Tag Archives: salmonella

Frank Meek, Orkin, Rollins
Bug Bytes

How to Keep Pathogen-Spreading Pests Out of Your Business

By Frank Meek
No Comments
Frank Meek, Orkin, Rollins

As food processors and retailers work tirelessly to feed the public during the current global health pandemic, pests continue to work overtime to keep their food supply on track. Filth flies, cockroaches and rodents, in particular, pose a threat to the food supply chain, especially with concerns of the transmission of pathogens at an all-time high. The last thing your business needs is an avoidable food safety incident that threatens your reputation and bottom line.

When it comes to food safety, pathogen-spreading pests have no place in your facility and pose a major public health risk. Not only can these filthy pests become a nuisance within your facility, they can also contaminate your products and spread foodborne bacteria such as Salmonella, E. coli and Listeria, which can cause illnesses.

Knowing what attracts these pests to your facility and the dangers they pose is important for effective removal. Let’s dive into the signs of cockroaches, filth flies and rodents, and the specific concerns they can cause.

Register to attend “Integrated Pest Management: Protect Food Safety and Prevent the Spread of Pathogens” | A complimentary virtual conference | Tuesday, June 30 at 12 pm ETCockroaches

Cockroaches seek four things that food processing facilities provide in abundance—food, shelter, proper temperatures and water. With the ability to squeeze through tiny gaps and cracks, these dirty pests enjoy crawling under equipment, in cabinets and through drains to find their next meal. Cockroaches can be found in and around almost any place within your facility. They’re capable of carrying harmful bacteria that they can spread from one location to another. Look out for droppings, cast skins or egg cases, which might signal a cockroach problem.

Filth Flies

You may think these types of flies have no desire to be inside, but they are in fact happy to go wherever the conditions are right. The most common filth fly is the housefly. These winged pests can carry and spread more than 100 disease-causing pathogens including bacteria, fungi and viruses. These can cause illnesses such as cholera, dysentery and infantile diarrhea. Filth flies in your facility can lead to a major public health issue if your food becomes contaminated.

Rodents

One of the filthiest pests around, rodents can contaminate your food supply, destroy or consume products and cause structural damage to your facility. Like cockroaches, mice and rats can fit through relatively small spaces to find food and water. With sightings on the rise during the COVID-19 pandemic, you’ll want to keep an eye out for rodents near your food products. These mighty chewers pose a public health threat as they can transmit diseases such as hantavirus and lymphocytic choriomeningitis (LCM) via their urine and droppings.

The presence of these vermin in your facility threatens public health. Additionally, an infestation can slow down the supply chain by causing businesses to recall contaminated foods.

A rigorous sanitation routine is one of the most effective ways to proactively manage pests like cockroaches, rodents and filth flies. Regularly sanitizing and disinfecting your facility can help eliminate any pathogens left behind on hard surfaces and remove the attractants for which they search. While cleaning removes dirt and buildup, sanitization and disinfection kill bacteria and pathogens, reducing the risk of a food safety issue.

Including the following tips in your cleaning routine can help keep your products and reputation safe from harm.

  • Clean out drains routinely with an enzymatic cleaning solution that can break down the organic grime.
  • Disinfect high-touch hard surfaces with a proper and low-toxicity disinfectant to kill bacteria and pathogens that can cause food illnesses.
  • Move dumpsters away from your building to reduce flies being attracted to and then gaining easy entry into your facility.
  • Wipe spills as soon as they occur to prevent them from becoming a sticky paradise for flies and cockroaches.
  • Practice good hygiene in your work environment and ensure employees are washing their hands regularly and keeping break rooms free of trash and leftovers.

Implementing exclusion practices such as sealing cracks, gaps and holes in walls with a proper sealant can also help you keep pests out. Budget allowing, consider investing in insect light traps and mechanical traps to help reduce flying insects inside.

Communication with your suppliers and distributors is also important to ensure food safety. If your partners implement similar measures, you’re more likely to protect the public from harmful diseases. Furthermore, customers will continue to trust your business.

While following these tips can help reduce the chances of a pest infestation, it’s not always possible to keep pests and the pathogens they spread out of your food processing facility. Work with a trained pest control specialist to develop a customized prevention program for your business as each type of pest requires specific treatment. They can also help you schedule inspections to identify conditions in and around your facility that may attract flies, cockroaches and rodents, among other pests.

Raj Rajagopal, 3M Food Safety
In the Food Lab

Pathogen Detection Guidance in 2020

By Raj Rajagopal
No Comments
Raj Rajagopal, 3M Food Safety

Food production managers have a critical role in ensuring that the products they make are safe and uncontaminated with dangerous pathogens. Health and wellness are in sharp focus for consumers in every aspect of their lives right now, and food safety is no exception. As food safety becomes a continually greater focus for consumers and regulators, the technologies used to monitor for and detect pathogens in a production plant have become more advanced.

It’s no secret that pathogen testing is performed for numerous reasons: To confirm the adequacy of processing control and to ensure foods and beverages have been properly stored or cooked, to name some. Accomplishing these objectives can be very different, and depending on their situations, processors rely on different tools to provide varying degrees of testing simplicity, speed, cost, efficiency and accuracy. It’s common today to leverage multiple pathogen diagnostics, ranging from traditional culture-based methods to molecular technologies.

And unfortunately, pathogen detection is more than just subjecting finished products to examination. It’s become increasingly clear to the industry that the environment in which food is processed can cross-contaminate products, requiring food manufacturers to be ever-vigilant in cleaning, sanitizing, sampling and testing their sites.

For these reasons and others, it’s important to have an understanding and appreciation for the newer tests and techniques used in the fight against deadly pathogens, and where and how they might be fit for purpose throughout the operation. This article sheds light on the key features of one fast-growing DNA-based technology that detects pathogens and explains how culture methods for index and indicator organisms continue to play crucial roles in executing broad-based pathogen management programs.

LAMP’s Emergence in Molecular Pathogen Detection

Molecular pathogen detection has been a staple technology for food producers since the adoption of polymerase chain reaction (PCR) tests decades ago. However, the USDA FSIS revised its Microbiology Laboratory Guidebook, the official guide to the preferred methods the agency uses when testing samples collected from audits and inspections, last year to include new technologies that utilize loop-mediated isothermal amplification (LAMP) methods for Salmonella and Listeria detection.

LAMP methods differ from traditional PCR-based testing methods in four noteworthy ways.

First, LAMP eliminates the need for thermal cycling. Fundamentally, PCR tests require thermocyclers with the ability to alter the temperature of a sample to facilitate the PCR. The thermocyclers used for real-time PCR tests that allow detection in closed tubes can be expensive and include multiple moving parts that require regular maintenance and calibration. For every food, beverage or environmental surface sample tested, PCR systems will undergo multiple cycles of heating up to 95oC to break open DNA strands and cooling down to 60oC to extend the new DNA chain in every cycle. All of these temperature variations generally require more run time and the enzyme, Taq polymerase, used in PCR can be subjected to interferences from other inhibiting substances that are native to a sample and co-extracted with the DNA.

LAMP amplifies DNA isothermally at a steady and stable temperature range—right around 60oC. The Bst polymerase allows continuous amplification and better tolerates the sample matrix inhibitors known to trip up PCR. The detection schemes used for LAMP detection frees LAMP’s instrumentation from the constraints of numerous moving pieces.

Secondly, it doubles the number of DNA primers. Traditional PCR tests recognize two separate regions of the target genetic material. They rely on two primers to anneal to the subject’s separated DNA strands and copy and amplify that target DNA.

By contrast, LAMP technology uses four to six primers, which can recognize six to eight distinct regions from the sample’s DNA. These primers and polymerase used not only cause the DNA strand to displace, they actually loop the end of the strands together before initiating amplification cycling. This unique looped structure both accelerates the reaction and increases test result sensitivity by allowing for an exponential accumulation of target DNA.

Third of all, it removes steps from the workflow. Before any genetic amplification can happen, technicians must enrich their samples to deliberately grow microorganisms to detectable levels. Technicians using PCR tests have to pre-dispense lysis buffers or reagent mixes and take other careful actions to extract and purify their DNA samples.

Commercialized LAMP assay kits, on the other hand, offer more of a ready-to-use approach as they offer ready to use lysis buffer and simplified workflow to prepare DNA samples. By only requiring two transfer steps, it can significantly reduces the risk of false negatives caused by erroneous laboratory preparation.

Finally, it simplifies multiple test protocols into one. Food safety lab professionals using PCR technology have historically been required to perform different test protocols for each individual pathogen, whether that be Salmonella, Listeria, E. coli O157:H7 or other. Not surprisingly, this can increase the chances of error. Oftentimes, labs are resource-challenged and pressure-packed environments. Having to keep multiple testing steps straight all of the time has proven to be a recipe for trouble.

LAMP brings the benefit of a single assay protocol for testing all pathogens, enabling technicians to use the same protocol for all pathogen tests. This streamlined workflow involving minimal steps simplifies the process and reduces risk of human-caused error.

Index and Indicator Testing

LAMP technology has streamlined and advanced pathogen detection, but it’s impractical and unfeasible for producers to molecularly test every single product they produce and every nook and cranny in their production environments. Here is where an increasing number of companies are utilizing index and indicator tests as part of more comprehensive pathogen environmental programs. Rather than testing for specific pathogenic organisms, these tools give a microbiological warning sign that conditions may be breeding undesirable food safety or quality outcomes.

Index tests are culture-based tests that detect microorganisms whose presence (or detection above a threshold) suggest an increased risk for the presence of an ecologically similar pathogen. Listeria spp. Is the best-known index organism, as its presence can also mark the presence of deadly pathogen Listeria monocytogenes. However, there is considerable skepticism among many in the research community if there are any organisms outside of Listeria spp. that can be given this classification.

Indicator tests, on the other hand, detect the presence of organisms reflecting the general microbiological condition of a food or the environment. The presence of indicator organisms can not provide any information on the potential presence or absence of a specific pathogen or an assessment of potential public health risk, but their levels above acceptable limits can indicate insufficient cleaning and sanitation or operating conditions.

Should indicator test results exceed the established control limits, facilities are expected to take appropriate corrective action and to document the actions taken and results obtained. Utilizing cost-effective, fast indicator tests as benchmark to catch and identify problem areas can suggest that more precise, molecular methods need to be used to verify that the products are uncontaminated.

Process Matters

As discussed, technology plays a large role in pathogen detection, and advances like LAMP molecular detection methods combined with strategic use of index and indicator tests can provide food producers with powerful tools to safeguard their consumers from foodborne illnesses. However, whether a producer is testing environmental samples, ingredients or finished product, a test is only as useful as the comprehensive pathogen management plan around it.

The entire food industry is striving to meet the highest safety standards and the best course of action is to adopt a solution that combines the best technologies available with best practices in terms of processes as well –from sample collection and preparation to monitoring and detection.

Eddie Hall, Vital Vio
FST Soapbox

How Automated Technology is Transforming Sanitation in Plant Operations

By Eddie Hall
No Comments
Eddie Hall, Vital Vio

Food safety remains a top-of-mind concern for food manufacturers, especially considering some of the top recalls in 2019 were caused by bacteria contamination—including Listeria and E. coli. Every aspect of the plant operation, from maintenance to executives, to junior staff and quality control, holds both responsibility and concern in producing safe food. Unfortunately, there’s a lot at stake when plant operations’ sanitation programs run into issues, which can cause health threats.

While the rapid explosion of new innovations complements our daily lives in efficiency and convenience, plant operations may find difficulty in keeping up-to-speed with new technology such as robotics, drones and automated applications. When facilities’ equipment becomes more and more outdated, it poses food safety challenges around cleaning, maintenance and upgrades.

Luckily, in some cases, innovation is becoming much easier to deploy. Opportunities abound for food processing plants to integrate new technologies into their operations to deliver significant returns on investment while simultaneously enhancing sanitation, safety and production efficiency on the plant floor.

The Dangers with Today’s Practices

There are many pitfalls with older, more traditional cleaning techniques. In a place where cleanliness is critical to food safety and public health around the world, the industry understands sanitation means more than just scrubbing, mopping and wiping. While these are important daily practices to be done around the processing plant, there are still concerns on whether this kind of intermittent cleaning is truly enough to keep surfaces completely sanitized—knowing that continuous cleaning around the clock seems impractical in any facilities.

Unfortunately, there are many areas, some very hard to reach, for bacteria and other pathogens to live and spread around a processing plant. Zone 1, which holds the conveyor belt and other common high-touch points, consistently comes into contact with food, chemicals and humans. However, for processors to reduce the likelihood of contaminated food, they must consider areas outside of Zone 1 as well—including employee break rooms, hallways and bathrooms—to implement automated sanitation technologies. Additionally, the most common food contaminants, such as Listeria, Salmonella and E. coli, are usually invisible to the naked eye. Therefore, plants need to employ automated technology to continuously kill microscopic bacteria, mold and fungi to prevent regrowth and ensure clean food and equipment.

Looking to New Tech to Fight Germs

When looking to upgrade a plant operation facility, automated technology should be top-of-mind. Automated food production technologies solve two main problems: Food safety and sanitation efficiency. Wash-down robotic systems work to prevent food contamination, while other automated robots complete tasks on the production floor such as packaging, transporting and lifting. With the CDC estimating that roughly one in six Americans suffer from foodborne illnesses, the need for improved sanitation design is integral.

In today’s age, there are several ways to achieve heightened cleanliness by incorporating automation and robotics into production lines. Slicers, dicers and cutters are manufactured with hygienic design in mind. Smart cleaning equipment can automatically store various cleaning steps. Data tracking applications can monitor sanitation steps and ensure all boxes are checked throughout the cleaning program.

Incorporating antimicrobial LED lighting ensures sanitation is truly integrated into the facility’s design—working continually 24/7 to kill and prevent bacteria, and its growth while also serving a dual purpose of both antimicrobial protection and a proper source of illumination. As is the case with this type of technology, once these lights are installed, it becomes an easy, hands-free way of reducing labor, chemicals and, in many cases, work stoppages.

According to Meticulous Research, the global food automation market is expected to be worth $14.3 billion by 2025. With automation set to explode, it’s important for leaders in the food and beverage industry to take advantage of safety tech innovations to advance sanitation around the processing plant. Facility upgrades to improve, enhance and automate sanitation could impact food manufacturers in the long-term by decreasing costs, preventing recalls, improving brand value, gaining consumer trust, minimizing risk and impacting the bottom line.

Michael Bartholomeusz, TruTag
In the Food Lab

Intelligent Imaging and the Future of Food Safety

By Michael Bartholomeusz, Ph.D.
1 Comment
Michael Bartholomeusz, TruTag

Traditional approaches to food safety no longer make the grade. It seems that stories of contaminated produce or foodborne illnesses dominate the headlines increasingly often. Some of the current safeguards set in place to protect consumers and ensure that companies are providing the freshest, safest food possible continue to fail across the world. Poorly regulated supply chains and food quality assurance breakdowns often sicken customers and result in recalls or lawsuits that cost money and damage reputations. The question is: What can be done to prevent these types of problems from occurring?

While outdated machinery and human vigilance continue to be the go-to solutions for these problems, cutting-edge intelligent imaging technology promises to eliminate the issues caused by old-fashioned processes that jeopardize consumer safety. This next generation of imaging will increase safety and quality by quickly and accurately detecting problems with food throughout the supply chain.

How Intelligent Imaging Works

In broad terms, intelligent imaging is hyperspectral imaging that uses cutting-edge hardware and software to help users establish better quality assurance markers. The hardware captures the image, and the software processes it to provide actionable data for users by combining the power of conventional spectroscopy with digital imaging.

Conventional machine vision systems generally lack the ability to effectively capture and relay details and nuances to users. Conversely, intelligent imaging technology utilizes superior capabilities in two major areas: Spectral and spatial resolution. Essentially, intelligent imaging systems employ a level of detail far beyond current industry-standard machinery. For example, an RGB camera can see only three colors: Red, green and blue. Hyperspectral imaging can detect between 300 and 600 real colors—that’s 100–200 times more colors than detected by standard RGB cameras.

Intelligent imaging can also be extended into the ultraviolet or infrared spectrum, providing additional details of the chemical and structural composition of food not observable in the visible spectrum. Hyperspectral imaging cameras do this by generating “data cubes.” These are pixels collected within an image that show subtle reflected color differences not observable by humans or conventional cameras. Once generated, these data cubes are classified, labeled and optimized using machine learning to better process information in the future.

Beyond spectral and spatial data, other rudimentary quality assurance systems pose their own distinct limitations. X-rays can be prohibitively expensive and are only focused on catching foreign objects. They are also difficult to calibrate and maintain. Metal detectors are more affordable, but generally only catch metals with strong magnetic fields like iron. Metals including copper and aluminum can slip through, as well as non-metal objects like plastics, wood and feces.

Finally, current quality assurance systems have a weakness that can change day-to-day: Human subjectivity. The people put in charge of monitoring in-line quality and food safety are indeed doing their best. However, the naked eye and human brain can be notoriously inconsistent. Perhaps a tired person at the end of a long shift misses a contaminant, or those working two separate shifts judge quality in slightly different ways, leading to divergent standards unbeknownst to both the food processor and the public.

Hyperspectral imaging can immediately provide tangible benefits for users, especially within the following quality assurance categories in the food supply chain:

Pathogen Detection

Pathogen detection is perhaps the biggest concern for both consumers and the food industry overall. Identifying and eliminating Salmonella, Listeria, and E.coli throughout the supply chain is a necessity. Obviously, failure to detect pathogens seriously compromises consumer safety. It also gravely damages the reputations of food brands while leading to recalls and lawsuits.

Current pathogen detection processes, including polymerase chain reaction (PCR), immunoassays and plating, involve complicated and costly sample preparation techniques that can take days to complete and create bottlenecks in the supply chain. These delays adversely impact operating cycles and increase inventory management costs. This is particularly significant for products with a short shelf life. Intelligent imaging technology provides a quick and accurate alternative, saving time and money while keeping customers healthy.

Characterizing Food Freshness

Consumers expect freshness, quality and consistency in their foods. As supply chains lengthen and become more complicated around the world, food spoilage has more opportunity to occur at any point throughout the production process, manifesting in reduced nutrient content and an overall loss of food freshness. Tainted meat products may also sicken consumers. All of these factors significantly affect market prices.

Sensory evaluation, chromatography and spectroscopy have all been used to assess food freshness. However, many spatial and spectral anomalies are missed by conventional tristimulus filter-based systems and each of these approaches has severe limitations from a reliability, cost or speed perspective. Additionally, none is capable of providing an economical inline measurement of freshness, and financial pressure to reduce costs can result in cut corners when these systems are in place. By harnessing meticulous data and providing real-time analysis, hyperspectral imaging mitigates or erases the above limiting factors by simultaneously evaluating color, moisture (dehydration) levels, fat content and protein levels, providing a reliable standardization of these measures.

Foreign Object Detection

The presence of plastics, metals, stones, allergens, glass, rubber, fecal matter, rodents, insect infestation and other foreign objects is a big quality assurance challenge for food processors. Failure to identify foreign objects can lead to major added costs including recalls, litigation and brand damage. As detailed above, automated options like X-rays and metal detectors can only identify certain foreign objects, leaving the rest to pass through untouched. Using superior spectral and spatial recognition capabilities, intelligent imaging technology can catch these objects and alert the appropriate employees or kickstart automated processes to fix the issue.

Mechanical Damage

Though it may not be put on the same level as pathogen detection, food freshness and foreign object detection, consumers put a premium on food uniformity, demanding high levels of consistency in everything from their apples to their zucchini. This can be especially difficult to ensure with agricultural products, where 10–40% of produce undergoes mechanical damage during processing. Increasingly complicated supply chains and progressively more automated production environments make delivering consistent quality more complicated than ever before.

Historically, machine vision systems and spectroscopy have been implemented to assist with damage detection, including bruising and cuts, in sorting facilities. However, these systems lack the spectral differentiation to effectively evaluate food and agricultural products in the stringent manner customers expect. Methods like spot spectroscopy require over-sampling to ensure that any detected aberrations are representative of the whole item. It’s a time-consuming process.

Intelligent imaging uses superior technology and machine learning to identify mechanical damage that’s not visible to humans or conventional machinery. For example, a potato may appear fine on the outside, but have extensive bruising beneath its skin. Hyperspectral imaging can find this bruising and decide whether the potato is too compromised to sell or within the parameters of acceptability.

Intelligent imaging can “see” what humans and older technology simply cannot. With the ability to be deployed at a number of locations within the food supply chain, it’s an adaptable technology with far-reaching applications. From drones measuring crop health in the field to inline or end-of-line positioning in processing facilities, there is the potential to take this beyond factory floors.

In the world of quality assurance, where a misdiagnosis can literally result in death, the additional spectral and spatial information provided by hyperspectral imaging can be utilized by food processors to provide important details regarding chemical and structural composition previously not discernible with rudimentary systems. When companies begin using intelligent imaging, it will yield important insights and add value as the food industry searches for reliable solutions to its most serious challenges. Intelligent imaging removes the subjectivity from food quality assurance, turning it into an objective endeavor.

Benjamin Katchman, PathogenDx
In the Food Lab

Revolutionary Rapid Testing for Listeria Monocytogenes and Salmonella

By Benjamin A. Katchman, Ph.D., Michael E. Hogan, Ph.D., Nathan Libbey, Patrick M. Bird
No Comments
Benjamin Katchman, PathogenDx

The Golden Age of Bacteriology: Discovering the Unknown in a Farm-to-Market Food Supply.

The last quarter of the 19th Century was both horrific and exciting. The world had just emerged from four decades of epidemic in cholera, typhoid fever and other enteric diseases for which no cause was known. Thus, the great scientific minds of Europe sought to find understanding. Robert Koch integrated Pasteur’s Germ Theory in 1861 with the high technology of the day: Mathematical optics and the first industrialized compound microscopes (Siebert, Leiss, 1877), heterocycle chemistry, high-purity solvents (i.e., formaldehyde), availability of engineered glass suitable as microscope slides and precision-molded parts such as tubes and plates in 1877, and industrialized agar production from seaweed in Japan in 1860. The enduring fruit of Koch’s technology integration tour de force is well known: Dye staining of bacteria for sub-micron microscopy, the invention of 13 cm x 1 cm culture tubes and the invention of the “Petri” dish coupled to agar-enriched culture media. Those technologies not only launched “The Golden Age of Bacteriology” but also guided the entire field of analytical microbiology for two lifetimes, becoming bedrock of 20th Century food safety regulation (the Federal Food, Drug and Cosmetic Act in 1938) and well into the 21st century with FSMA.

Learn more about technologies in food safety testing at the Food Labs / Cannabis Labs Conference | June 2–4, 2020 | Register now!Blockchain Microbiology: Managing the Known in an International Food Supply Chain.

If Koch were to reappear in 2020 and were presented with a manual of technical microbiology, he would have little difficulty recognizing the current practice of cell fixation, staining and microscopy, or the SOPs associated with fluid phase enrichment culture and agar plate culture on glass dishes (still named after his lab assistant). The point to be made is that the analytical plate culture technology developed by Koch was game changing then, in the “farm-to-market” supply chain in Koch’s hometown of Berlin. But today, plate culture still takes about 24 to 72 hours for broad class indicator identification and 48 to 96 hours for limited species level identification of common pathogens. In 1880, life was slow and that much time was needed to travel by train from Paris to Berlin. In 2020, that is the time needed to ship food to Berlin from any place on earth. While more rapid tests have been developed such as the ATP assay, they lack the speciation and analytical confidence necessary to provide actionable information to food safety professionals.

It can be argued that leading up to 2020, there has been an significant paradigm shift in the understanding of microbiology (genetics, systems based understanding of microbial function), which can now be coupled to new Third Industrial Age technologies, to make the 2020 international food supply chain safer.

We Are Not in 1880 Anymore: The Time has Come to Move Food Safety Testing into the 21st Century.

Each year, there are more than 48 million illnesses in the United States due to contaminated food.1 These illnesses place a heavy burden on consumers, food manufacturers, healthcare, and other ancillary parties, resulting in more than $75 billion in cost for the United States alone.2 This figure, while seemingly staggering, may increase in future years as reporting continues to increase. For Salmonella related illnesses alone, an estimated 97% of cases go unreported and Listeria monocytogenes is estimated to cause about 1,600 illnesses each year in the United States with more than 1,500 related hospitalizations and 260 related deaths.1,3 As reporting increases, food producers and regulatory bodies will feel an increased need to surveil all aspects of food production, from soil and air, to final product and packaging. The current standards for pathogenic agriculture and environmental testing, culture-based methods, qPCR and ATP assays are not able to meet the rapid, multiplexed and specificity required to meet the current and future demands of the industry.

At the DNA level, single cell level by PCR, high throughput sequencing, and microarrays provide the ability to identify multiple microbes in less than 24 hours with high levels of sensitivity and specificity (see Figure 1). With unique sample prep methods that obviate enrichment, DNA extraction and purification, these technologies will continue to rapidly reduce total test turnaround times into the single digit hours while simultaneously reducing the costs per test within the economics window of the food safety testing world. There are still growing pains as the industry begins to accept these new molecular approaches to microbiology such as advanced training, novel technology and integrated software analysis.

It is easy to envision that the digital data obtained from DNA-based microbial testing could become the next generation gold standard as a “system parameter” to the food supply chain. Imagine for instance that at time of shipping of a container, a data vector would be produced (i.e., time stamp out, location out, invoice, Listeria Speciation and/or Serovar discrimination, Salmonella Speciation and/or Serovar discrimination, refer toFigure 1) where the added microbial data would be treated as another important digital attribute of the load. Though it may seem far-fetched, such early prototyping through the CDC and USDA has already begun at sites in the U.S. trucking industry, based on DNA microarray and sequencing based microbial testing.

Given that “Third Industrial Revolution” technology can now be used to make microbial detection fast, digital, internet enabled and culture free, we argue here that molecular testing of the food chain (DNA or protein based) should, as soon as possible, be developed and validated to replace culture based analysis.

Broad Microbial Detection
Current microbiological diagnostic technology is only able to test for broad species of family identification of different pathogens. New and emerging molecular diagnostic technology offers a highly multiplexed, rapid, sensitive and specific platforms at increasingly affordable prices. Graphic courtesy of PathogenDx.

References.

  1. Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M. A., Roy, S. L., … Griffin, P. M. (2011). Foodborne illness acquired in the United States–major pathogens. Emerging infectious diseases, 17(1), 7–15. doi:10.3201/eid1701.p11101
  2. Scharff, Robert. (2012). Economic Burden from Health Losses Due to Foodborne Illness in the United States. Journal of food protection. 75. 123-31. 10.4315/0362-028X.JFP-11-058.
  3. Mead, P. S., Slutsker, L., Dietz, V., McCaig, L. F., Bresee, J. S., Shapiro, C., … Tauxe, R. V. (1999). Food-related illness and death in the United States. Emerging infectious diseases, 5(5), 607–625. doi:10.3201/eid0505.990502
Alec Senese, Bayer Crop Science, Digital Pest Management
Bug Bytes

Did You Know a Cockroach Could Survive for a Month without Its Head?

By Alec Senese
No Comments
Alec Senese, Bayer Crop Science, Digital Pest Management

Like most insects, cockroaches have multiple nervous centers. When they lose their head, the rest of the body will continue to operate separately. In fact, a roach could live indefinitely without its heads if it didn’t need its mouth to eat and drink.

Register now for the complimentary webinar: New Technology’s Impact on Pest Management in the FSMA Regulated World | March 5, 2020 | 12 pm ETIn case you were curious, the following are five fun roach facts to keep in your back pocket for the holiday parties you’ll be attending this year. However, you may want to wait until after dinner has been served to bring these up in conversation…

  1. Roaches are incredibly fast little creatures, running about three miles per hour, or 50 times the distance of their bodies, in a single second. They are also the fastest in the animal kingdom at turning their body. They can make 25 turns per second!
  2. Cockroaches have been known to survive without important resources for much longer than most organisms. They can survive up to three months without food, a month without water, up to 45 minutes without air and can handle radiation levels up to 15 times higher than a human.
  3.  Not only do roaches spread multiple diseases that are dangerous to humans through their feces like Salmonella, shigellosis and hepatitis, they produce allergens that can trigger asthma attacks.
  4.  There’s a sci-fi like relationship between the cockroach and the jewel wasp. A jewel wasps sting can paralyze a cockroach long enough to administer a sting in the roach’s brain. This will give the wasp control over the roach’s escape reflex. The wasp then proceeds to drag the roach back to its nest, lay her eggs in the roach’s body and then allows her hatchlings to feed off the roach and build cocoons inside its body. Yikes. If there was ever a time to feel sorry for a roach, this is it.
  5. Ever heard of Louisiana’s cockroach tea? Cockroaches have been used for healing purposes in many areas of the world. They have been utilized for tetanus remedies in Louisiana, burn treatment and gastroenteritis alleviation in China.

The cockroach is currently being studied for potential uses in prosthetics, antibiotics and more.
The cockroach is an amazing creature, but they are less admirable when they inhabit areas where their presence can present risks to health and business.

Resources

  1. Smirnova, E. An Illustrated Guide to Cockroaches.
  2. How cockroaches could save lives”. (November 3, 2015). BBC News. Retrieved from https://www.bbc.com/news/magazine-34517443
Michele Pfannenstiel, Dirigo Food Safety
FST Soapbox

Quality Assurance and Food Safety in Cannabis-Infused Products

By Michele Pfannenstiel, DVM
No Comments
Michele Pfannenstiel, Dirigo Food Safety

The legal cannabis-infused products industry is growing with impressive and predictable rapidity. But because the rollout of new regulations occurs in an awkward and piecemeal fashion, with stark differences from one state to another, and sometimes even one county to another, uncertainty reigns.1 Many entrepreneurs are diving headlong into the nascent industry, hoping to take advantage of an uncertain regulatory environment where government audits and inspections are rare. These business owners will see quality assurance and product safety as burdens—costs to be avoided to the greatest extent possible.

I have seen this time and time again, even in the comparatively well-regulated food industry, and it is always a mistake.

If you find yourself thinking about quality assurance or food safety as a prohibitive cost, annoyance or distraction, I encourage you to change your thinking on this issue. The most successful businesses realize that product safety and quality assurance are inextricably linked with profitability. They are best thought of not as distractions, but as critical elements of an efficient and optimized process. Proper QA and safety are not costs, they are value.

Food safety and quality assurance should be seen as important elements of the process that you undertake to enforce the high standards and consistency that will win you repeat customers. The fact that they guard against costly recalls or satisfy meddlesome auditors is only a bonus. Realizing this will make your business smarter, faster and more profitable.

Learn more about the science, technology, regulatory compliance and quality management issues surrounding cannabis at the Food Labs / Cannabis Labs Conference | June 2–4, 2020If today you cannot clearly communicate your product standards to your employees and to your customers, then you have some work to do. That’s because quality assurance always begins with precise product specifications. (A good definition of “quality” is “conformance to specifications.”) How can you assess quality if you don’t have a definitive standard with which to evaluate it? My consulting firm works with food businesses both small and large, and this is where we begin every relationship. You might be surprised how often even a well-established business has a difficult time naming and describing every one of its products, let alone articulating objective standards for them.

This may be doubly difficult for fledgling businesses in the cannabis world. Because the market is so new, there are fewer agreed-upon standards to fall back on.

When we help businesses create specifications, we always look at the relevant regulations while keeping in mind customer expectations. In cannabis, the regulations just aren’t as comprehensive as they are for conventional food and agriculture. Laws and guidelines are still in flux, and different third-party standards are still competing for market dominance. Different states have entirely different standards, and don’t even agree, for example, whether cannabis edibles should be considered pharmaceuticals or food. To some extent, it’s the wild west of regulation, and as long as the federal government remains reluctant to impose national guidelines, it’s likely to remain so.

The wild west may be a good place for the unscrupulous, but it’s not good for business owners that care about the health of their customers and the long-term health of their brand. Don’t take advantage of confusing quality and safety standards by doing the least possible to get by. At some point there will be a scandal in this country when a novel cannabis product makes dozens of customers sick, or worse. You don’t want it to be yours.

With cannabis-infused products, there is a unique additional factor at play: The strength of THC and other psychoactive compounds. Again, there are few agreed-upon standards for potency testing, and relatively little oversight of the laboratories themselves. This allows labs to get sloppy, and even creates an incentive for them to return inflated THC counts; at the very least, results may hugely differ from one lab to another even for identical products.2 Some labs are ISO 17025 accredited, and some are not. Using an unaccredited laboratory may prevent your efforts to create consistent and homogeneous products.

Even in comparatively well-regulated states, such as Colorado, it is ultimately your responsibility to create products that are safe and consistent. And in the states where the politicians haven’t even figured out which department is regulating cannabis products, your standards should be tougher than whatever is officially required.

And so we look to the more established world of conventional food and agriculture as a guide for the best practices in the cannabis industry.

Hazards

The most constructive way to look at food safety, and the way your (eventual) auditors and regulators will view it, is to look at your product and process from the perspective of the potential hazards.

Some day, when regulation finally gets sorted out, you are likely to be asked to implement a Hazard Analysis and Critical Control Points (HACCP) safety system. HACCP framework recognizes three broad categories of hazards:

  • Physical hazards: Foreign material that is large enough to cause harm, such as glass or metal fragments.
  • Chemical hazards: Pesticides and herbicides, heavy metals, solvents and cleaning solutions.
  • Biological hazards: The pathogens that cause foodborne illness in your customers, such as E. coli, and other biological hazards, such as mycotoxins from molds.

All of these hazards are highly relevant to cannabis-infused product businesses.

The HACCP framework asks us to consider what steps in our process offer us the chance to definitively and objectively eliminate the risk of relevant hazards. In a cannabis cookie, for example, this might be a cooking step, a baking process that kills the Salmonella that could be lurking in your flour, eggs, chocolate or (just as likely!) the cannabis extracts themselves.

A good HACCP system is merely the capstone resting atop a larger foundational system of safety programs, including standard operating procedures, good manufacturing practices, and good agricultural practices. It’s important to use these agreed-upon practices and procedures in your own facility and to ensure that your suppliers and shippers are doing the same. Does your cultivator have a culture of safety and professionalism? Do they understand their own risks of hazards?

HACCP offers a rigorous perspective with which to look at a process, and to examine all of the places where it can go wrong. The safety system ultimately holds everything together because of its emphasis on scrupulous documentation. Every important step is written down, every time, and is always double-checked by a supervisor. It sounds like a lot of paperwork, but it is better viewed as an opportunity to enforce consistency and precision.

When you thoroughly document your process you’ll create a safer product, run a more efficient business, and make more money.

References

  1. Rough, L. (2016, March 4). Leafly’s State-by-State Guide to Cannabis Regulations. Retrieved from https://www.leafly.com/news/industry/leaflys-state-by-state-guide-to-cannabis-testing-regulations
  2. Jikomes, N. & Zoorob, M. (2018, March 14). The Cannabinoid Content of Legal Cannabis in Washington State Varies Systematically Across Testing Facilities and Popular Consumer Products. Retrieved from https://www.nature.com/articles/s41598-018-22755-2
Dairy

Q3 Hazard Beat: Milk & Dairy Products

By Food Safety Tech Staff
No Comments
Dairy

The following infographic is a snapshot of the hazard trends in milk and dairy from Q3 2019. The information has been pulled from the HorizonScan quarterly report, which summarizes recent global adulteration trends using data gathered from more than 120 reliable sources worldwide. For the past several weeks, Food Safety Tech has provided readers with hazard trends from various food categories included in this report. Next week will conclude this series.

Mailk dairy hazards, HorizonScan
2019 Data from HorizonScan by FeraScience, Ltd.

View last week’s hazards in fruits and vegetables.

Spices, Paprika, Curry

Q3 Hazard Beat: Herbs and Spices

By Food Safety Tech Staff
No Comments
Spices, Paprika, Curry

The following infographic is a snapshot of the hazard trends in herbs and spices from Q3 2019. The information has been pulled from the HorizonScan quarterly report, which summarizes recent global adulteration trends using data gathered from more than 120 reliable sources worldwide. Over the next several weeks, Food Safety Tech will provide readers with hazard trends from various food categories included in this report.

Hazards, Herbs, Spices
2019 Data from HorizonScan by FeraScience, Ltd.

View last week’s hazards in meat and meat products.

Alert

Q3 Hazard Beat: Meat and Meat Products Trends

By Food Safety Tech Staff
No Comments
Alert

The following infographic is a snapshot of the hazard trends in meat and meat products from Q3 2019. The information has been pulled from the HorizonScan quarterly report, which summarizes recent global adulteration trends using data gathered from more than 120 reliable sources worldwide. Over the next several weeks, Food Safety Tech will provide readers with hazard trends from various food categories included in this report.

HorizonScan, Meat hazards
2019 Data from HorizonScan by FeraScience, Ltd.

View last week’s hazards in poultry.