Risk mitigation is in the best interest of ALL parties involved, and that includes the insurance underwriters and brokers who service the food industry with recall and other liability policies. Increasingly, insurers are finding ways to provide financial support to food companies. The drivers and benefits for doing so are the subject of this webinar. Join Melanie Neumann of Neumann Advisory Services and David Hatch from Neogen as they provide attendees a view into how digitized food safety testing programs offer much-needed data fuel to risk assessments. Melanie and David will recount real-world examples to illustrate how use of advanced testing methods, data analytics and data management, analytics and workflow automation technologies are being applied to mitigate many forms of risk, and why insurers are increasingly becoming involved in advancing these capabilities.
Undeclared allergens continue to be a big cause of food recalls. For allergen management practices to be effective within food companies, there must be a shared responsibility between food manufacturers, government agencies, regulators and consumers, says Guangtao Zhang, Ph.D., director of the Mars Global Food Safety Center. In a Q&A with Food Safety Tech, Zhang discussed key concerns related to undeclared allergens in food as well as the research that Mars is conducting to improve allergen management.
Food Safety Tech: The presence of undeclared allergens continues to be a hazard in the food safety space. Specific to peanut detection, what challenges is the industry facing?
Guangtao Zhang, Ph.D., director of the Mars Global Food Safety Center. All images courtesy of Mars.
Guangtao Zhang, Ph.D.: As food materials become more varied and complicated, food allergen management becomes increasingly complex. Robust, accurate and sensitive detection methods are essential to ensure consumer safety as well as compliance with regulatory standards for allergens in the food supply chain.
When you look at the regulatory aspects, detection methods go hand in hand. Firstly, there is a need to ensure that current standard detection methods used in regulatory control of consumer goods are validated for a range of complex food matrices to ensure neither over- nor under-estimation of allergen content occurs within a food supply chain. This is important because underestimation of allergen poses a significant food safety hazard to consumers, while overestimation of allergen can result in unnecessary product recalls, driving up product costs and food waste.
Secondly, validation and monitoring of the effectiveness of cleaning and handling practices in areas of potential cross contamination with allergen containing materials depend on reliable and robust quantitative food allergen test methods for their success. The more robust the testing protocols, the more we can improve our understanding of the risks associated with cross contamination of food allergens, potentially reducing the frequency of accidental contamination events.
It is also important to note that whilst the most common cause of undeclared allergen in the global food supply chain is through accidental contamination in raw materials or finished products, this is not the only method by which undeclared allergen may be found in a product.
For example, peanut flour may be used in economically motivated adulteration (EMA) food fraud cases. In 2018 the European Commission estimated that the cost of food fraud for the global food industry is approximately €30 billion every year. Due to its high protein content, peanut flour has been used as a bulking agent to raise the overall protein content of e.g., wheat flour, thus raising the ‘quality’, and therefore price, of lower value goods. The ability to effectively quantify peanut traces within complex products therefore has the potential to enable consumers of food products to further trust the safety of the food they eat.
ELISA (Enzyme linked immunosorbent assay) is the method used most frequently for peanut allergen detection in the food manufacturing industry because of its sensitivity and ease of use. However, it has disadvantages in certain settings. It is not currently validated for complex food matrices, as it is believed that the effects of both food matrices and food processing could result in an underestimation of peanut concentrations in thermally processed foods, leading to false negatives, as well as overestimation in complex food matrices, leading to false positives which are a potential food safety hazard to consumers.
Food Safety Tech: Tell us about the research that the Mars Global Food Safety Center is doing to help the industry with effective methods for peanut quantification.
Zhang: At the Mars Global Food Safety Center (GFSC) we believe that everyone has the right to safe food and that we have a responsibility to generate and share insights to help solve for global food safety challenges. We also know we can’t tackle these alone, which is why we collaborate with external partners. One of our focus areas is advancing understanding and knowledge sharing in peanut allergen detection. As part of that work, we are exploring methods of improving food safety via the development of advanced analytical methods to detect peanut allergen content, in the hopes that it will enable the food industry to expand on current preventative management protocols, including early detection methodologies, for faster response to future food allergen contamination events.
As part of our latest published research, we investigated the accuracy and sensitivity of ELISA-based test methods on raw and cooked wheat flour, wheat flour-salt and wheat flour-salt-oil matrices, which are common ingredients in the food industry. 10 ppm peanut was doped into each matrix during sample preparation. Recovery testing demonstrated that in all matrices the current industry standard ELISA method overestimated results with recoveries ranging from 49.6 to 68.6 ppm.
These findings prompted the development of a new confirmatory method based on liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for peanut quantification. When subjected to the same validation testing programme the HPLC-MS/MS technique was demonstrably more accurate and sensitive, with a limit of quantification of 0.3 ppm and the detected peanut concentration ranging from 6.8 to 12.8 ppm for samples doped with 10 ppm peanut.
This work is a first step in the development of a new standard method for peanut detection in complex food matrices and could ultimately inform safer manufacturing Quality & Food Safety (Q&FS) processes across global supply chains to help ensure safe food for all.
The Lab Food Integrity Team at the Mars Global Food Safety Center.
Food Safety Tech: What projects are researchers at the Center working on to enhance allergen management as a whole?
Zhang: A successful allergen management program depends on rigorous control of allergenic foods and ingredients from all other products and ingredients at every step of the food production process, from raw material development to the delivery of final products. This means that for allergen management practices to be effective, they must be a shared responsibility between food manufacturers, government agencies, regulators and consumers.
At the Mars GFSC, we take a precompetitive approach to research, knowledge sharing and collaborations—this means we openly share insights and expertise to help ensure safe food for all. This is important in driving forward innovations, helping unlock solutions that may not have previously been possible.
We have shared our latest work both through an open access publication in Food Additives & Contaminants: Part A but also directly with regulatory bodies such as the FDA in the hopes of advancing knowledge in both food safety risk management and allergen management in complex flour-based media within global supply chains. In addition to this, this research contributes to a wider Food Safety Best Practice whitepaper focused on food allergen risk management currently under draft by the Mars GFSC, which will be published in collaboration with Walmart Food Safety Collaboration Center and the Chinese Institute of Food Science and Technology (CIFST) later this year.
We believe that global collaborations such as this are essential to improving food allergen management and mitigating food safety risks. Communication, training and knowledge sharing are core principles of the Mars GFSC and as such form a large part of our ongoing activities in this space. For example, we have hosted Food Allergen Management workshops in collaboration with Danone and Romer Labs focused on helping to raise awareness of current and future food allergen trends. At one such event in 2019, 100 participants from 16 food companies came together to promote food allergen management in the industry and ensure that the next generation of food integrity testing capability is relevant, practical, and directly applicable to the real-world problems experienced by manufacturers and processors throughout the supply chain.
Representatives of the Mars GFSC have also shared our insights externally at a number of international conferences as well as during a Food Enterprise Food Allergen Management Seminar on topics including effective allergen management procedures, our guiding principles for allergen managements at Mars, and shared our approach to encourage and share knowledge with other manufactures in this area.
We continue to support requests for technical insights, for example providing insights during a global consultation session on General Principles for Labeling of Prepackaged Food. This resulted in the addition of characterization requirements for possible allergenic substances, promoting the use of a recognizable naming system in ingredient lists that contain allergen warnings.
Food Safety Tech: Can you comment on additional work your team is doing in the area of food fraud?
Zhang: Food allergen risk management forms only one part of our wider food integrity focus at the Mars GFSC. We are committed to helping ensure food authenticity in an increasingly complex, global food supply chain through collaboration with global partners to develop new and improved tools and analytical methods that help protect the integrity of raw materials and finished products.
We have collaborated with researchers at Michigan State University to develop a Food Fraud Prevention Cycle roadmap (Introducing the Food Fraud Prevention Cycle (FFPC): A dynamic information management and strategic roadmap) which answered questions such as how to detect food fraud, how to start a food fraud prevention program, what to do in terms of testing, how much testing is enough, and how to measure success. Our intention in publishing this research was that the adoption of a holistic and all-encompassing information management cycle will enable a globally harmonized approach and the continued sharing of best practices across industry partners.
More recently, we completed an international collaboration tackling rice adulteration together with Queen’s University Belfast (QUB), Agilent Technologies, International Atomic Energy Agency (IAEA), China National Center for Food Safety Risk Assessment (CFSA), and Zhejiang Yangtze Delta Institute of Tsinghua University (Yangtze Delta). This work successfully developed a two-tier testing program, capable of rapidly screening the geographical origins of rice within the global supply chain (Food Fingerprinting: Using a two-tiered approach to monitor and mitigate food fraud in rice). By developing a tiered system, we could ensure that manufacturers use the right techniques for the right occasion, to maximize the information available in investigating food fraud at the best value. As part of this work, we have helped develop hands-on training in Ghana and inform best practice guidance to help build the foundations of a strong food safety culture in rice authenticity across the global supply chain.
This week’s episode of the 2021 Food Safety Consortium Virtual Conference Series will dive into the challenges of effectively managing your food supply chain. The following is the agenda for Thursday’s episode, which begins at 12 pm ET.
Enterprise Risk Management with Melanie Neumann, Matrix Sciences
The Role of Food Safety Certification in Supply Chain Management, a presentation by food safety experts Roy Kirby and Alec Kyriakides, followed by a panel discussion led by Erica Sheward, GFSI
Supplier Certification Management—Untangle the Chaos without Breaking the Bank, a panel discussion with David Black, RizePoint; Kari Neubauer, Ceres Certifications, Intl; and Karl Kolb, Ph.D, The High Sierra Group; moderated by Kari Hension, RizePoint
Accredited Third Party Certification Program, An FDA Update with Doriliz De Leon, FDA
Closing Remarks and Industry Commentary with Trish Wester, AFSAP
Tech Talk presented by David Black, Rizepoint
The Fall program runs every Thursday from October 7 through November 4. Haven’t registered? Follow this link to the 2021 Food Safety Consortium Virtual Conference Series, which provides access to all the episodes featuring critical industry insights from leading subject matter experts!
Q: Why would a company think about changing auditing methods if their current process is working well?
Kari Hensien: Simply put, you don’t know what you don’t know. Many companies believe they have a strong auditing program because they have not yet seen a problem. However, that doesn’t mean that an unsafe or noncompliant behavior hasn’t happened, it only means that it hasn’t surfaced.
Problems may arise that are more difficult to catch in an audit. Factories are tired from repeating the same audit for multiple clients, auditors are exhausted from long days and doing the same work twice, and this type of audit fatigue can lead to audits being rushed or errors being introduced in data entry.
Companies have gotten comfortable with more manual auditing processes – clipboards, spreadsheets, binders – as they’ve evolved over several decades. Any change to the status quo will cause some degree of discomfort, so there’s an understandable reluctance to make a change without a major catalyst.
In this case though, the catalyst may not have been within a company, but rather changes to the industry the company operates in. Regulations are stronger than ever, supply chains have become more complex, and suppliers and brands are asking more questions about where their food comes from and how it’s processed. Further, standards bodies have begun the process of requiring digital audit submission for better tracking and that trend is likely to continue.
These changes are happening because manual or traditional auditing creates blind spots in the quality, safety, and risk management program.
Data collected manually is difficult to aggregate, which makes spotting trends difficult and delays catching potential issues before they become problems.
Manual audits create audit fatigue because results can’t be shared across certifying bodies or inspectors, and suppliers must complete the same audit for each customer.
Corrective actions become time consuming and difficult to track without automation.
Q: What options are available to strengthen audit programs?
Hensien: Companies should not have to give up an auditing program they like to adopt new technology. In fact, having a strong process is an advantage when looking to improve the process already in place. This means bringing in technology will be additive rather than disruptive.
Companies that are looking to modernize their quality and risk auditing programs have a variety of options. Digital auditing solutions run the gamut from simple online forms to full enterprise platforms. Here are some of the features companies may find in modern auditing solutions.
Digital auditing forms. These are one step above the manual process. Auditors can input data directly into the form and skip the step of then having to transcribe results.
Comprehensive reporting. Holistic, timely reporting is a key advantage of moving away from manual audits, and more enterprise quality management platforms will include it. A centralized data warehouse of audit data makes it easy for companies to have visibility into whatever matters most.
Data integration. For companies monitoring large supply chains, complex business structures, and external quality indicators, integrating multiple data sources gives a comprehensive look at the factors that contribute to quality and safety. Data integrations bring in information from partners, third-party auditors, and more to get a full view of critical information.
Automated corrective actions. Mistakes are inevitable, but how they are handled can make or break a business. Having corrective actions, and their follow up, automated when something is out of compliance takes the guesswork out of whether it’s been handled effectively.
What matters most is that any company looking to improve their existing model take the time to identify what risks exist and how new technology can help mitigate those. For example, not every company needs to bring in data from external sources. But if a standards body they work with recently began requiring digital audit submissions, then digital forms are a logical choice to avoid any audit-fatigue related errors when transcribing data into the submission portal.
Finding the capabilities available to reveal the blind spots that existed in the manual auditing process reduces the friction and fatigue in auditing. Administrators are able to better see and understand all parts of quality and safety management, auditors can spend more time thoughtfully working with those being auditing, and suppliers and factories can share digital audit results with multiple customers rather than repeating the same audit many times.
As president of RizePoint, Hensien is championing a new continuous quality initiative. Since travel and interpersonal interactions have been devastated by COVID-19, it’s been challenging for businesses to obtain regular third-party audits, which are integral to access and analyze key data and ensure safety compliance across the enterprise. Hensien is facilitating an increased self-assessment auditing model, where businesses and their locations can use RizePoint’s digital platform themselves, resulting in more frequent audits and broader visibility during the pandemic and beyond.
Navigating the murky waters that COVID-19 presents has been no easy task for food companies. Being part of America’s critical infrastructure has meant that adapting to the pandemic has been unavoidable, and the industry has directly taken on the challenges to ensure the nation has a reliable food supply. But what about the frontline workers, their safety and how this ties into operational continuity as a whole? During last week’s episode of the 2020 Food Safety Consortium Virtual Conference Series, an expert panel discussed the practices that food companies have put in place during the pandemic and offered advice on managing the entire scope of COVID-19 challenges including screening employees and preventing infection transmission, safeguarding workers and the facility, administrative and engineering controls, education and training, and risk management.
“No doubt that it is a concert of controls and interventions that have allowed our industry to effectively combat this over the past several months,” said Sanjay Gummalla, senior vice president of scientific affairs at the American Frozen Foods Institute. “By and large, the industry has taken charge of this situation in a way that could not have been predicted.” Gummalla was joined by Trish Wester, founder of the Association for Food Safety Auditing Professionals and Melanie Neumann, executive vice president and general counsel for Matrix Sciences International.
First up, the COVID Czar—what is it and does your company have one? According to Neumann, this is a designated person, located both within a production facility as well as at the corporate location, who manages the bulk of the requirements and precautions that companies should be undertaking to address the pandemic. “We’re not trained in people safety—we’re trained in food safety,” said Neumann. “And it’s a lot to ask, especially on top of having to manage food safety.”
Some of the takeaways during the discussion include:
Administrative controls that must be managed: Appropriate cleaning, disinfection and sanitation; PPE; employee hygiene; shift management; and surveillance mechanisms
PPE: “It’s really clear now that face masks and coverings are critical in managing source control—it prevents the spread and protects other employees,” said Gummalla. “All employees wearing masks present the highest level of protection.” When the attendees were polled about whether face coverings are mandatory where they work, 91% answered ‘yes’.
Engineering controls within facility: Physical distancing measures such as plexiglass barriers, six-foot distance markings, traffic movement, limited employees, and hand sanitizer stations. “Engineering controls in a facility involve isolation from the virus,” said Gummalla. “In this case, controlling [and] reducing the exposure to the virus without relying on specific worker behavior. This is where facilities have implemented a great amount of thoughtful intervention, probably at a high capital cost as well.” Companies should also consider airflow management, which can involving bringing in an outside professional with expertise in negative and positive air pressure, advised Wester.
Verification activities and enterprise risk management: Neumann emphasized the importance of documentation as well as advising companies to apply a maturity model (similar to a food safety culture maturity model) to a COVID control program. The goal is to ensure that employees are following certain behaviors when no one is watching. “We want to be able to go from ‘told’ to ‘habit’,” she said.
Education and training: Using posters, infographics, brochures and videos, all of which are multilingual, to help emphasize that responsibility lies with every employee. “It is important to recognize the transmission is predominately is person to person,” said Gummalla. Do you have a daily huddle? Neumann suggests having a regular dialogue with employees about COVID.
The future, 2021 and beyond: Does your company have a contingency, preparedness or recovery plan? “The next six months are going to be critical; in many parts of the world, the worse is not over yet,” said Gummalla. “There will be a lot more innovation in our industry, and communication will be at the heart of all of this.”
The novel coronavirus (COVID-19) has been quickly spreading across the globe, which triggered most affected countries to officially declare a state of public health emergency. The World Health Organization (WHO) has labeled this rather fast outbreak as pandemic. Food companies were urged to apply proper hygiene practices such as regular handwashing and surface cleaning to keep the risk of contagion at its lowest level.1 At the moment, there are many ongoing clinical trials evaluating potential treatments for COVID-19 but no specific vaccine or medicine have been publicly made available, as of this writing.
COVID-19 belongs to a family of viruses that cause respiratory issues and can be passed on directly through contact with an infected person’s body fluids (i.e, cough or sneeze discharge) and indirectly, through contact with contaminated surfaces.2 But can the virus be transmitted through edible goods?
Coronavirus Transmission through Food
According to the CDC, there is no current indication to support the transmission of COVID-19 through food since, in general, it needs a living host on which to grow. However, sharing food and beverages, especially in public places, is discouraged. Moreover, good food safety practices are highly recommended, including refrigerating, keeping raw and cooked goods separated and heating food at suitable temperature (around 75 ̊ C).3
If the consumed food is hypothetically contaminated with the virus, the stomach acid (due to its acidic nature) will immediately inactivate it. In addition, COVID-19 cannot affect the body internally via the intestines. One rare exception to the previous statement occurs when the virus gets in contact with a specific type of respiratory cells.
According to food safety experts, foodborne illnesses are generally caused by bacterial cells that have the ability to grow in food and multiply rapidly within a short amount of time. On the other hand, viruses are dormant particles floating around living cells; only when they successfully breaks into the aforementioned cells, the multiplication process can take place.1,3
General Food Safety Advice for Food Businesses
Food manufacturers must follow good hygiene and safety practices to help ensure the consistent quality and safety of their products:4,5,6
Purchase raw material from reputable sources
Cook food thoroughly and maintain safe holding temperatures
Clean and sanitize surfaces (such as cooking boards, refrigerators handles, etc.) and equipment
Properly train staff in taking extreme hygiene measures
Employees showing signs of infectious illness must not attend work
Implement appropriate risk management strategies (e.g,. encourage social distancing and endorse online meetings when applicable)
Number of staff in a kitchen or food preparation area should be kept to a bare minimum
Space out workstations and food preparation areas, when possible
N-nitroso compounds (NOCs), or nitrosamines, have once again made headline news as their occurrence in some pharmaceuticals has led to high profile product recalls in the United States.1 Nitrosamines can be carcinogenic and genotoxic and, in the food industry, can compromise a food product’s quality and safety. One nitrosamine in particular, N-nitrosodimethylamine (NDMA), is a highly potent carcinogen, traces of which are commonly detected in foods and may be used as an indicator compound for the presence of nitrosamines.2
NOCs can potentially make their way into the food chain in a number of ways, including (but not limited to): Via the crop protection products used to maximize agricultural yields; via the sodium and/or potassium salt added to preserve certain meats from bacterial contamination; as a result of the direct-fire drying process in certain foods; and via consumption of nitrates in the diet (present in many vegetables due to natural mineral deposits in the soil), which react with bacteria and acids in the stomach to form nitrosamines.3
The crop protection and food manufacturing industries are focused on ensuring that levels of nitrosamines present in foods are minimal and safe. Detection technology for quantitating the amount of nitrosamines (ppm levels) in a sample had not advanced in nearly 40 years—until recently. Now, a thermal energy analyzer (TEA) —a sensitive and specific detector—is being relied on to provide fast and sensitive analysis for players throughout the food supply chain.
Regulatory Landscape
Both NDMA and the nitrosamine N-nitrososodiethylamine (NDEA) have been classified by national and international regulatory authorities as ‘probable human carcinogens’.3 NDMA in particular is by far the most commonly encountered member of this group of compounds.7
In the United States there are limits for NDMA or total nitrosamines in bacon, barley malt, ham and malt beverages, yet there are currently no regulatory limits for N-nitroso compounds (NOC) in foods in the EU.7
Developers of crop protection products are required to verify the absence of nitrosamines or quantify the amount at ppm levels to ensure they are within the accepted guidelines.
Crop Protection
The presence of nitrosamines must be traced and risk-managed along the food’s journey from farm to fork. The issue affects testing from the very beginning – particularly at the crop protection stage, which is one of the most highly regulated industries in the world. Without crop protection, food and drink expenditures could increase by up to £70 million per year and 40% of the world’s food would not exist.7
Development of a new crop protection product (herbicide, fungicide, insecticide or seed treatment) involves several steps: Discovery and formulation of the product, trials and field development, toxicology, environmental impacts and final registration. New product registration requires demonstration of safety for all aspects of the environment, the workers, the crops that are being protected and the food that is consumed. This involves comprehensive risk assessments being carried out, based on data from numerous safety studies and an understanding of Good Agricultural Practice (GAP).
One global producer of agrochemicals uses a custom version of the TEA to verify the absence of nitrosamines or quantitate the amount of nitrosamines (ppm levels) in its active ingredients. The LC-TEA enables high selectivity for nitro, nitroso and nitrogen (when operating in nitrogen mode), which allows only the compounds of interest to be seen. Additionally, it provides very high sensitivity (<2pg N/sec Signal to Noise 3:1), meaning it is able to detect compounds of interest at extremely low levels. To gain this high sensitivity and specificity, it relies on a selective thermal cleavage of N-NO bond and detection of the liberated NO radical by the chemiluminescent signal generated by its reaction with ozone.
The customized system also uses a different interface with a furnace, rather than the standard pyrolyser, to allow for the additional energy required and larger diameter tubing for working with a liquid sample rather than gas.
The system allows a company to run five to six times more samples with increased automation. As a direct result, significant productivity gains, reduced maintenance costs and more accurate results can be realized.
Food Analysis
Since nitrite was introduced in food preservation in the 1960s, its safety has been debated. The debate continues today, largely because of the benefits of nitrite in food products, particularly processed meats.6 In pork products, such as bacon and cured ham, nitrite is mostly present in the sodium and/or potassium salt added to preserve the meat from bacterial contamination. Although the meat curing process was designed to support preservation without refrigeration, a number of other benefits, such as enhancing color and taste, have since been recognized.
Analytical methods for the determination of N-nitrosamines in foods can differ between volatile and non-volatile compounds. Following extraction, volatile N-nitrosamines can be readily separated by GC using a capillary column and then detected by a TEA detector. The introduction of the TEA offered a new way to determine nitrosamine levels at a time when GC-MS could do so only with difficulty.
To identify and determine constituent amounts of NOCs in foods formed as a direct result of manufacturing and processing, the Food Standards Agency (FSA) approached Premier Analytical Services (PAS) to develop a screening method to identify and determine constituent amounts of NOCs in foods formed as a direct result of manufacturing and processing.
A rapid and selective apparent total nitrosamine content (ATNC) food screening method has been developed with a TEA. This has also been validated for the known dietary NOCs of concern. This method, however, is reliant on semi-selective chemical denitrosation reactions and can give false positives. The results can only be considered as a potential indicator rather than definitive proof of NOC presence.
In tests, approximately half (36 out of 63) samples returned a positive ATNC result. Further analysis of these samples by GC-MS/MS detected volatile nitrosamine contamination in two of 25 samples.
A key role of the TEA in this study was to validate the alternative analytical method of GC-MS/MS. After validation of the technique by TEA, GC-MS/MS has been proven to be highly sensitive and selective for this type of testing.
The Future of Nitrosamine Testing
Many countries have published data showing that toxicological risk from preformed NOCs was no longer considered an area for concern. Possible risks may come from the unintentional addition or contamination of foods with NOCs precursors such as nitrite and from endogenous formation of NOCs and more research is being done in this area.
Research and innovation are the foundations of a competitive food industry. Research in the plant protection industry is driven by farming and the food chain’s demand for greater efficiency and safer products. Because the amount of nitrosamines in food that results in health effects in humans is still unknown, there is scope for research into the chemical formation and transportation of nitrosamines, their occurrence and their impact on our health. Newer chromatographic techniques are only just being applied in this area and could greatly benefit the quantification of nitrosamines. It is essential that these new approaches to quality and validation are applied throughout the food chain.
Hamlet, C, Liang, L. (2017). An investigation to establish the types and levels of N-nitroso compounds (NOC) in UK consumed foods. Premier Analytical Services, 1-79.
Park, E. (2015). Distribution of Seven N-nitrosamines in Food. Toxicological research, 31(3) 279-288, doi: 10.5487/TR.2015.31.3.279.
Crews, C. (2019). The determination of N-nitrosamines in food. Quality Assurance and Safety of Crops & Foods, 1-11, doi: 10.1111/j.1757-837X.2010.00049.x
Angela Anandappa, Ph.D., founding director of the Alliance for Advanced Sanitation and member of the FST Advisory Board
Join Food Safety Tech next week for the first in a series of complimentary webinars, called Drivers in Food Safety Testing, about the important components and issues that encompass food safety testing. Angela Anandappa, Ph.D., founding director of the Alliance for Advanced Sanitation and member of the FST Advisory Board, will lead the discussion with a presentation about Technologies Leading the Way. The complimentary webinar is aimed at food safety professionals within quality assurance and control, compliance, food lab and contract lab management, and risk management. A technology spotlight given by Lyssa Sakaley, senior global product manager for molecular pathogen testing at MilliporeSigma will follow Anandappa’s presentation. The event will conclude with an interactive Q&A with attendees.
Drivers in Food Safety Testing: Technologies Leading the Way
Wednesday, March 18 at 1 pm ET Register now!
— UPDATE — March 9, 2020 – IPC and the Food Labs/Cannabis Labs Conference want to reassure you, that in case of any disruption that may prevent the production of this live event at its physical location in Rockville, MD due to COVID-19, all sessions will be converted to a virtual conference on the already planned dates. Please note that if you initially register as a virtual participant (meaning you have no intentions of traveling to the event regardless) and the on-site event is not cancelled, you will ONLY be able to listen to the General Sessions and the Cannabis Sessions. You will have not have access to the Food Labs Sessions and there will be NO recording of these sessions. If you have any questions, please contact Veronica Allen, Event Manager.
–END UPDATE —
EDGARTOWN, MA, Jan. 22, 2020 – Innovative Publishing Co., the publisher of Food Safety Tech and organizer of the Food Safety Consortium Conference & Expo is announcing the launch of the Food Labs Conference. The event will address regulatory, compliance and risk management issues that companies face in the area of testing and food laboratory management. It will take place on June 3–4 in Rockville, MD.
Some of the critical topics include discussion of FDA’s proposed FSMA rule, Laboratory Accreditation Program for Food Testing; considerations in laboratory design; pathogen testing and detection; food fraud; advances in testing and lab technology; allergen testing, control and management; validation and proficiency testing; and much more.
The event is co-located with the Cannabis Labs Conference, which will focus on science, technology, regulatory compliance and quality management. More information about this event is available on Cannabis Industry Journal.
“By presenting two industry conferences under one roof, we can provide attendees with technology, regulatory compliance and best practices that cannabis and food might share but also focused topics that are unique to cannabis or food laboratory industry needs,” said Rick Biros, president of Innovative Publishing Co., Inc. and director of the Food Labs Conference.
The agenda and speakers will be announced in early March.
About Food Safety Tech Food Safety Tech publishes news, technology, trends, regulations, and expert opinions on food safety, food quality, food business and food sustainability. We also offer educational, career advancement and networking opportunities to the global food industry. This information exchange is facilitated through ePublishing, digital and live events.
Have you ever heard the saying, “It takes a village to raise a child”? This saying can easily be adapted to blockchain in the food supply chain, only it would say, “It takes a village to do blockchain successfully.”
Blockchain, by definition, requires the collaboration and consensus of all of its participants. If you look at a commonly accepted definition, blockchain is a sequence of consensually verified transaction blocks chained together, with each of the supply chain members as an equal owner of the same transaction data.
In the food supply chain context, this means that all supply chain participants—from the farmer/grower to the retail store and, in some scenarios, even the end consumer—have to be part of the blockchain or it will fail.
But therein lies the problem.
The Blockchain Catch-22 Adoption Dilemma
While blockchain has the potential to revolutionize the food industry (e.g., the way we handle food recalls), it puts innovators in today’s complex food supply chains in an awkward Catch-22 dilemma.
Unless you are Walmart or another equally big force in the food industry with the buying power to demand that your suppliers adopt blockchain, you cannot implement blockchain successfully without your entire supply chain joining you. But oftentimes, your partners (and sometimes your management) require the commitment of all others jumping on the blockchain bandwagon.
While this situation could feel intimidating, those obstacles are usually easily overcome with the right arguments presented in a sound business case. I want to share with you five tried-and-true steps to get even the most reluctant technophobic supply chain member excited about blockchain and ready to sign on.
1. Clearly Outline Risks Across the Entire Supply Chain
One of the biggest (and most expensive) mistakes companies make when adopting blockchain is to adopt a new technology purely for the sake of it. Therefore, the starting point for any negotiations should be to outline the real business problems you are trying to solve. Put yourself in the shoes of your partners’ management and explain the problems from their perspective.
But don’t try to boil the ocean—just focus on two or three main issues that could either have disastrous (as in business operation/reputation-destroying) consequences or become extremely costly issues. Additionally, you could include a short list of secondary issues to preempt questions about other concerns.
For example, facing a food safety incident and the associated food recalls could be your primary issues. Secondary issues might be product integrity and spoilage (due to the long transit times and possible temperature fluctuations along the way), compliance with government regulations regarding cost and resources, and the consumers’ demand for transparency and traceability.
2. Calculate the Cost of Doing Nothing
Once you have identified the biggest risks, it’s time to put some numbers on paper.
Let’s stay with the example of food safety and recalls. According to the Grocery Manufacturers Association, the average food recall in the United States costs businesses $30–99 million, which only includes direct costs from retrieval and disposal of recalled items without taking additional expenses for lawsuits, reputational damages and sales losses into account.
What would a recall scenario look like for your company, and what costs would be associated with it? What does your liability management for this scenario look like across the entire supply chain? Walk through the scenario step-by-step and put down realistic numbers. Be sure you can back it up with real data at any point in time.
3. Explain the Proposed Solution (Without Getting Too Technical)
Now that you have outlined the biggest risks and walked them through the numbers, it is time to present your proposed solution. When doing so, keep in mind that most people who are not very familiar with blockchain think immediately of Bitcoin and cryptocurrency—including the hype, unpredictability and hacks.
Rather than leading with technical explanations, try to first explain your solution from a business perspective without using the word “blockchain.” Frank Yiannas, the former Walmart vice president of food safety and now deputy commissioner, food policy and response for the FDA, once described blockchain as “the equivalent of FedEx tracking for food.” This is the level of technicality you want to hit.
Once you have buy-in for the overall approach, you can lay out the technical details including how blockchain, IoT-enabled sensors and smart contracts fit into this picture.
4. Showcase Lowest Hanging Fruit First, Then Define Long-Term Benefits & Soft Savings
Pat yourself on the back—you have just overcome the biggest hurdle in the process. Now it is time to bring the deal home by laying out the quick wins (low-hanging fruit) and the long-term benefits.
If you implement a blockchain solution paired with smart sensors to constantly monitor your product’s temperature, shock impact, moisture and location, a huge quick win could be the ability to immediately identify any potentially spoiled or compromised items. All members of the supply chain could get an instant notification if an exception occurs.
While listing the immediate benefits and calculating potential savings is crucial for getting buy-in, the long-term benefits are also important. For example, you could point out that consumers (especially millennials) are willing to spend more money on brands that offer more transparency, brands they can trust (e.g., authenticity of extra virgin olive oil), and brands they can trace back to their origins (provenance).
In addition, there are also efficiency gains through blockchain. When speaking to your own management, point out the ability to improve your own operations due to the increased level of automation, as well as the opportunity for improving the overall supply chain efficiencies by collecting data across the supply chain.
Just be sure that your benefits correlate with the problems you had outlined initially.
5. Have a Detailed Adoption Roadmap
Last but not least, be prepared to have a detailed adoption road map. This is crucial, as it allows you to take their enthusiasm to the next level. All the other steps are for nought if this isn’t put into action. Go the extra mile to set your project up for success and map out the key details, including:
Proposed project timelines (e.g., onboarding phase, trial start and end dates, decision deadlines),
Must-meet milestones and key performance indicators
Expected road blocks and how you will address them
While this puts extra responsibility on your team, it allows you to keep driving the project forward and at least bring it to a trial or pilot stage that will give you more tangible benefits.
Conclusion
Whether you follow these tips step-by-step or you pick and choose, I would like you to take one thing away from reading this: While there is tremendous potential in blockchain, don’t implement it purely for the sake of catchy headlines or bragging rights! To get your supply chain partners and executive management on board, you must tie the implementation to relevant business use cases to achieve tangible results.
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookies should be enabled at all times so that we can save your preferences for these cookie settings.
We use tracking pixels that set your arrival time at our website, this is used as part of our anti-spam and security measures. Disabling this tracking pixel would disable some of our security measures, and is therefore considered necessary for the safe operation of the website. This tracking pixel is cleared from your system when you delete files in your history.
We also use cookies to store your preferences regarding the setting of 3rd Party Cookies.
If you visit and/or use the FST Training Calendar, cookies are used to store your search terms, and keep track of which records you have seen already. Without these cookies, the Training Calendar would not work.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.
Cookie Policy
A browser cookie is a small piece of data that is stored on your device to help websites and mobile apps remember things about you. Other technologies, including Web storage and identifiers associated with your device, may be used for similar purposes. In this policy, we say “cookies” to discuss all of these technologies.
Our Privacy Policy explains how we collect and use information from and about you when you use This website and certain other Innovative Publishing Co LLC services. This policy explains more about how we use cookies and your related choices.
How We Use Cookies
Data generated from cookies and other behavioral tracking technology is not made available to any outside parties, and is only used in the aggregate to make editorial decisions for the websites. Most browsers are initially set up to accept cookies, but you can reset your browser to refuse all cookies or to indicate when a cookie is being sent by visiting this Cookies Policy page. If your cookies are disabled in the browser, neither the tracking cookie nor the preference cookie is set, and you are in effect opted-out.
In other cases, our advertisers request to use third-party tracking to verify our ad delivery, or to remarket their products and/or services to you on other websites. You may opt-out of these tracking pixels by adjusting the Do Not Track settings in your browser, or by visiting the Network Advertising Initiative Opt Out page.
You have control over whether, how, and when cookies and other tracking technologies are installed on your devices. Although each browser is different, most browsers enable their users to access and edit their cookie preferences in their browser settings. The rejection or disabling of some cookies may impact certain features of the site or to cause some of the website’s services not to function properly.
Individuals may opt-out of 3rd Party Cookies used on IPC websites by adjusting your cookie preferences through this Cookie Preferences tool, or by setting web browser settings to refuse cookies and similar tracking mechanisms. Please note that web browsers operate using different identifiers. As such, you must adjust your settings in each web browser and for each computer or device on which you would like to opt-out on. Further, if you simply delete your cookies, you will need to remove cookies from your device after every visit to the websites. You may download a browser plugin that will help you maintain your opt-out choices by visiting www.aboutads.info/pmc. You may block cookies entirely by disabling cookie use in your browser or by setting your browser to ask for your permission before setting a cookie. Blocking cookies entirely may cause some websites to work incorrectly or less effectively.
The use of online tracking mechanisms by third parties is subject to those third parties’ own privacy policies, and not this Policy. If you prefer to prevent third parties from setting and accessing cookies on your computer, you may set your browser to block all cookies. Additionally, you may remove yourself from the targeted advertising of companies within the Network Advertising Initiative by opting out here, or of companies participating in the Digital Advertising Alliance program by opting out here.