Tag Archives: shelf-life

Food Safety Tech
FST Soapbox

3 Ways to Ensure Food Safety for Packaged Foods

By Erica Montes
No Comments
Food Safety Tech

Food safety and hygiene are very important aspects of food production, processing and consumption. In the absence of proper hygiene and safety protocols, the entire food chain right from the farmer who grows the food till the consumer who eats it is compromised. Food safety lapses like contamination and spoiling of food pose major health risks.

There are many ways in which a perfectly safe food product can turn hazardous. Cross contamination from animal matter, lack of hygiene among workers in processing plants, poor sanitation procedures, inadequate preservation techniques and low-quality packaging can all adversely affect the shelf life of a food product. Raw food spoils much faster than processed food, so fresh vegetables and fruits used in food processing must be washed properly and stored at optimal temperatures before they are processed.

The following are a few critical factors that affect the safety, shelf life and hygiene of food products.

1. Hygiene in Processing Plants

Personal hygiene and excellent sanitation policies are essential to maintaining food safety. Processing facilities potentially have several points of food contact equipment and food contact surfaces. There must be well developed and written standard cleaning practices or sanitation procedures for all such high-touch areas in a food processing plant. All equipment, vessels and surfaces must be monitored for bioburden or presence of microbial matter.

The workers must also be aware of good personal hygiene practices. This will help prevent cross contamination and possible spread of foodborne diseases from humans. Workers suffering from contagious diseases should refrain from coming to work and regular employee health checkups must be carried out by doctors. All staff must be trained in food and personal hygiene, and strictly follow recommended methods of hand washing and drying. Proper usage of hygiene gear including masks, caps, gloves, overalls and footwear must be ensured.

Floors, walls, drainage facilities, narrow cat-walks and all surfaces in the processing area must be cleaned thoroughly using high quality cleaning materials. The standard cleaning practices must be diligently met each time and the supervisors should ensure that the crew is doing their job properly. Quality and consistent employee training, and effective instant monitoring methods like ATP testing will help achieve these goals.

2. Good Packaging Is Crucial

The quality and suitability of packaging are also very important in determining the safety, longevity and hygiene of food products.

Evolving consumer habits, growth of online marketplaces, increased consumption of high-protein foods, popular demand for smaller portions due to shrinking family size and the rise in new global distribution channels have all impacted packaging requirements.

Sustainable and responsibly sourced packaging materials are the hallmark of advanced packaging technology. They are environmentally friendly and do not deplete natural resources. Clean label packaging focuses on using recycled materials, high-pressure packaging technology, digital packaging and 3-D printing techniques, and outsourcing of more activities to save money, time and resources.

The need for reducing food waste has been an important objective of all recent packaging innovations. According to a recent report by The Guardian, almost half of all U.S. food produce is thrown away. Global food waste can be reduced by extending the shelf life of packaged foods, thereby avoiding early disposal and excessive purchasing. Latest innovations include in-built freshness sensors in packaging that alert customers when food goes bad, vacuum skin innovations, barrier bags and modified-atmosphere packaging.

3. Consumer Awareness Is Key

The end user or the customer who buys the food product for consumption also needs to be aware of good food use, preparation and storage methods.

Fresh veggies and fruits should be washed thoroughly, chopped, diced, and sliced, and stored in clear, airtight containers in the fridge. Prepare and cook raw foods like fish, poultry and meat to extend their storage life. Cooked food can be safely frozen for a long time. In addition, many food items like casseroles, soups, sauces, stir-fries and baked foods stay safe for cooking and consumption even beyond their typically assumed use-by date.

As responsible consumers, we must be aware of the difference between use-by, sell-by, best-before and expiration dates. This will prevent us from throwing away a whole lot of perfectly edible food items from our pantries.

Conclusion

Food safety is a matter of global concern and affects the well being of billions of people all over the world. Ensuring safety, hygiene, freshness and long shelf life of food items will help reduce food waste, hunger and starvation in the world. It will also reduce the burden on limited natural resources and will help ensure a sustainable and efficient food chain.

Sangita Viswanathan, Former Editor-in-Chief, FoodSafetyTech

Using Microbiology Studies to Support your Product

By Sangita Viswanathan
No Comments
Sangita Viswanathan, Former Editor-in-Chief, FoodSafetyTech

What is a Special Project? These are special testing projects that are not typically covered by laboratory testing when you run into a question that you really can’t answer, says Centrella. Special projects can be used for:

  • Development, validation or implementation of a new testing method;
  • Comparing performance of a new testing platform against a standard;
  • Validation of pathogen control, for instance, to check effectiveness of CCPs;
  • Shelf-life investigation;
  • Verification of effectiveness of antimicrobials; and
  • Determination of whether a product requires refrigeration.

With method validation, the situation can be that you work with PCR for Salmonella, and there are certain number of matrices approved, but you want to take advantage of that method and extend the matrix. So special projects can help you answer if that method would be suitable for your product.

Another category of special projects is pathogen control. In this situation, you can see if you have a process or an ingredient that’s in your product, or simulate that intervention in a lab setting (either heat or cool step or a treatment like a wash) to check for pathogen growth. In this case, the target matrix is inoculated with high level of analyte, and the aim is to show large log reduction, or even complete elimination, once the matrix is treated with the intervention.

Shelf-life studies is another example of special projects. In this case, we simulate retail storage of the product to determine expected shelf life or determine typical storage conditions. Here, assay are prepared to assess threats to product shelf-life, microbial, chemical or nutritional in nature. Such threats could be build-up of lactic acid due to bacterial activity, or might be gas-producing microorganisms, or chemical targets that cause rancidity in oils. Often these include an organoleptic compound which could change how a product looks, or if it has an odor. It’s important to remember that often the souring of the product due to lactic acid, gas bubbles or off odors will present themselves before microbial counts become obvious.

Shelf life testing is conducted at predetermined intervals, and depending on need, we can stagger these intervals, for instance, we can do more frequent testing during the anticipated end of shelf life. The final shelf life is defined by the last acceptable result.

Antimicrobial effectiveness is another example of special projects, and these involve products that already have an antimicrobial ingredient. In these situations, we inoculate target microorganism into the product and use assay to determine log reduction, or prevention of outgrowth. Antimicrobial effectiveness studies often include aspects of shelf life studies, where product is typically held at a given time-temp combination. These studies may use specific references such as using USP <51>, or reference could include specific microorganisms, and criteria to determine effectiveness (such as log reduction).

Another example is determination of if a product requires refrigeration. For this, we first start with the food product itself, which has a specific combination of pH and water activity to prevent growth of groups of pathogens. Once we have this information, we don’t have to look at broad range of organisms, but can look at specific organisms. The remaining potential threats become challenge organisms for the study. We store the product at room temperature and test for these challenge organisms.

For more information on Special Projects, contact Eurofins US or email Bill Centrella at WilliamCentrella@EurofinsUS.com