Tag Archives: salmonella

FDA

FDA to Begin Testing Samples of Salinas-Grown Lettuce for E. Coli and Salmonella

By Food Safety Tech Staff
No Comments
FDA

Register now for the complimentary virtual event in our Food Safety Hazards Series, “Salmonella Detection, Mitigation, Control and Regulation” | Thursday, July 15, 11:45 am ETAs part of ongoing surveillance efforts resulting from recurring outbreaks, the FDA announced that it will conduct direct sampling and testing of lettuce grown in the Salinas Valley region of California. From May through November 2021, the agency will test samples for Shiga toxin-producing Escherichia coli (STEC), including E. coli O157:H7, and Salmonella spp. Direct sampling will be conducted at commercial cooling and cold storage facilities where field heat is removed from harvested lettuce and product is cold-stored prior to processing. “Sample collection at commercial coolers helps the FDA efficiently obtain samples from multiple farms at centralized locations and facilitates prompt traceback and follow-up if contamination is detected,” according to a CFSAN update.

FDA laboratories plan to test about 500 post-harvest samples of iceberg, leaf and romaine lettuce, with each sample consisting of 10 subsamples (one head of lettuce that is trimmed, cored or wrapped; or romaine lettuce leaves or one package of hearts).

In compliance with COVID-19 safety practices, the agency investigators will preannounce their visits.

Food Safety Hazards Series: Salmonella Detection, Mitigation, Control and Regulation

Food safety experts will discuss challenges and tangible best practices in Salmonella detection, mitigation and control, along with critical issues that the food industry faces with regards to the pathogen. This includes the journey and progress of petition to USDA on reforming and modernizing poultry inspections to reduce the incidence of Salmonella and Campylobacter; Salmonella detection, mitigation and control; and a case study on the pathogen involving crisis management.

Recall

Sabra Recalls Hummus After Salmonella Discovered During FDA Routine Screening

By Food Safety Tech Staff
No Comments
Recall

On Monday Sabra Dipping Company, LLC and the FDA announced a voluntary recall of the company’s Classic Hummus due to potential Salmonella contamination. The discovery was made when the FDA conducted a routine screen of one tub. Sabra has recalled about 2100 cases of its 10 oz Classic Hummus (1 SKU), which was produced on February 10 and has a “Best Before” date of April 26. The product was distributed to 16 states, but according to the company announcement posted on FDA’s website, since the hummus is more than halfway through its shelf life, “it’s unlikely you’ll find this product on the shelf.”

Thus far no illnesses have been reported in connection with this recall.

Deane Falcone, CropOne
FST Soapbox

E. Coli on the Rise: Lettuce Explain

By Deane Falcone, Ph.D.
No Comments
Deane Falcone, CropOne

The CDC estimates that 48 million people in the United States become sick with a foodborne illness each year. Some of the most common of these illnesses include norovirus, Salmonella, and E. coli. Each can result in a range of symptoms, from mild discomfort to serious, life-threatening illnesses. Although the coronavirus pandemic has worked to create a sense of heightened public health awareness, one of these common, yet preventable, foodborne illnesses—E. coli—is still on the rise.

What Is E. coli and How Common Are Infections?

According to the CDC, Escherichia coli (E. coli) are a large and diverse group of bacteria found in the environment, foods, and intestines of people and animals. Most strains of the bacteria are harmless, but certain ones can make you sick, causing diarrhea, urinary tract infections, respiratory illness and pneumonia, or other illnesses.

When it comes to understanding the scale of the problem, upwards of 70,000 Americans are estimated to fall ill because of E. coli each year, thousands of whom require hospitalization. E. coli outbreaks have been occurring with regularity, and the number of cases are increasing instead of slowing down, in frequency. In November 2020 alone, there were three ongoing E.coli outbreaks in the United States, accounting for 56 infections, 23 hospitalizations, and one death. At least one of these outbreaks stemmed from a common target for the bacteria: Romaine lettuce. When it comes to E. coli-contaminated foods, fresh leafy greens such as romaine or spinach are the most common vehicles for E. coli that can pose serious risks to human health.

Leafy Greens: An Ideal Target

Leafy greens are an easy target for E. coli for a number of reasons, the first being their popularity. The public recognition of the health value of consuming greater amounts of fresh leafy greens has correspondingly increased the production area of such produce to meet consumer demand. Crop production over wider areas makes tracking of contamination in the field more difficult and the greater consumption increases chances of eating contaminated leafy greens. This type of produce also grows low to the ground, increasing chances of exposing the edible, leafy portions of the lettuce to contaminated water. Finally, other vegetables are often cooked prior to consumption, killing the bacteria, whereas romaine and other leafy greens are often consumed raw.

Once this type of produce is exposed to contaminants, several characteristics of leaf surfaces make removal of bacteria such as E. coli difficult. Studies have shown that, at the microscopic level, the “roughness” or shape of the leaf surface can influence the degree to which bacteria adheres to leaves. Bacteria have specific protein fibers on their surface that are involved in the attachment of the bacteria to the leaf surface and this has been shown to be dependent on the surface roughness of the leaf. Other factors include the “pores” on leaf surfaces—stomata—through which plants take up carbon dioxide and release oxygen and water vapor. Pathogenic E. coli has been observed to enter such stomatal pores and therefore is often very resistant to removal by washing. Moreover, the density of stomata within leaves can vary between different varieties of lettuce or spinach and so affects the degree of E. coli attachment. Additional factors such as leaf age, damage and amount of contaminating bacteria also affect how effectively bacteria adhere to the leaves, making washing difficult.

Are E. Coli Outbreaks Avoidable?

Unfortunately, E. coli outbreaks will likely remain prevalent because of the challenge of interrogating all irrigation water for large and widespread production fields. Once microbial contaminants are present on fresh leafy produce, their complete removal by washing cannot be guaranteed, and it is very difficult to monitor every plot of crops continuously. However, there is a solution to this problem: Controlled environment agriculture (CEA). CEA is an broad term used for many varieties of indoor plant cultivation and can be defined as a method of cultivating plants in an enclosed environment, using technology to ensure optimal growing conditions.

Because outbreaks caused by E. coli-contaminated produce are most often due to produce coming into contact with contaminated irrigation water, indoor growing provides an ideal solution with zero reliance on irrigation water. It also offers a sealed environment with virtually no risk of contamination from animal excrement or other pathogen sources. Indoor farming also makes additional features possible that enhance safety including the use of purified water and handling done only by staff wearing protective clothing (for the plants) including lab coats, hair nets, and gloves. No ungloved hand ever comes into contact with the produce either during growth or in packaging. These standards are nearly impossible to achieve in a traditional farm setting.

Using hydroponic technology enables farming in a clean and contaminant-free, indoor environment. Applying best hygienic practices with this growing model provides safe and clean growth in a sealed, controlled environment, with virtually no risk of illness-causing pathogens.

At this point, not everyone can access food coming from a clean, indoor facility. At the consumer level the best way to avoid E. coli infection remains simply being diligent when it comes to washing. Even if produce is labeled “triple-washed,” if it was grown outdoors, the consumer should always wash it again. Or better yet, look for indoor, hydroponically-grown produce to further mitigate the risk.

Although these outbreaks will continue, as they do, we suspect more consumers will embrace indoor-grown produce and this emerging form of agriculture as a safer alternative. As consumers increasingly understand the advantages of indoor growing, such as enhanced quality and longer shelf life, the popularity of this growth method will increase. Eventually, a greater quantity of the most commonly-infected produce will come from these controlled environments, gradually producing an overall safer and healthier mass product.

Mitzi Baum, Stop Foodborne Illness
Food Safety Culture Club

Our Petition to USDA: The Time for Change Is Now

By Mitzi Baum
1 Comment
Mitzi Baum, Stop Foodborne Illness

On January 25, 2021 Stop Foodborne Illness (STOP), in collaboration with Center for Science in the Public Interest, Consumer Reports, Consumer Federation of America and five STOP constituent advocates filed a petition with USDA Food Safety Inspection Service (FSIS) to reform and modernize poultry inspections. The goal of these reforms is to reduce the incidence of Salmonella and Campylobacter contamination in raw poultry thus drastically decreasing foodborne illnesses due to these pathogens.

According to the CDC, in 2019, these two pathogens combined were responsible for more than 70% of foodborne illnesses in the United States. As Mike Taylor, former FDA Deputy Commissioner for Foods and Veterinary Medicine, shares in his
Op-Ed, the time for change is now as the current regulatory framework is inadequate and has not delivered the desired results of reducing Salmonella and Campylobacter outbreaks.

Today, the USDA’s mark of inspection is stamped on poultry, although birds may exceed the performance standards; there are no clear consequences for establishments that do not meet the current guidelines. Without science-based standards or penalties for non-compliance, the burden of this problem falls upon consumers.

At STOP, we share the voices of consumers whose lives have been altered due to preventable problems such as this. Our constituent advocates share their journeys through severe foodborne illness to share the WHY of food safety. Real people, real lives are impacted when we do not demand action. STOP board member, Amanda Craten, shares her son Noah’s story:

“My toddler suddenly came down with a fever and diarrhea, but it wasn’t until weeks later that I learned that his symptoms, which nearly killed him, were caused by a multi-drug resistant strain of Salmonella.

After being admitted to the hospital, his doctors found abscesses in the front of his brain caused by infection and they were creating pressure on his brain. He underwent surgery and weeks of antibiotic treatments.

My 18-month son was seriously injured and permanently disabled as a result of Salmonella-contaminated chicken.” – Amanda Craten.

Unfortunately, Noah’s story is not rare, which is why Amanda supports this petition for change and has provided a powerful video about Noah’s foodborne disease journey and his life now.

Because there are too many stories like Noah’s, STOP and its partner consumer advocacy organizations want to work with FSIS and industry to:

  1. Develop real benchmarks that focus on reduction of known, harmful pathogens in poultry
  2. Modernize standards to reflect current science
  3. Implement on-farm control measures
  4. Re-envision the standards to focus on the risk to public health

As a new administration begins, capitalizing on this opportunity to modernize poultry inspection that can benefit consumers and the food industry makes sense. STOP and its partners are hopeful that leadership at USDA/FSIS will take this opportunity to create consequential and relevant change. Ultimately, this transformation will reduce the incidence of foodborne illness due to contamination of poultry and increase consumer confidence in the USDA’s mark of inspection. Please comment on this petition.

Have you been impacted by foodborne illness? Tell STOP Foodborne Illness about it.

FDA

FDA to Test Yuma-Grown Romaine Lettuce for E. Coli and Salmonella

By Food Safety Tech Staff
No Comments
FDA

Today the FDA announced a new plan to collect samples of romaine lettuce as part of its ongoing surveillance after the spring 2018 multistate outbreak of E. coli O157:H7. The samples, which will be tested for Shiga toxin-producing Escherichia coli (STEC) and Salmonella, will be collected from commercial coolers in Yuma County, Arizona during the current harvest season.

FDA plans to collect and test about 500 samples (each of which will consist of 10 subsamples), beginning in February and continuing through the end of the harvest season. In order to reduce the time between sample collection and reporting results, an independent lab close to the collection sites in Arizona will be testing the samples. FDA expects to receive test results within 24 hours.

“Helping to ensure the safety of leafy greens continues to be a priority of the FDA. This assignment adds to other work underway in collaboration with stakeholders in the Yuma agricultural region to implement actions identified in the Leafy Greens Action Plan, including a multi-year study to assess the environmental factors that impact the presence of foodborne pathogens in this region. Consistent with the action plan, the agency will engage with industry on conducting root cause analyses for any positive samples found during this assignment. Root cause analyses are important in that they seek to identify potential sources and routes of contamination, inform what preventive measures are needed, and help prevent outbreaks of foodborne illness,” FDA stated in a release.

COVID-19 precautions will be taken during the sampling plan. Agency investigators will preannounce visits and wear PPE while conducting the work.

Recall

Q3 Food and Beverage FDA Recalls Up 34% Over Q2, USDA Recalls at Record Low

By Food Safety Tech Staff
No Comments
Recall

It is being speculated that the short-term decline in the number of food and beverage recalls this year is due to less regulatory oversight as a result of the COVID-19 pandemic. During Q3, FDA food recall activity was up 34% compared to last quarter, but this increase is actually a sign of things returning to normal on the side of regulatory oversight activities, according to the latest Q3 Recall Index from Stericycle.

FDA Food Recalls: Notable Numbers (Q3 2020)

  • Undeclared allergens: 56 recalls, accounting for nearly 53% of all recalls; the top cause of an FDA food recalls for the 13th consecutive quarter
  • Bacterial contamination: Accounting for 62% of recalled units, this was the top cause of recalled units with Salmonella being the most common contaminant (the pathogen was responsible for 17 out of 24 recalls)
  • Foreign materials, quality and mislabeling were the other reasons for recalls

USDA Recalls: Notable Numbers (Q3 2020)

  • Undeclared allergens: Top cause of recalls; 6 recalls accounted of nearly 70% of all recalled pounds
    • A single meat and poultry recall affected more than 242,000 pounds (63%) of all recalled pounds
  • The average recall affected 38,000 pounds
  • Over the last three quarters, recalls have been at record low levels
    • Quarterly recall activity is averaging 8.3 recalls a quarter versus an average quarterly volume of more than 30 recalls over the last five years
Recall

More than 500 Reported Ill, Red Onions Named in Salmonella Outbreak Investigation

By Food Safety Tech Staff
No Comments
Recall

–UPDATE: August 10, 2020 —

Last week USDA’s FSIS issued a public health alert concerning ready-to-eat meat and poultry products that contain the onions recalled by Thomson International, Inc. (see below news brief). The products have been distributed by retail establishments that include Walmart, Kroger, HEB and Amana Meat Shop & Smokehouse. The USDA has made available the full list of products subject to the public health alert.

–END UPDATE–

A multistate outbreak of Salmonella Newport has been traced back to red onions from Thomson International, Inc. a company based in Bakersfield, CA. As of July 31, 396 illnesses were reported in the United States, with 59 hospitalized across 34 states. In Canada, 120 cases have been confirmed, according to the Public Health Agency of Canada.

As a result, Thomson International is recalling all varieties of its onions (red, white, yellow and sweet) that “could have come in contact with potentially contaminated red onions”, according to an FDA alert.

The FDA, CDC, state and local agencies, as well as the Public Health Agency of Canada are investigating the outbreak. FDA recommends that consumers, restaurants and retailers refrain from eating, selling or serving any onions from Thomson International. The agency also states that any surfaces, containers or storage areas that may have come into contact with these products be cleaned and sanitized.

Frank Meek, Orkin
Bug Bytes

How to Keep Pathogen-Spreading Pests Out of Your Business

By Frank Meek
No Comments
Frank Meek, Orkin

As food processors and retailers work tirelessly to feed the public during the current global health pandemic, pests continue to work overtime to keep their food supply on track. Filth flies, cockroaches and rodents, in particular, pose a threat to the food supply chain, especially with concerns of the transmission of pathogens at an all-time high. The last thing your business needs is an avoidable food safety incident that threatens your reputation and bottom line.

When it comes to food safety, pathogen-spreading pests have no place in your facility and pose a major public health risk. Not only can these filthy pests become a nuisance within your facility, they can also contaminate your products and spread foodborne bacteria such as Salmonella, E. coli and Listeria, which can cause illnesses.

Knowing what attracts these pests to your facility and the dangers they pose is important for effective removal. Let’s dive into the signs of cockroaches, filth flies and rodents, and the specific concerns they can cause.

Frank Meek will share his expertise during a complimentary  webinar on March 4, “Making the Grade: Tips for Passing Food Safety Audits During the Pandemic” Cockroaches

Cockroaches seek four things that food processing facilities provide in abundance—food, shelter, proper temperatures and water. With the ability to squeeze through tiny gaps and cracks, these dirty pests enjoy crawling under equipment, in cabinets and through drains to find their next meal. Cockroaches can be found in and around almost any place within your facility. They’re capable of carrying harmful bacteria that they can spread from one location to another. Look out for droppings, cast skins or egg cases, which might signal a cockroach problem.

Filth Flies

You may think these types of flies have no desire to be inside, but they are in fact happy to go wherever the conditions are right. The most common filth fly is the housefly. These winged pests can carry and spread more than 100 disease-causing pathogens including bacteria, fungi and viruses. These can cause illnesses such as cholera, dysentery and infantile diarrhea. Filth flies in your facility can lead to a major public health issue if your food becomes contaminated.

Rodents

One of the filthiest pests around, rodents can contaminate your food supply, destroy or consume products and cause structural damage to your facility. Like cockroaches, mice and rats can fit through relatively small spaces to find food and water. With sightings on the rise during the COVID-19 pandemic, you’ll want to keep an eye out for rodents near your food products. These mighty chewers pose a public health threat as they can transmit diseases such as hantavirus and lymphocytic choriomeningitis (LCM) via their urine and droppings.

The presence of these vermin in your facility threatens public health. Additionally, an infestation can slow down the supply chain by causing businesses to recall contaminated foods.

A rigorous sanitation routine is one of the most effective ways to proactively manage pests like cockroaches, rodents and filth flies. Regularly sanitizing and disinfecting your facility can help eliminate any pathogens left behind on hard surfaces and remove the attractants for which they search. While cleaning removes dirt and buildup, sanitization and disinfection kill bacteria and pathogens, reducing the risk of a food safety issue.

Including the following tips in your cleaning routine can help keep your products and reputation safe from harm.

  • Clean out drains routinely with an enzymatic cleaning solution that can break down the organic grime.
  • Disinfect high-touch hard surfaces with a proper and low-toxicity disinfectant to kill bacteria and pathogens that can cause food illnesses.
  • Move dumpsters away from your building to reduce flies being attracted to and then gaining easy entry into your facility.
  • Wipe spills as soon as they occur to prevent them from becoming a sticky paradise for flies and cockroaches.
  • Practice good hygiene in your work environment and ensure employees are washing their hands regularly and keeping break rooms free of trash and leftovers.

Implementing exclusion practices such as sealing cracks, gaps and holes in walls with a proper sealant can also help you keep pests out. Budget allowing, consider investing in insect light traps and mechanical traps to help reduce flying insects inside.

Communication with your suppliers and distributors is also important to ensure food safety. If your partners implement similar measures, you’re more likely to protect the public from harmful diseases. Furthermore, customers will continue to trust your business.

While following these tips can help reduce the chances of a pest infestation, it’s not always possible to keep pests and the pathogens they spread out of your food processing facility. Work with a trained pest control specialist to develop a customized prevention program for your business as each type of pest requires specific treatment. They can also help you schedule inspections to identify conditions in and around your facility that may attract flies, cockroaches and rodents, among other pests.

Raj Rajagopal, 3M Food Safety
In the Food Lab

Pathogen Detection Guidance in 2020

By Raj Rajagopal
No Comments
Raj Rajagopal, 3M Food Safety

Food production managers have a critical role in ensuring that the products they make are safe and uncontaminated with dangerous pathogens. Health and wellness are in sharp focus for consumers in every aspect of their lives right now, and food safety is no exception. As food safety becomes a continually greater focus for consumers and regulators, the technologies used to monitor for and detect pathogens in a production plant have become more advanced.

It’s no secret that pathogen testing is performed for numerous reasons: To confirm the adequacy of processing control and to ensure foods and beverages have been properly stored or cooked, to name some. Accomplishing these objectives can be very different, and depending on their situations, processors rely on different tools to provide varying degrees of testing simplicity, speed, cost, efficiency and accuracy. It’s common today to leverage multiple pathogen diagnostics, ranging from traditional culture-based methods to molecular technologies.

And unfortunately, pathogen detection is more than just subjecting finished products to examination. It’s become increasingly clear to the industry that the environment in which food is processed can cross-contaminate products, requiring food manufacturers to be ever-vigilant in cleaning, sanitizing, sampling and testing their sites.

For these reasons and others, it’s important to have an understanding and appreciation for the newer tests and techniques used in the fight against deadly pathogens, and where and how they might be fit for purpose throughout the operation. This article sheds light on the key features of one fast-growing DNA-based technology that detects pathogens and explains how culture methods for index and indicator organisms continue to play crucial roles in executing broad-based pathogen management programs.

LAMP’s Emergence in Molecular Pathogen Detection

Molecular pathogen detection has been a staple technology for food producers since the adoption of polymerase chain reaction (PCR) tests decades ago. However, the USDA FSIS revised its Microbiology Laboratory Guidebook, the official guide to the preferred methods the agency uses when testing samples collected from audits and inspections, last year to include new technologies that utilize loop-mediated isothermal amplification (LAMP) methods for Salmonella and Listeria detection.

LAMP methods differ from traditional PCR-based testing methods in four noteworthy ways.

First, LAMP eliminates the need for thermal cycling. Fundamentally, PCR tests require thermocyclers with the ability to alter the temperature of a sample to facilitate the PCR. The thermocyclers used for real-time PCR tests that allow detection in closed tubes can be expensive and include multiple moving parts that require regular maintenance and calibration. For every food, beverage or environmental surface sample tested, PCR systems will undergo multiple cycles of heating up to 95oC to break open DNA strands and cooling down to 60oC to extend the new DNA chain in every cycle. All of these temperature variations generally require more run time and the enzyme, Taq polymerase, used in PCR can be subjected to interferences from other inhibiting substances that are native to a sample and co-extracted with the DNA.

LAMP amplifies DNA isothermally at a steady and stable temperature range—right around 60oC. The Bst polymerase allows continuous amplification and better tolerates the sample matrix inhibitors known to trip up PCR. The detection schemes used for LAMP detection frees LAMP’s instrumentation from the constraints of numerous moving pieces.

Secondly, it doubles the number of DNA primers. Traditional PCR tests recognize two separate regions of the target genetic material. They rely on two primers to anneal to the subject’s separated DNA strands and copy and amplify that target DNA.

By contrast, LAMP technology uses four to six primers, which can recognize six to eight distinct regions from the sample’s DNA. These primers and polymerase used not only cause the DNA strand to displace, they actually loop the end of the strands together before initiating amplification cycling. This unique looped structure both accelerates the reaction and increases test result sensitivity by allowing for an exponential accumulation of target DNA.

Third of all, it removes steps from the workflow. Before any genetic amplification can happen, technicians must enrich their samples to deliberately grow microorganisms to detectable levels. Technicians using PCR tests have to pre-dispense lysis buffers or reagent mixes and take other careful actions to extract and purify their DNA samples.

Commercialized LAMP assay kits, on the other hand, offer more of a ready-to-use approach as they offer ready to use lysis buffer and simplified workflow to prepare DNA samples. By only requiring two transfer steps, it can significantly reduces the risk of false negatives caused by erroneous laboratory preparation.

Finally, it simplifies multiple test protocols into one. Food safety lab professionals using PCR technology have historically been required to perform different test protocols for each individual pathogen, whether that be Salmonella, Listeria, E. coli O157:H7 or other. Not surprisingly, this can increase the chances of error. Oftentimes, labs are resource-challenged and pressure-packed environments. Having to keep multiple testing steps straight all of the time has proven to be a recipe for trouble.

LAMP brings the benefit of a single assay protocol for testing all pathogens, enabling technicians to use the same protocol for all pathogen tests. This streamlined workflow involving minimal steps simplifies the process and reduces risk of human-caused error.

Index and Indicator Testing

LAMP technology has streamlined and advanced pathogen detection, but it’s impractical and unfeasible for producers to molecularly test every single product they produce and every nook and cranny in their production environments. Here is where an increasing number of companies are utilizing index and indicator tests as part of more comprehensive pathogen environmental programs. Rather than testing for specific pathogenic organisms, these tools give a microbiological warning sign that conditions may be breeding undesirable food safety or quality outcomes.

Index tests are culture-based tests that detect microorganisms whose presence (or detection above a threshold) suggest an increased risk for the presence of an ecologically similar pathogen. Listeria spp. Is the best-known index organism, as its presence can also mark the presence of deadly pathogen Listeria monocytogenes. However, there is considerable skepticism among many in the research community if there are any organisms outside of Listeria spp. that can be given this classification.

Indicator tests, on the other hand, detect the presence of organisms reflecting the general microbiological condition of a food or the environment. The presence of indicator organisms can not provide any information on the potential presence or absence of a specific pathogen or an assessment of potential public health risk, but their levels above acceptable limits can indicate insufficient cleaning and sanitation or operating conditions.

Should indicator test results exceed the established control limits, facilities are expected to take appropriate corrective action and to document the actions taken and results obtained. Utilizing cost-effective, fast indicator tests as benchmark to catch and identify problem areas can suggest that more precise, molecular methods need to be used to verify that the products are uncontaminated.

Process Matters

As discussed, technology plays a large role in pathogen detection, and advances like LAMP molecular detection methods combined with strategic use of index and indicator tests can provide food producers with powerful tools to safeguard their consumers from foodborne illnesses. However, whether a producer is testing environmental samples, ingredients or finished product, a test is only as useful as the comprehensive pathogen management plan around it.

The entire food industry is striving to meet the highest safety standards and the best course of action is to adopt a solution that combines the best technologies available with best practices in terms of processes as well –from sample collection and preparation to monitoring and detection.