the data engine upon which new products and technologies are built.

Just as we have seen in any number of industries, companies with access to data and the means to make sense of it will be in the best position to capitalize on new revenue opportunities and economies of scale.

Companies that have adopted NGS technologies for food safety testing will have an obvious advantage in this emerging market. And they won’t have had to radically alter their business model to get there. They’ll be running the same robust programs they have long had in place, but collecting a much larger volume of data in doing so. Companies with a vision of how to best leverage this data will have the greatest edge.