Learn more about food safety supply chain management & traceability during the 2020 Food Safety Consortium Virtual Conference SeriesThe FDA and CDC have been investigating a multistate outbreak ofCyclospora involving bagged salads from Fresh Express since June. Although the products were recalled and should no longer be available in retail locations, the CDC continues to report more cases. As of August 12, 2020, the CDC counted 690 people with laboratory-confirmed Cyclospora infections throughout 13 states. Thirty-seven people have been hospitalized, and no deaths have been reported.
As the FDA conducted its traceback investigation to find the source of the outbreak linked to the Fresh Express products, the agency was able to identify several farms. It analyzed water samples from two public access points along a regional water management canal (C-23) west of Port St. Lucie, Florida. Using the FDA’s validated testing method, the samples tested positive for Cyclospora cayetanensis. However, it is important to note that the Cyclospora found might not be a direct match to the pathogen found in the clinical cases.
According to FDA: “Given the emerging nature of genetic typing methodologies for this parasite, the FDA has been unable to determine if the Cyclospora detected in the canal is a genetic match to the clinical cases, therefore, there is currently not enough evidence to conclusively determine the cause of this outbreak. Nevertheless, the current state of the investigation helps advance what we know about Cyclospora and offers important clues to inform future preventive measures.”
The agency’s traceback investigation is complete, but the cause or source of the outbreak has not been determined. The investigation also revealed that carrots are no longer of interest at as part of the outbreak, but red cabbage and iceberg lettuce are still being investigated. FDA is also working with Florida and the area’s local water district to learn more about the source of Cyclospora in the canal.
Since the early 20th century, food safety has been a paramount concern for consumers in the United States. Upton Sinclair’s The Jungle, which painted a bleak, brutal, and downright disgusting picture of turn-of-the-century food processing facilities led to the creation of some of the country’s first food safety laws. Today, federal agencies and statutes make up a comprehensive food safety system to ensure that the growth, distribution and consumption of foods are safe from start to finish.
While food safety has significantly improved in the century since Sinclair’s time, stories of major outbreaks of foodborne illnesses continue to pop up across the country. Over the past few years, a significant number of outbreaks as a result of pathogens have made the headlines. To mitigate the threat of public health crises and ensure food production and distribution is safe and secure, companies must rely on modern technology to trace the movement of food across the entire supply chain.
How Technology Is Changing the Food Industry
Technology is a powerful, innovative force that has changed the way even well established companies must do business in order to stay relevant. From easier access to nutritional information to digital solutions that make food manufacturing and distribution more efficient, greater consumer awareness driven by technology empowers consumers to make decisions that can greatly affect the food industry’s bottom line.
Technology-driven accountability is playing one outsized role in allowing consumers to make better choices about the foods they consume and purchase. Social media and smartphone apps connect consumers to a wealth of resources concerning the harmful effects of certain ingredients in their food, the source of products, and how particular items are made and produced. In 2015, for example, The Campbell Soup Company removed 13 ingredients from its traditional soup recipes as a result of a greater public demand to understand food sources. Neither food giants nor small producers should expect to remain immune from greater public scrutiny over food health and safety.
Nutritional research is also helping change the conversation around food, granting nutritionists and consumers alike greater access to food-related data. Through easily accessible scholarly journals, apps that provide real-time nutrition information, and meal tracking apps that help users log and understand what they’re eating, consumers can gain a better understanding of nutrition to make more informed choices about their daily food intake. Researchers can also use food-tracking apps to make discoveries about consumer behavior and foods that are eaten.
Technology is also being used to tackle food waste, one of the most pervasive problems facing the food industry. One-third of the total amount of food produced globally, amounting to nearly $1.2 trillion, goes to waste every year. Solving this pervasive crisis has become an industry imperative that is being tackled through a variety of innovative technologies to improve shelf-life, dynamically adjust pricing based on sell-by dates, and allow restaurants to automatically monitor their daily waste.
In the food manufacturing sector, digitally-connected supply chain systems are providing greater visibility into the production of foods and beverages. Supplier management technology delivers data that can be used to optimize processes and improve quality in real-time, making it easy to adjust to consumer demands, respond to logistics challenges, and boost government compliance. The enhanced operational benefits offered through improved supply chain visibility allows manufacturers to produce products faster, safer, and with greater transparency.
Online ordering has also ushered in a new era of food industry behavior. The growing assortment of online ordering apps has just given the consumer more control over quickly ordering their next meal. The trend in online ordering has also allowed restaurants to experiment with new business models like virtual kitchens that offer menus that are only available online.
IoT: The Future of Food Safety
From the farm to the carryout bag, the impact of technology on the greater food industry is already evident in daily practice. Through enhanced access to data, food producers can run an efficient supply chain that reduces waste, boosts productivity, and meets consumer demand in real-time. Using a variety of online resources, consumers are empowered to quickly make well-informed food purchases that are healthier, more convenient and more sustainable than ever before.
The Internet-of-Things (IoT) adds a layer of technology to the food manufacturing process to ensure greater food safety. A broad series of networked sensors, monitors, and other Internet-connected devices, IoT technology can oversee the entire food manufacturing and distribution process from the warehouse to the point of sale. Boosting transparency across the board, intelligent sensors and cameras can transform any food manufacturing operation into a highly visible, data-backed process that allows for better decision-making and improved real-time knowledge.
While IoT technology is a powerful tool that can improve the efficiency of restaurants and provide enhanced customer experiences, some of its greatest potential lies in its ability to safely monitor food preparation and production. Live data from IoT devices makes it possible to closely monitor food safety data points, allowing manufacturers and restaurants to reduce the risks of foodborne illness outbreaks through enhanced data collection and automated reporting.
Domino’s Pizza, for instance, embraced IoT technology to enhance management processes and monitor the food safety of its products. In the past, restaurants have relied on workers to record food temperatures, a practice that was occasionally overlooked and could lead to issues with health inspectors. Using IoT devices for real-time temperature monitoring, Domino’s automatically records and displays temperature levels of a store’s production, refrigeration, and exhaust systems, allowing employees to view conditions from a live dashboard.
In addition to boosting food safety, the comprehensive monitoring offered by IoT technology can help food companies reduce waste, keep more effective records, and analyze more data for improved operations.
IoT isn’t just a safe solution for improving food safety: It’s a smart solution.
Blockchain: The Future of Food Traceability
The ubiquity of QR codes has made it easy for consumers to quickly gain access to information by scanning an image with their smartphone. From accessing product manuals to downloading songs, QR codes make it simple to provide detailed and relevant content to users in a timely manner.
Blockchain technology provides a powerful opportunity to provide consumers with similar information about food safety. Able to instantaneously trace the lifecycle of food products, blockchain can report a food’s every point of contact throughout its journey from farm to table. By scanning a QR code, for instance, users can quickly access relevant information about a food product’s source, such as an animal’s health, and welfare. Shoppers at Carrefour, Europe’s largest retailer, area already using blockchain traceability to track the stage of production of free-range chickens across France.
Walmart piloted a blockchain implementation by tracing a package of sliced mangoes across every destination until it hit store shelves, from its origin at a farm in Mexico to intermittent stops at a hot-water treatment plant, U.S processing plant, and cold storage facility. Real-time product tracing can be conducted in just two seconds, enabling Walmart and other vendors to provide consumers with access to food safety information that could easily be updated should an outbreak or contamination occur.
Blockchain’s inherent transparency not only makes it possible to identify the safety of food production; it also enhances the safety of the business of food production itself. Because blockchain is based upon an immutable, anonymous ledger, record keeping and accounting can be made more secure and less prone to human error. Payments to farmers and other food suppliers can also become more transparent and equitable.
The High Tech Future of Food
Unlike the days of Sinclair’s The Jungle, food transparency is the name of today’s game. As consumers continue to demand greater access to better food on-demand, food producers must continue to find innovative ways of providing safe, healthy, and ethical solutions.
IoT devices and blockchain present food manufacturers with powerful technological solutions to solve complex problems. Brands choosing to rely on these innovations, such as Domino’s and Walmart, are helping ensure that food is produced, prepared and distributed with a foremost emphasis on health and safety. As these technologies continue to become more intelligent, well-connected, and embraced by leading food producers, consumers should rest assured that they’ll always be able to know exactly what they’re eating, where it’s from, and whether it’s safe.
To get to the restaurant table, food must travel great lengths to preserve that farm fresh quality and in many cases, IoT-enabled sensors are being used to do this. This is especially important as the World Health Organization estimates that one in 10 people fall ill every year from eating contaminated food.
When we think of our favorite dish, we often associate it with delicious flavors, pleasant scents and even memories of a night out with friends. What we likely don’t consider is technology, something that’s critical in ensuring the meal on our plate is safe to consume. Technology plays an essential role in guaranteeing that restaurants are serving fresh food to customers. From identifying operational deficiencies to protecting the overall brand of an organization, there are certain measures restaurants are taking—whether local or country-wide chains—to ensure food quality remains a top priority.
Restaurants are perhaps held to an even higher standard than your local supermarket when it comes to the quality of food on the table. Therefore, it’s imperative that perishables are cared for properly throughout the entirety of the food supply chain and that starts well before the food ever enters the restaurant’s front door. With long-range, low-power wireless IoT technology, farmers can get insights into a number of variables that may impact the growth of their crops. Armed with that knowledge, they can make real-time decisions to optimize crop growth and ultimately produce a greater yield. For example, farmers today can set up a series of sensors throughout their farm to measure real-time soil conditions, including humidity and pH levels. If they notice an especially high pH, for example, they can immediately remedy the situation and provide the crop with the proper nutrients or conditions it needs to grow.
For food safely to arrive at restaurants, it must be kept in a controlled environment during its journey from the farm or warehouse, and carefully monitored during that time. The temperature of refrigerated shipping units or storage facilities is an incredibly important factor, as bacteria growth can increase even by simply opening the refrigerator door or with a slight temperature shift, and employees are often tasked with managing this. With large facilities comes increased labor for employees, which can lead to inefficient temperature monitoring. To eliminate food waste and contamination, IoT sensors deployed throughout facilities can eliminate human error, and deliver more consistent monitoring, via real-time updates when temperatures enter unsafe territories.
Numerous international food handling and food safety laws have been implemented to reduce the risk of foodborne illness resulting from bacterial growth. A major component of most “farm-to-fork” regulations is the ability to track, report and maintain appropriate temperature conditions inside refrigeration and freezer units throughout the entire cold chain—including when the food finally makes it the restaurant.
This is a universal priority for restaurants around the world, including Hattie B’s Hot Chicken, a southern-style food chain, which started in Nashville and now has locations nationwide. To successfully do this, the restaurant turned to technology. They used a supplier of wireless connectivity solutions with integrated long range, low power technology for temperature monitoring sensors. The sensors, which are capable of penetrating stainless steel doors and concrete walls, can monitor temperatures in refrigerators and freezers. This is essential, as the technology eliminates possible human error in manually checking temps and other food safety procedures. In instances where refrigerator temperatures shift out of range, the technology remotely notifies restaurant managers in real-time, allowing them to act quickly, ensuring their perishables remain fresh and safe for customers at all times.
Food waste in restaurants is closely tied to food safety. In the United States alone, food waste is estimated to be between 30–40% of the food supply, according to the USDA. In the restaurant industry in particular, human error is one of the most notable reasons for food waste. To eliminate the human error when handling food and monitoring storage, an IoT solution provider for the industrial, smart city and smart energy segments, integrated long-range low power technology into smart refrigeration solutions for restaurant applications. This IoT solution is designed for humidity and temperature monitoring, delivering real-time updates to managers to ensure the shelf life of food is maximized and it remains safe to consume, ultimately leading to a decrease in food waste.
From farm to table, technology plays an essential role in ensuring restaurants are delivering the highest quality of fresh, safe food. It allows organizations to identify operational deficiencies and reduce overall food safety risk, which is imperative when maintaining a strong business in a competitive industry.
Research shows the global high pressure processing (HPP) food market to be worth $14 billion in 2018. By 2023, the market will reach an estimated $27.4 billion and will grow to $51.1 billion by 2027, according to Visiongain, a UK-based business intelligence company. This growth is a result of many factors, including consumer trends, food safety and food industry demand.
One of the biggest consumer food trends is the clean label movement. Consumers are more attentive to what they eat and drink than ever before, requesting more information about the products they buy and consume. For instance, 73% of U.S. consumers agree it is important that ingredients on a food label are familiar and would be used at home, according to Innova Market Insights, a market research firm for the food and beverage industry.
Consumers want fresh, convenient and less processed foods and beverages. Shoppers, especially millennials, are willing to spend more money to receive better-for-you products, and they are also more willing to research production methods before making purchases.
On the industry side, due to an increasing concern over food safety and the rise in foodborne illness, food producers and retailers are seeking reliable food safety and preservation methods that will help ensure the best product quality. Not only do they want to keep their customers safe, they also want to ensure their brand is protected.
Food waste and sustainability is also important to consumers and industry. In the 2017 Nielsen Global Sustainability Survey, 68% of Americans said that it is important that companies implement programs to improve the environment; 67% will be prioritizing healthy or socially-conscious food purchases in 2018; and 48% will change their consumption habits to reduce their environmental impact.
Companies want to be responsible and make sure good food does not go to waste. Longer shelf life decreases a product’s chance of ending up in a landfill. Additionally, the longer a product lasts, the further it can be safely distributed and sold.
What is HPP?
High pressure processing (HPP) ironically isn’t really processing at all. HPP is a unique food preservation method that utilizes cold water and extreme pressure (up to 87,000 psi) to inactivate foodborne pathogens and spoilage organisms.
The effectiveness of the HPP process depends on the amount of pressure applied, vessel holding time, temperature, product type and targeted pathogens and spoilage organisms.
Unlike chemical and thermal treatments that can compromise flavor, vitamins and nutrients, HPP is a non-thermal, non-chemical process. Without the use of heat, the product’s original qualities remain intact. Also, because water pressure is applied uniformly in all directions, HPP foods retain their original shape.
Current and New Applications for HPP
One of the most popular uses for HPP is for proteins, including roast beef, chicken, pork and ground meats like turkey, chicken and beef. Other uses include premium juices, dips, wet salads, dairy and seafood, as well as pet food.
Some of its newer applications are in the preservation of baby food, premium juices, plant-based protein drinks, cocktail mixers, nutrient dense shots, coffee and tea selections and bone broth. HPP is widely used for ready-to-eat meats, dips, guacamole, salsa and hummus. Raw pet food, which has been affected by Salmonella and other pathogenic outbreaks in recent months, is also a growing market for HPP. Just like for their own food, pet owners are demanding fresh, non-processed foods for their pets. HPP is a proven means of creating a safe, clean-label raw pet food.
While food safety is still the number one reason for HPP, many manufacturers and retailers also cite shelf-life extension as a major benefit. Table I is a breakdown on the type of food, shelf-life extension and key benefits of HPP.
Food Type
Applications
Shelf-Life Extension
Key Benefits
RTE (Ready-to-Eat) Meats
Sliced, cooked meats: chicken, turkey, ham and beef; uncured ham and sausage
Greater than 2X
Extends shelf life while addressing common vegetative bacterial concerns. Allows manufacturers and retailers to offer reduced sodium products.
RTC (Ready-to-Cook) Meats
Ground meats such as turkey, chicken and perhaps beef.
1.5X to 2.5X
Increase food safety while extending product shelf life.
In yogurt-based products and milk, HPP is believed to give a creamier product consistency.
Seafood
Oysters, lobster, crab, shrimp, mussels
2X–4X
Meat extraction (yield) is better than by hand shucking or steam methods. Labor savings in this manner makes the HPP’ing of shellfish a great application. The shelf-life extension is also significant.
Table I. A breakdown on the type of food, shelf-life extension and key benefits of HPP.
Cost
The cost of HPP varies depending on the size of production runs, fill efficiency of the product within the HPP vessel and the HPP process parameters. The good news is the cost may be offset by other price reductions that HPP enables such as eliminating food additives. While HPP can be performed in-house, many companies outsource their HPP needs so they do not have to allocate significant capital expenses or disrupt production efficiency with an HPP batch process, allowing them to focus on their core competencies.
A Bright Future for HPP
HPP’s future is bright, with new uses on the horizon. These new uses have already resulted in new market opportunities that increase revenue. As its awareness grows among manufacturers, retailers and food service companies, and with additional education about its benefits, more companies will embrace HPP as part of their food safety program and for its shelf-life benefits. With consumer demand for fresh foods and beverages showing no signs of stopping, HPP will lead the way in helping to produce fresh, safe food and beverage products for all to enjoy.
Food safety and hygiene are very important aspects of food production, processing and consumption. In the absence of proper hygiene and safety protocols, the entire food chain right from the farmer who grows the food till the consumer who eats it is compromised. Food safety lapses like contamination and spoiling of food pose major health risks.
There are many ways in which a perfectly safe food product can turn hazardous. Cross contamination from animal matter, lack of hygiene among workers in processing plants, poor sanitation procedures, inadequate preservation techniques and low-quality packaging can all adversely affect the shelf life of a food product. Raw food spoils much faster than processed food, so fresh vegetables and fruits used in food processing must be washed properly and stored at optimal temperatures before they are processed.
The following are a few critical factors that affect the safety, shelf life and hygiene of food products.
1. Hygiene in Processing Plants
Personal hygiene and excellent sanitation policies are essential to maintaining food safety. Processing facilities potentially have several points of food contact equipment and food contact surfaces. There must be well developed and written standard cleaning practices or sanitation procedures for all such high-touch areas in a food processing plant. All equipment, vessels and surfaces must be monitored for bioburden or presence of microbial matter.
The workers must also be aware of good personal hygiene practices. This will help prevent cross contamination and possible spread of foodborne diseases from humans. Workers suffering from contagious diseases should refrain from coming to work and regular employee health checkups must be carried out by doctors. All staff must be trained in food and personal hygiene, and strictly follow recommended methods of hand washing and drying. Proper usage of hygiene gear including masks, caps, gloves, overalls and footwear must be ensured.
Floors, walls, drainage facilities, narrow cat-walks and all surfaces in the processing area must be cleaned thoroughly using high quality cleaning materials. The standard cleaning practices must be diligently met each time and the supervisors should ensure that the crew is doing their job properly. Quality and consistent employee training, and effective instant monitoring methods like ATP testing will help achieve these goals.
2. Good Packaging Is Crucial
The quality and suitability of packaging are also very important in determining the safety, longevity and hygiene of food products.
Evolving consumer habits, growth of online marketplaces, increased consumption of high-protein foods, popular demand for smaller portions due to shrinking family size and the rise in new global distribution channels have all impacted packaging requirements.
Sustainable and responsibly sourced packaging materials are the hallmark of advanced packaging technology. They are environmentally friendly and do not deplete natural resources. Clean label packaging focuses on using recycled materials, high-pressure packaging technology, digital packaging and 3-D printing techniques, and outsourcing of more activities to save money, time and resources.
The need for reducing food waste has been an important objective of all recent packaging innovations. According to a recent report by The Guardian, almost half of all U.S. food produce is thrown away. Global food waste can be reduced by extending the shelf life of packaged foods, thereby avoiding early disposal and excessive purchasing. Latest innovations include in-built freshness sensors in packaging that alert customers when food goes bad, vacuum skin innovations, barrier bags and modified-atmosphere packaging.
3. Consumer Awareness Is Key
The end user or the customer who buys the food product for consumption also needs to be aware of good food use, preparation and storage methods.
Fresh veggies and fruits should be washed thoroughly, chopped, diced, and sliced, and stored in clear, airtight containers in the fridge. Prepare and cook raw foods like fish, poultry and meat to extend their storage life. Cooked food can be safely frozen for a long time. In addition, many food items like casseroles, soups, sauces, stir-fries and baked foods stay safe for cooking and consumption even beyond their typically assumed use-by date.
As responsible consumers, we must be aware of the difference between use-by, sell-by, best-before and expiration dates. This will prevent us from throwing away a whole lot of perfectly edible food items from our pantries.
Conclusion
Food safety is a matter of global concern and affects the well being of billions of people all over the world. Ensuring safety, hygiene, freshness and long shelf life of food items will help reduce food waste, hunger and starvation in the world. It will also reduce the burden on limited natural resources and will help ensure a sustainable and efficient food chain.
What is a Special Project? These are special testing projects that are not typically covered by laboratory testing when you run into a question that you really can’t answer, says Centrella. Special projects can be used for:
Development, validation or implementation of a new testing method;
Comparing performance of a new testing platform against a standard;
Validation of pathogen control, for instance, to check effectiveness of CCPs;
Shelf-life investigation;
Verification of effectiveness of antimicrobials; and
Determination of whether a product requires refrigeration.
With method validation, the situation can be that you work with PCR for Salmonella, and there are certain number of matrices approved, but you want to take advantage of that method and extend the matrix. So special projects can help you answer if that method would be suitable for your product.
Another category of special projects is pathogen control. In this situation, you can see if you have a process or an ingredient that’s in your product, or simulate that intervention in a lab setting (either heat or cool step or a treatment like a wash) to check for pathogen growth. In this case, the target matrix is inoculated with high level of analyte, and the aim is to show large log reduction, or even complete elimination, once the matrix is treated with the intervention.
Shelf-life studies is another example of special projects. In this case, we simulate retail storage of the product to determine expected shelf life or determine typical storage conditions. Here, assay are prepared to assess threats to product shelf-life, microbial, chemical or nutritional in nature. Such threats could be build-up of lactic acid due to bacterial activity, or might be gas-producing microorganisms, or chemical targets that cause rancidity in oils. Often these include an organoleptic compound which could change how a product looks, or if it has an odor. It’s important to remember that often the souring of the product due to lactic acid, gas bubbles or off odors will present themselves before microbial counts become obvious.
Shelf life testing is conducted at predetermined intervals, and depending on need, we can stagger these intervals, for instance, we can do more frequent testing during the anticipated end of shelf life. The final shelf life is defined by the last acceptable result.
Antimicrobial effectiveness is another example of special projects, and these involve products that already have an antimicrobial ingredient. In these situations, we inoculate target microorganism into the product and use assay to determine log reduction, or prevention of outgrowth. Antimicrobial effectiveness studies often include aspects of shelf life studies, where product is typically held at a given time-temp combination. These studies may use specific references such as using USP <51>, or reference could include specific microorganisms, and criteria to determine effectiveness (such as log reduction).
Another example is determination of if a product requires refrigeration. For this, we first start with the food product itself, which has a specific combination of pH and water activity to prevent growth of groups of pathogens. Once we have this information, we don’t have to look at broad range of organisms, but can look at specific organisms. The remaining potential threats become challenge organisms for the study. We store the product at room temperature and test for these challenge organisms.
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookies should be enabled at all times so that we can save your preferences for these cookie settings.
We use tracking pixels that set your arrival time at our website, this is used as part of our anti-spam and security measures. Disabling this tracking pixel would disable some of our security measures, and is therefore considered necessary for the safe operation of the website. This tracking pixel is cleared from your system when you delete files in your history.
We also use cookies to store your preferences regarding the setting of 3rd Party Cookies.
If you visit and/or use the FST Training Calendar, cookies are used to store your search terms, and keep track of which records you have seen already. Without these cookies, the Training Calendar would not work.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.
Cookie Policy
A browser cookie is a small piece of data that is stored on your device to help websites and mobile apps remember things about you. Other technologies, including Web storage and identifiers associated with your device, may be used for similar purposes. In this policy, we say “cookies” to discuss all of these technologies.
Our Privacy Policy explains how we collect and use information from and about you when you use This website and certain other Innovative Publishing Co LLC services. This policy explains more about how we use cookies and your related choices.
How We Use Cookies
Data generated from cookies and other behavioral tracking technology is not made available to any outside parties, and is only used in the aggregate to make editorial decisions for the websites. Most browsers are initially set up to accept cookies, but you can reset your browser to refuse all cookies or to indicate when a cookie is being sent by visiting this Cookies Policy page. If your cookies are disabled in the browser, neither the tracking cookie nor the preference cookie is set, and you are in effect opted-out.
In other cases, our advertisers request to use third-party tracking to verify our ad delivery, or to remarket their products and/or services to you on other websites. You may opt-out of these tracking pixels by adjusting the Do Not Track settings in your browser, or by visiting the Network Advertising Initiative Opt Out page.
You have control over whether, how, and when cookies and other tracking technologies are installed on your devices. Although each browser is different, most browsers enable their users to access and edit their cookie preferences in their browser settings. The rejection or disabling of some cookies may impact certain features of the site or to cause some of the website’s services not to function properly.
Individuals may opt-out of 3rd Party Cookies used on IPC websites by adjusting your cookie preferences through this Cookie Preferences tool, or by setting web browser settings to refuse cookies and similar tracking mechanisms. Please note that web browsers operate using different identifiers. As such, you must adjust your settings in each web browser and for each computer or device on which you would like to opt-out on. Further, if you simply delete your cookies, you will need to remove cookies from your device after every visit to the websites. You may download a browser plugin that will help you maintain your opt-out choices by visiting www.aboutads.info/pmc. You may block cookies entirely by disabling cookie use in your browser or by setting your browser to ask for your permission before setting a cookie. Blocking cookies entirely may cause some websites to work incorrectly or less effectively.
The use of online tracking mechanisms by third parties is subject to those third parties’ own privacy policies, and not this Policy. If you prefer to prevent third parties from setting and accessing cookies on your computer, you may set your browser to block all cookies. Additionally, you may remove yourself from the targeted advertising of companies within the Network Advertising Initiative by opting out here, or of companies participating in the Digital Advertising Alliance program by opting out here.