Tag Archives: software

Michael Bartholomeusz, TruTag
In the Food Lab

Intelligent Imaging and the Future of Food Safety

By Michael Bartholomeusz, Ph.D.
1 Comment
Michael Bartholomeusz, TruTag

Traditional approaches to food safety no longer make the grade. It seems that stories of contaminated produce or foodborne illnesses dominate the headlines increasingly often. Some of the current safeguards set in place to protect consumers and ensure that companies are providing the freshest, safest food possible continue to fail across the world. Poorly regulated supply chains and food quality assurance breakdowns often sicken customers and result in recalls or lawsuits that cost money and damage reputations. The question is: What can be done to prevent these types of problems from occurring?

While outdated machinery and human vigilance continue to be the go-to solutions for these problems, cutting-edge intelligent imaging technology promises to eliminate the issues caused by old-fashioned processes that jeopardize consumer safety. This next generation of imaging will increase safety and quality by quickly and accurately detecting problems with food throughout the supply chain.

How Intelligent Imaging Works

In broad terms, intelligent imaging is hyperspectral imaging that uses cutting-edge hardware and software to help users establish better quality assurance markers. The hardware captures the image, and the software processes it to provide actionable data for users by combining the power of conventional spectroscopy with digital imaging.

Conventional machine vision systems generally lack the ability to effectively capture and relay details and nuances to users. Conversely, intelligent imaging technology utilizes superior capabilities in two major areas: Spectral and spatial resolution. Essentially, intelligent imaging systems employ a level of detail far beyond current industry-standard machinery. For example, an RGB camera can see only three colors: Red, green and blue. Hyperspectral imaging can detect between 300 and 600 real colors—that’s 100–200 times more colors than detected by standard RGB cameras.

Intelligent imaging can also be extended into the ultraviolet or infrared spectrum, providing additional details of the chemical and structural composition of food not observable in the visible spectrum. Hyperspectral imaging cameras do this by generating “data cubes.” These are pixels collected within an image that show subtle reflected color differences not observable by humans or conventional cameras. Once generated, these data cubes are classified, labeled and optimized using machine learning to better process information in the future.

Beyond spectral and spatial data, other rudimentary quality assurance systems pose their own distinct limitations. X-rays can be prohibitively expensive and are only focused on catching foreign objects. They are also difficult to calibrate and maintain. Metal detectors are more affordable, but generally only catch metals with strong magnetic fields like iron. Metals including copper and aluminum can slip through, as well as non-metal objects like plastics, wood and feces.

Finally, current quality assurance systems have a weakness that can change day-to-day: Human subjectivity. The people put in charge of monitoring in-line quality and food safety are indeed doing their best. However, the naked eye and human brain can be notoriously inconsistent. Perhaps a tired person at the end of a long shift misses a contaminant, or those working two separate shifts judge quality in slightly different ways, leading to divergent standards unbeknownst to both the food processor and the public.

Hyperspectral imaging can immediately provide tangible benefits for users, especially within the following quality assurance categories in the food supply chain:

Pathogen Detection

Pathogen detection is perhaps the biggest concern for both consumers and the food industry overall. Identifying and eliminating Salmonella, Listeria, and E.coli throughout the supply chain is a necessity. Obviously, failure to detect pathogens seriously compromises consumer safety. It also gravely damages the reputations of food brands while leading to recalls and lawsuits.

Current pathogen detection processes, including polymerase chain reaction (PCR), immunoassays and plating, involve complicated and costly sample preparation techniques that can take days to complete and create bottlenecks in the supply chain. These delays adversely impact operating cycles and increase inventory management costs. This is particularly significant for products with a short shelf life. Intelligent imaging technology provides a quick and accurate alternative, saving time and money while keeping customers healthy.

Characterizing Food Freshness

Consumers expect freshness, quality and consistency in their foods. As supply chains lengthen and become more complicated around the world, food spoilage has more opportunity to occur at any point throughout the production process, manifesting in reduced nutrient content and an overall loss of food freshness. Tainted meat products may also sicken consumers. All of these factors significantly affect market prices.

Sensory evaluation, chromatography and spectroscopy have all been used to assess food freshness. However, many spatial and spectral anomalies are missed by conventional tristimulus filter-based systems and each of these approaches has severe limitations from a reliability, cost or speed perspective. Additionally, none is capable of providing an economical inline measurement of freshness, and financial pressure to reduce costs can result in cut corners when these systems are in place. By harnessing meticulous data and providing real-time analysis, hyperspectral imaging mitigates or erases the above limiting factors by simultaneously evaluating color, moisture (dehydration) levels, fat content and protein levels, providing a reliable standardization of these measures.

Foreign Object Detection

The presence of plastics, metals, stones, allergens, glass, rubber, fecal matter, rodents, insect infestation and other foreign objects is a big quality assurance challenge for food processors. Failure to identify foreign objects can lead to major added costs including recalls, litigation and brand damage. As detailed above, automated options like X-rays and metal detectors can only identify certain foreign objects, leaving the rest to pass through untouched. Using superior spectral and spatial recognition capabilities, intelligent imaging technology can catch these objects and alert the appropriate employees or kickstart automated processes to fix the issue.

Mechanical Damage

Though it may not be put on the same level as pathogen detection, food freshness and foreign object detection, consumers put a premium on food uniformity, demanding high levels of consistency in everything from their apples to their zucchini. This can be especially difficult to ensure with agricultural products, where 10–40% of produce undergoes mechanical damage during processing. Increasingly complicated supply chains and progressively more automated production environments make delivering consistent quality more complicated than ever before.

Historically, machine vision systems and spectroscopy have been implemented to assist with damage detection, including bruising and cuts, in sorting facilities. However, these systems lack the spectral differentiation to effectively evaluate food and agricultural products in the stringent manner customers expect. Methods like spot spectroscopy require over-sampling to ensure that any detected aberrations are representative of the whole item. It’s a time-consuming process.

Intelligent imaging uses superior technology and machine learning to identify mechanical damage that’s not visible to humans or conventional machinery. For example, a potato may appear fine on the outside, but have extensive bruising beneath its skin. Hyperspectral imaging can find this bruising and decide whether the potato is too compromised to sell or within the parameters of acceptability.

Intelligent imaging can “see” what humans and older technology simply cannot. With the ability to be deployed at a number of locations within the food supply chain, it’s an adaptable technology with far-reaching applications. From drones measuring crop health in the field to inline or end-of-line positioning in processing facilities, there is the potential to take this beyond factory floors.

In the world of quality assurance, where a misdiagnosis can literally result in death, the additional spectral and spatial information provided by hyperspectral imaging can be utilized by food processors to provide important details regarding chemical and structural composition previously not discernible with rudimentary systems. When companies begin using intelligent imaging, it will yield important insights and add value as the food industry searches for reliable solutions to its most serious challenges. Intelligent imaging removes the subjectivity from food quality assurance, turning it into an objective endeavor.

Lab grown meat

How Plant-Based Foods Are Changing the Supply Chain

By Maria Fontanazza
No Comments
Lab grown meat

The plant-based meat market is anticipated to be worth more than $320 million in the next five years, according to a report released last summer by Global Market Insights. As the popularity of meat-alternative products continues to rise, new challenges are being introduced to supply chain management. Joe Scioscia, vice president of sales at VAI explains some of these hurdles and proposes how technology can help.

Food Safety Tech: Is the growing popularity of plant-based foods introducing hazards or challenges to the supply chain?

Joe Scioscia, VAI
“The growing popularity of plant-based foods has presented a new set of challenges for the supply chain,” says Joe Scioscia of VAI.

Joe Scioscia: The growing popularity of plant-based foods has presented a new set of challenges for the supply chain, especially considering many of these organic items are being introduced by traditionally non-organic retailers. Impossible Foods received FDA approval for its plant-based burger in 2019, showing just how new the plant-based movement is to the industry.

Obviously, the organic supply chain and produce suppliers have long followed regulations for handling produce, such as temperature controls, cargo tracking, and supply and demand planning software, so the produce could be tracked from farm to table and in the case of a recall, be traced back to the source. But for meat alternatives that are combining multiple plant-based ingredients, organizations in the supply chain who are handling these products
have new food safety concerns. Considerations on how to store and process meat alternatives, how to treat each ingredient in the product and, most importantly, how to determine temperature controls or the source of contamination are all discussions the food industry is currently having.

FST: How are plant-based foods changing the dynamic of the supply chain from a food safety perspective?

Scioscia: The food supply chain has changed dramatically in recent years to become more complex, with food items traveling farther than ever before, containing more ingredients and required to follow stricter regulations. Many of the changes to the supply chain are for the better—organic and plant-based alternatives offer health benefits for consumers and are a move towards a more sustainable future. But the reality is that the supply chain isn’t quite there yet. Suppliers, retailers and producers at every part of the supply chain need to work together to ensure transparency and food safety compliance—including for plant-based products. Foodborne illnesses are still a real threat to the safety of consumers, and these same consumers are demanding transparency into the source of their food and sustainable practices from brands. All of these considerations are what’s making this next era of the food industry more complicated than ever before.

Because food safety compliance is always top of mind in the food industry to keep consumers safe, this new and complex supply chain has required companies to rely heavily on technology solutions to ensure plant-based products are equally as safe to consume as non-organic alternatives. These same solutions are also helping supply chains become more transparent for customers and streamline food processes to build a more sustainable future.

FST: What technologies can food companies and retailers use to better manage the supply chain risk while supporting the increased consumer demand for meat alternatives?

Scioscia: Utilizing a centralized software system is one tool many food suppliers and distributors can use to better visualize, trace and process products in the supply chain—including for plant-based alternatives. Having access to a central platform for business data to track assets and ensure food safety regulations are being met allows for companies to optimize processes and cut unnecessary costs along the way.

Heading into 2020, many organizations in the food supply chain are also looking at new applications like IoT, automation, and blockchain as ways to curb food safety issues. The FDA has taken steps to pilot blockchain and AI programs to better track drugs and food products, in conjunction with major food brands and technology companies. Other organizations are following suit with their own programs and many are looking at these solutions to improve their food tracking efforts. It’s clear technology has the most potential to make it easier on the industry to comply with food safety regulations while meeting customer demands for plant-based alternatives and organic options—all the while building a sustainable supply chain for the future.

Sasan Amini, Clear Labs

2020 Expectations: More Artificial Intelligence and Machine Learning, Technology Advances in Food Safety Testing

By Maria Fontanazza
No Comments
Sasan Amini, Clear Labs

2018 and 2019 were the years of the “blockchain buzz”. As we enter the new decade, we can expect a stronger focus on how technology and data advances will generate more actionable use for the food industry. Food Safety Tech has highlighted many perspectives from subject matter experts in the industry, and 2020 will be no different. Our first Q&A of the year features Sasan Amini, CEO of Clear Labs, as he shares his thoughts on tech improvements and the continued rise consumer expectations for transparency.

Food Safety Tech: As we look to the year ahead, where do you see artificial intelligence, machine learning and blockchain advancing in the food industry?

Sasan Amini: AI, ML, and blockchain are making headway in the food industry through advances in supply chain management, food sorting and anomaly detection, and tracing the origin of foodborne outbreaks. On the regulatory side, FDA’s focus on its New Era of Smarter Food Safety will most likely catalyze the adoption of the above mentioned technologies. On the private side, a few of the companies leading the charge on these advancements are IBM and Google, working in partnership with food manufacturers and retailers across the world.

Along those same lines, another area that we expect to grow is the use of AI and ML in tandem with robotics—and the value of new troves of data that they collect, analyze and distribute. For example, robotics for the use of environmental monitoring of potential contaminants, sorting techniques and sterilization are valuable because they ensure that end products have been through thorough testing—and they give us even more information about the lifecycle of that food than ever before.

At the end of the day, data is only valuable when you can transform it into actionable insights in real-time with real-world applications, and we expect to see more and more of this type of data usage in the year ahead.

FST: Where do you think food safety testing technologies will stand out? What advancements can the industry expect?

Amini: In 2020, technology is going to begin to connect itself along the entire supply chain, bringing together disparate pieces and equipping supply chain professionals with action-oriented data. From testing advances that improve speed, accuracy and depth of information to modular software solutions to promote transparency, the food safety industry is finally finding its footing in a data-driven sea of technological and regulatory advances.

Right now, legacy testing solutions are limited in their ability to lead food safety and quality professionals to the source of problems, providing insights on tracking recurring issues, hence having a faster response time, and being able to anticipate problems before they occur based on a more data heavy and objective risk assessment tools. This leaves the industry in a reactive position for managing and controlling their pathogen problems.

Availability of higher resolution food safety technologies that provide deeper and more accurate information and puts them in context for food safety and quality professionals provides the food industry a unique opportunity to resolve the incidents in a timely fashion with higher rigour and confidence. This is very in-line with the “Smarter Tools and Approaches” that FDA described in their new approach to food safety.

FST: How are evolving consumer preferences changing how food companies must do business from a strategic as well as transparency perspective?

Amini: Consumers are continuing to get savvier about what’s in their food and where it comes from. Research suggests that about one in five U.S. adults believe they are food allergic, while only 1 in 20 are estimated to have physician-diagnosed food allergies. This discrepancy is important for food companies to consider when making decisions about transparency into their products. Although the research on food allergies continues to evolve, what’s important to note today is that consumers want to know the details. Radical transparency can be a differentiator in a competitive market, especially for consumers looking for answers to improve their health and nutrition.

Consumers are also increasingly interested in personalization, due in part to the rise in new digital health and testing companies looking to deliver on the promise of personalized nutrition and wellness. Again, more transparency will be key.

FST: Additional comments are welcome.

Amini: Looking ahead, we expect that smaller, multi-use, and hyper-efficient tools with reduced physical footprints will gain market share. NGS is a great example of this, as it allows any lab to gather millions of data points about a single sample without needing to run it multiple times. It moves beyond the binary yes-no response of traditional testing, and lets you get much more done, with far less. Such wealth of information not only increases the confidence about the result, but can also be mined to generate more actionable insights for interventions and root cause analysis.

This “multi-tool” will be driven by a combination of advanced software, robotics, and testing capabilities, creating a food safety system that is entirely connected, driven by data, and powerfully accurate.

magnifying glass

Food Fraud and Adulteration Detection Using FTIR Spectroscopy

By Ryan Smith, Ph.D.
No Comments
magnifying glass

Producers of food-based products are faced with challenges of maintaining the safety and quality of their products, while also managing rapid screening of raw materials and ingredients. Failure to adequately address both challenges can be costly, with estimated recall costs alone starting around $10 million, in addition to any litigation costs.1 Long-term costs can accumulate further as a result of damage to brand reputation. A vast array of methods has been employed to meet these challenges, and adoption continues to increase as technology becomes smaller, cheaper and more user friendly. One such technique is Fourier transform infrared (FTIR) spectroscopy, an analytical technique that is widely used for quick (typically 20–60 seconds per measurement) and non-destructive testing of both man-made and natural materials in food products. The uniformity and physical state of the sample (solid vs. liquid) will dictate the specifics of the hardware used to perform such analyses, and the algorithm applied to the identification task will depend, in part, on the expected variability of the ingredient.

Infrared spectral measurements provide a “compositional snapshot”— capturing information related to the chemical bonds present in the material. Figure 1 shows an example of a mid-infrared spectrum of peppermint oil. Typically, the position of a peak along the x-axis (wavenumber) is indicative of the type of chemical bond, while the peak height is related either to the identity of the material, or to the concentration of the material in a mixture. In the case of peppermint oil, a complex set of spectral peaks is observed due to multiple individual naturally occurring molecular species in the oil.

Mid-infrared spectrum, peppermint oil
Figure 1. Mid-infrared spectrum of peppermint oil. The spectrum represents a “chemical snapshot” of the oil, as different peaks are produced as a result of different chemical bonds in the oil.

Once the infrared spectrum of an ingredient is measured, it is then compared to a reference set of known good ingredients. It is important that the reference spectrum or spectra are measured with ingredients or materials that are known to be good (or pure)—otherwise the measurements will only represent lot-to-lot variation. The comparative analysis can assist lab personnel in gaining valuable information—such as whether the correct ingredient was received, whether the ingredient was adulterated or replaced for dishonest gain, or whether the product is of acceptable quality for use. The use of comparative algorithms for ingredient identification also decreases subjectivity by reducing the need for visual inspection and interpretation of the measured spectrum.

Correlation is perhaps the most widely used algorithm for material identification with infrared spectroscopy and has been utilized with infrared spectra for identification purposes at least as early as the 1970s.2 When using this approach, the correlation coefficient is calculated between the spectrum of the test sample and each spectrum of the known good set. Calculated values will range from 0, which represents absolutely no match (wrong or unexpected material), to 1, representing a perfect match. These values are typically sorted from highest to lowest, and the material is accepted or rejected based on whether the calculated correlation lies above or below an identified threshold. Due to the one-to-one nature of this comparison, it is best suited to identification of materials that have little or no expected variability. For example, Figure 2 shows an overlay of a mid-infrared spectrum of an ingredient compared to a spectrum of sucrose. The correlation calculated between the two spectra is 0.998, so the incoming ingredient is determined to be sucrose. Figure 3 shows an overlay of the same mid-infrared spectrum of sucrose with a spectrum of citric acid. Notable differences are observed between the two spectra, and a significant change in the correlation is observed, with a coefficient of 0.040 calculated between the two spectra. The citric acid sample would not pass as sucrose with the measurement and algorithm settings used in this example.

Mid-infrared spectrum, sucrose
Figure 2. An overlay of the mid-infrared spectrum of sucrose and a spectrum of a different sample of sucrose.
Mid-infrared spectrium, sucrose, citric acid
Figure 3: An overlay of the mid-infrared spectrum of sucrose and a spectrum of citric acid.

When testing samples with modest or high natural variability, acceptable materials can produce a wider range of infrared spectral features, which result in a correspondingly broad range of calculated correlation values. The spread in correlation values could be of concern as it may lead to modification of algorithm parameters or procedures to “work around” this variation. Resulting compromises can increase the potential for false positives, meaning the incorrect ingredient or adulterated material might be judged as passing. Multivariate algorithms provide a robust means for evaluating ingredient identity for samples with high natural variability.

Click below to continue to page 2.

Marc Pegulu, Semtech
FST Soapbox

Increasing Food Safety and Spoilage Prevention in the IoT Era

By Marc Pégulu
No Comments
Marc Pegulu, Semtech

According to the Food and Agriculture Organization of the United Nations, it is estimated that nearly one third of the food produced (about 1.3 billion tons) globally is not consumed. To help tackle this billion-dollar problem, an innovative solution is being deployed to detect one of the key factors driving food waste: Spoilage due to fluctuations in temperature.

To get to the dinner table, food must travel great lengths to preserve that farm fresh quality. Refrigerated shipping units and storage facilities are essential to reducing bacteria growth and by using an automated smart-refrigeration solution, a food-safe environment can be maintained throughout the journey with little supervision. Traditional food temperature monitoring is reliant on staff to periodically check temperature levels and make adjustments as necessary. This process is not scalable, meaning that with a larger facility or an increased number of food displays, it becomes increasingly labor intensive and inefficient. If employees are preoccupied, periodic check-ins may be delayed or missed entirely, leading to gaps where temperature fluctuations are not addressed, opening the door for increased bacteria growth and food waste.

LoRa fights food waste
LoRa devices and LoRaWAN protocol are being integrated into smart refrigeration solutions to fight food waste. Image courtesy of Semtech.

To solve this issue, Internet of Things (IoT) sensors can be deployed in shipping vehicles, displays, refrigerators, and storerooms to provide accurate and consistent monitoring of temperature data. When a temperature fluctuation occurs, the sensors will send a signal to a low power, wide area network (LPWAN) gateway application. The information is then relayed to a network server, where it is routed to application servers or Cloud IoT services. The data is then processed and sent to the end user through a desktop or smartphone application. What’s more, in the event of a power outage, these long range, low power wireless enabled IoT devices are battery powered and consume minimal energy, allowing for consistent off-grid temperature tracking.

These connected devices can be found globally in a variety of use cases ranging from quick service restaurants to full service grocery stores, with an end goal of ensuring appropriate temperature levels for food. To support connectivity for these devices, an open network protocol is used to ensure the devices can be scalable and globally deployed. Two recent use cases where the long range, low power wireless devices and LoRaWAN protocol were used to actively monitor temperature fluctuations are Axino Solutions (Axino) and ComplianceMate.

Axino recently integrated LoRa devices and LoRaWAN protocol into its line of smart refrigeration solutions with the goal of combatting food waste. The solution combines sensor technology with automated data communication providing a substantial increase in measurement quantity and quality. Additionally, stores found a significant reduction in metering and operating costs after sensor deployment. This smart refrigeration solution has been globally deployed and is currently used by Switzerland’s largest supermarket chain, Migos. Axino’s sensors can be quickly installed, utilizing a magnet to attach to a refrigerator’s infrastructure. The sensors monitor temperature in real time, are accurate to one degree Celsius and can be pre-programmed to adjust refrigerator temperatures to ensure that food is stored in a safe environment. By having access to real time data and automatic temperature adjustment, supermarkets were able to eliminate human error, prolong shelf life and pass energy savings off to the customers.

The challenge for any wirelessly connected device is the presence of physical barriers that will block signals. Steel doors, concrete and insulation are some of the key considerations when developing a smart solution, especially in restaurants using large freezers. ComplianceMate partnered with Laird Connectivity and found that devices on a LoRaWAN-based network produces a more reliable signal than its Bluetooth counterpart. This IoT solution has been deployed in some of your favorite restaurant chains such as Shake Shack, Five Guys, Hard Rock Café, City Barbeque, and Hattie B’s and has already proved to be a huge asset. For instance, a sensor deployment saved $35,000 to $50,000 worth of inventory in a Hattie B’s location when downtown Nashville experienced a sudden power outage in 2018. The LoRa-based alert system immediately notified store management, allowing them to act quickly and prevent food spoilage.

Reducing global food spoilage is a monumental task. From farms to grocery stores and restaurants, technology must play a critical role, ensuring food remains at a safe temperature, preventing unnecessary spoilage. In the era of connectivity, businesses will turn to LoRa-based IoT deployments for its flexibility, durability and ability to provide real-time information to employees and decision makers to not only maintain strict industry standards in food safety, but to also pass savings on to their valued customers.

Megan Nichols
FST Soapbox

Can Agile Manufacturing Improve the Food Industry?

By Megan Ray Nichols
1 Comment
Megan Nichols

It’s no secret that the food and beverage industry is heavily regulated and filled to the brim with quality and process standards, if only to help ensure the health and safety of consumers. With these sorts of restrictions, it’s difficult to maintain flexibility and adapt to a changing world. That’s not to say it is impossible—it’s just more challenging.

Between shifting consumer demands, a greater need for accurate maintenance and compliance, and an increasingly competitive market, food providers and distributors are being forced to alter their current trajectories to keep up. Even fresh, organic foods are part of an arduous and complex process, with conventional operations taking precedence over innovative solutions.

One solution that seems to be spreading quickly in the industry is a push toward more agile development strategies. On paper, it seems like the methodology is a poor fit, especially considering the above-mentioned challenges and complications. But the reality is that agile manufacturing has a lot to contribute.

Why Agile Manufacturing and Development?

Agile manufacturing is a response to the fast moving, constantly in flux landscape of today’s marketplace. Through processes, tools and training, it puts an emphasis on quickly responding to customer needs while maintaining balanced costs and higher quality output. It is often confused with lean manufacturing, yet the two methodologies are separate.

The rapid response to customer needs that agile enables is a key staple of the methodology and highlights exactly why it’s been given the name “agile,” or speedy. By definition, agile teams and operations are in a much better place to deal with or react to short windows of opportunity and rapid demand changes.

Because today’s consumers want instant gratification, desire plenty of choice or personalization, and have shifting interests, agile manufacturing serves as an effective solution.

Four key elements or core values in the agile manifesto speak directly to food safety and compliance.

1. It Favors Individuals and Interactions

In agile manufacturing—also agile development—the operations are designed to put more emphasis on individuals and their interactions as opposed to the processes or tools adopted. Why is this fact important? Because it’s the people who do the work and drive the entire industry, especially when it comes to certain foods and goods.

Agile manufacturing recognizes that the most difficult challenges are often overcome through face-to-face interactions. It’s the more effective way to work.

2. It Emphasizes Working Software Over Documentation

In many industries—food and beverage being a key example—documentation reigns supreme, especially with complex processes or systems involved. A lots of time is placed on compiling the documentation, following up and conducting verification procedures.

Agile does away with a lot of the busywork. It doesn’t eliminate documentation and the related processes but instead streamlines everything so that it’s more actionable. In other words, the reporting process doesn’t serve as a hindrance, slowing down everything else. Instead, it happens in parallel to everything else, presenting a much smoother output.

3. Customer Collaboration Is a Priority

Despite its reliance on consumer demands, the food industry is rife with regulation, compliance protocols and various standards. The focus is taken away from the consumer in many cases just to remain efficient and safe. This shift becomes increasingly apparent during contract negotiations with various partners and third parties.

Agile recognizes that the emphasis on customer relationships creates a healthier environment for all and also provides a competitive advantage. It takes the customer feedback process and applies insights to just about every internal process, but in an effective way. And it’s all made possible with the help of modern technologies.

4. Flexibility and Versatility Are Part of Its Structure

Most methodologies or structured systems focus on building a plan and then sticking to that plan come hell or high water. This philosophy doesn’t work as well when you’re talking about a constantly shifting industry such as food and beverage.

Agile instead views market and demand change as something positive—as an opportunity to excel. In fact, with the right approach, that change can help provide increased value to a business or operation. Planning isn’t the enemy of agile, but instead serves as a guideline for where to go rather than a permanent route or decision. In this way, agile helps teams adapt to change faster and more openly than ever before while still remaining on track, eliminating delays that would put off a timely completion.

This system honors a more team-oriented approach to all aspects of an operation, allowing the skills and strengths of the entire team to shine through. Employees are empowered, gain much more value and have an incredible amount of influence over the entire operation. These changes are achieved primarily through a fostered culture that supports and encourages change.

Today’s Food Industry Requires Adaptability

Through a variety of remarkable solutions, which call for more modern processes, technologies and support systems, companies can better manage compliance and safety in the food industry. That is true whether these firms are manufacturing or producing the goods themselves, or distributing trade goods from other sources.

The agile methodology honors excellence and streamlined culture that understands and truly speaks to the need for change. One could argue that the future of the supply chain is headed in this direction anyway, with an emphasis on quality, accuracy and compliance.

Brian Sharp, SafetyChain Software
FST Soapbox

How Industry 4.0 Affects Food Safety and Quality Management

By Brian Sharp
No Comments
Brian Sharp, SafetyChain Software

The food and beverage industry is moving towards a fully connected production system with more methods available to automate data collection than ever before. But with all the promises of Industry 4.0, what are the true capabilities of communicating real-time plant floor insights? This article will explain how better capturing methods and analysis can drive data-driven decision making to optimize safety, quality and efficiency in food and beverage operations.

What Is Industry 4.0?

The term Industry 4.0 has many pseudonyms, such as Industrial Internet of Things, Manufacturing 4.0, and Smart Manufacturing, but they generally all refer to the idea that manufacturers will be able to connect all operations in their plants. Where the name Industry 4.0 comes into play is the thought that manufacturing is in its fourth wave of change. In the 1780s, the first industrial revolution started with machines and the “production line” and evolved to mass production in the 1870s; manufacturing entered into a new wave after the 1950s when automation was introduced.

In this current fourth wave of manufacturing, new technology is driving the change in production and the capabilities of what can be accomplished in facilities. A report from Deloitte Insights entitled “The Smart Factory” explains this new way of operations as “ a leap forward from more traditional automation to a fully connected and flexible system—one that can use a constant stream of data from connected operations and production systems to learn and adapt to new demands.”

By way of more sensors, connectivity, analytics, and breakthroughs in robotics and artificial intelligence, the future food and beverage plants will be able to meet customers’ demands for higher-quality products while increasing productivity. However, there is a stark reality that many food and beverage manufacturing facilities are over 50 years old and dealing with legacy equipment. And if an investment in new technology is made, often it is made because food and beverage plants need to reach compliance or fill a customer’s requirement.

“Regulatory compliance is huge,” says Steve Hartley of Matrix Control Systems during a recent SafetyChain webinar. “But if you are able to attach additional business value to that compliance, then incorporating technology into the organization becomes a lot easier.”

For instance, new technology that can help a facility follow regulated processes in food manufacturing can also help to create more consistency and increase the quality of your products. Additionally, if input from the entire organization is collected when investing in more technology and automation, then multiple departments will support the budget costs.

“One of the big things that we see happening with our customers is that they are digging into that production equipment,” says Hartley. “Lots of food manufacturing facilities are filled with all sorts of wonderful processing equipment, but leveraging not only the manufacturing capabilities, but also the data collection capabilities of that equipment is really powerful.”

What Automated Data collection Systems Can Do

Because large food and beverage companies sell a high volume of goods to a large number of customers, many have already automated their data collection. These facilities also receive goods from an intricate supply chain that spans vast distribution networks, thus making automated data collection from receiving all the way through shipping a necessity.

However, many companies are going beyond this and integrating production equipment on the plant floor to provide a deeper level of production and quality data. These types of operations are generally interested in going beyond just being in regulatory compliance, but working on their continuous improvement. What this data can do is to provide better data for better decision making. By knowing what parts of the plant are operating optimally and what areas aren’t, plant managers can to make changes that will unlock more potential from the production line.

Getting the most out of operations is one of the most frequently cited needs of food and beverage manufacturers. The best way to do this is to drive plant efficiencies, which means measuring performance, setting baselines and goals, and holding employees accountable. The key here is to not confine efficiencies to just one area of the facility, but to broaden the scope to include end-to-end processes, from supplier to customer.

“Take a scope that is relevant to everyone and that is relevant to the strategy of the company,” states Daniel Campos of London Consulting Group. A company’s overall strategy should drive the focus of all departments. No one lives in a silo, and every part of your operations affects all the other parts. So any one area that is falling below the goal set takes away value from the system as a whole. This becomes more crucial as the enterprise grows even more connected and dependent on data from each other.

Shortfalls of Industrial Automation Systems

When evaluating the scope of an operation, all areas of the plant should be assessed in terms of how data is being collected. Part of this information assessment is to learn what processes aren’t covered by automated data collection. This includes equipment without sensors that can record accurate measurements and readings.

Another area that should be identified as an entry point for possible faulty or incorrect data is where an operator is required to input information. Some of this might be simply validating that SOPs were followed, such as whether a piece of equipment was cleaned or not and if detergents were actually changed when required.

The quality and fidelity of the data is directly related to the effectiveness of the decisions made. As the saying goes, “Garbage in, garbage out.” But even good data alone doesn’t drive value, but rather information gleaned from the facts collected is where the true benefits can be harnessed to improve the food safety and quality of products produced.

So, if data is analyzed and found not to conform to a desired specification, then the goal is to find out why this is happening. Is the data being collected accurate? If not, why? If it is accurate, then what else is going on?
Additionally, the speed and complexity of today’s food processing plants requires this data to not just be in real time, but able to be captured in smaller increments to make better decisions. This type of data that is collected and analyzed infrequently can slip through the cracks because systems to collect and manage this category can be hard to find, unlike industrial automation systems.

One solution to this problem can be found in capturing data via mobile devices. Tablets and phones moving through the plant with operators can help collect information at the source. Plus, these devices enable managers and executives to see critical control point data as well as summaries of operational performance and out-of-spec occurrences, anytime and anywhere.

As food and beverage manufacturing plants continue to automate their data collection and increasingly connect their production processes, more data will come online in a multitude of ways, allowing for better decision making. Ultimately, this is the promise of Industry 4.0 and why digital transformation promises a higher level of food safety and quality in the future.

Todd Fabec, Rfxcel
FST Soapbox

Why the Modern Food Supply Chain Needs Real-Time Environmental Monitoring

By Todd Fabec
No Comments
Todd Fabec, Rfxcel

Food supply chains are becoming more complex, as food companies are increasingly faced with blind spots such as deviations from required environmental conditions, theft, fraud and poor handling. Supply chains are global; transit routes that involve road, rail, sea and air create many potential points of failure in food safety or product integrity protocol that, until recently, were largely outside a company’s control.

Learn more about how to address risks in your supply chain at the Food Safety Supply Chain Conference | May 29–30, 2019 | Rockville, MD (or attend virtually)To maintain product quality and safety, companies should implement an environmental monitoring (EM) solution that paints a complete picture of their food products as they move through the supply chain. EM solutions that utilize devices powered by the Internet of Things (IoT) allow real-time tracking of cargo and provide actionable data that can mitigate common problems, change outcomes, and protect brands and consumer health.

Let’s take a deeper look into the problems that food manufacturers and distributors are facing how EM solutions can minimize or eliminate them altogether.

Current Hurdles for Food Supply Chains

As the global network of food trade expands, the diverse challenges facing suppliers, manufacturers, distributors and logistics companies present even more of a threat to supply chains and revenue.

According to PwC agribusiness advisory partner, Greg Quinn, worldwide food fraud results in losses of at least $65 billion a year. Luxury products such as Japanese Wagyu beef and Italian olive oil are regularly counterfeited and incorrectly labeled, and buyers often have no way to trace the origins of what they are purchasing.

Companies in the food and beverage industry also face diversion and theft, which can happen at any of the many blind spots along the supply chain. In fact, food and beverages were among the top commodities targeted by thieves in North America last year, accounting for 34% of all cargo theft, according to a report by BSI Supply Chain Services and Solutions.

Food product quality and safety are also seriously compromised when cargo is poorly handled while in transit, with hazards such as exposure to water, heat and cold, or substance contamination. These types of damages can be particularly acute in the cold chain, where perishable products must be moved quickly under specific environmental conditions, including temperature, humidity and light.

Furthermore, inefficiencies in routing—from not adhering to transport regulations to more basic oversights such as not monitoring traffic or not utilizing GPS location tracking—delay shipments, can result in product spoilage and/or shortened shelf life, and cost companies money. Routing and EM have become more important in light of FSMA, which FDA designed to better protect consumers by strengthening food safety systems for foodborne illnesses.

In short, businesses that manage food supply chains need to be on top of their game to guarantee product quality and safety and care for their brand.

How Does Product Tracking Technology Work?

Real-time EM solutions are proving to be an invaluable asset for companies seeking to combat supply chain challenges. Such product tracking capabilities give companies a vibrant and detailed picture of where their products are and what is happening to them. With EM in the supply chain, IoT technology is the crucial link to continuity, visibility and productivity.

So, how does integrated EM work? Sensors on pallets, cases or containers send data over communication networks at regular intervals. The data is made available via a software platform, where users can set parameters (e.g., minimum and maximum temperature) to alert the system of irregularities or generate reports for analysis. This data is associated with the traceability data and becomes part of a product’s pedigree, making it a powerful tool for supply chain visibility.

EM Combats Supply Chain Stumbling Blocks

EM allows companies to monitor their supply chain, protect consumers and realize considerable return on investment. The technology can show companies how to maximize route efficiencies, change shippers, or detect theft or diversion in real time. Tracking solutions transmit alerts, empowering manufacturers and suppliers to use data to halt shipments that may have been adulterated, redirect shipments to extend shelf life, and manage food recalls—or avoid them altogether. Recalls are a particularly important consideration: One 2012 study concluded that the average direct cost of a recall in the United States was $10 million.

The IoT-enabled technology provides real-time information about how long an item has been in transit, if the vehicle transporting it adhered to the approved route, and, if the shipment stopped, where and for how long. This is crucial information, especially for highly perishable goods. For example, leafy greens can be ruined if a truck’s engine and cooling system are turned off for hours at a border crossing. With EM and tracking, businesses are able to understand and act upon specific risks using detailed, unit-level data.

For example, a company can find out if pallets have dislodged, fallen, or have been compromised in other ways while in transit. They can receive alerts if the doors of a truck are opened at an unscheduled time or location, which could indicate theft. Thieves target food cargo more often than other products because it’s valuable, easy to sell and perishable, and evidence of the theft does not last very long. In fact, the U.S. Federal Bureau of Investigation estimates that cargo theft costs U.S. businesses $30 billion each year, with food and beverage being one of the primary targets. Businesses need to get smart about preventative actions.

All of this actionable data is available in real time, allowing businesses to make decisions immediately, not after the fact when it’s too late. When necessary, they can divert or reroute shipments or take actions to remedy temperature excursions and other environmental concerns. This saves money and protects their reputation. Furthermore, third-party logistics firms and contracted delivery companies can be held accountable for incidents and inefficiencies.

Conclusion

As the benefits of global supply chains have grown, so have the risks. With the FSMA shifting responsibility for safety to food companies, real-time EM is a vital step to ensure cargo is maintained in the correct conditions, remains on track to its destination, and is safeguarded from theft and fraud. With the advent of IoT-enabled tracking and EM technologies, supply chain operations can be streamlined and companies can prevent waste and financial losses, protect their investments and brand identity, and gain an advantage in the marketplace.

How ERP Can Help Ensure Food Safety in the Cannabis Edibles Market

By Daniel Erickson
No Comments

The popularity of cannabis edibles and infused beverages as a socially accepted and convenient method of marijuana consumption has grown exponentially for consumers in states with a legalized market for both recreational and medicinal cannabis. The edibles industry’s success has been met with many challenges however, as the absence of federal regulation has provided little guidance regarding food safety practices. With consumers generally expecting these products to have the same safety expectations as they do with other food and beverages they consume, many manufacturers have elected to follow FSMA best practices to ensure cannabis edibles’ integrity in the marketplace. Proactive cannabis growers, processors and dispensaries are seeking out ERP software solutions in greater numbers to utilize the technological tools and vendor experience in the food and beverage market to establish greater accountability and plan for current and future compliance requirements.

This year the Cannabis Quality Conference & Expo is co-located with the Food Safety Consortium | October 1–3 | Schaumburg, ILCannabis Edibles Defined

Cannabis-derived edibles are food or beverage products that are made with cannabis or infused with cannabis extract—either consumed recreationally or to manage or alleviate health concerns. Cannabis extractions used in edibles include tetrahydrocannabinol (THC), which is psychoactive, and cannabidiol (CBD), which is not, as well as many derivatives when speaking of “whole plant” benefits. While there are a variety of edibles including gummies, candies, cookies, energy drinks, teas and chocolates, the defining characteristic of these products is that they are meant for human consumption. Public perception is that these products are held to the same safety and quality considerations as mainstream food and beverage products available in the market. With these expectations and lack of oversight, the responsibility falls on the manufacturer to meet those expectations and ensure a safe, consistent, quality edible product.

Safety and Quality Concerns

An unregulated industry at the federal level has resulted in a lack of consistency, predictability and safety in the edibles market. Frequently, it has been found that edibles don’t always produce the same experience from one consumption to the next, resulting from inconsistent appearance, taste, texture and potency. These variances pose a problem from a marketing perspective, as it impacts brand recognition, loyalty and returning customers. Similar to the food and beverage industry, foodborne illnesses, outbreaks, undeclared ingredients and inaccurate labeling provide further concern in an unregulated manufacturing environment. Specific safety issues of the cannabis industry include extraction processes, mold and bacteria growth, chemical exposure, pest and pesticide contamination, employee handling of products and the unintentional ingestion of cannabis edibles. With the high risks associated with this market, it is necessary for proactive growers, processors and dispensaries to adequately address quality and safety concerns that mitigate risk until the eventuality of regulatory oversight.

How ERP Can Help

Implementing an industry-specific ERP software solution that provides security and standardizes and automates business functions helps support cannabis manufacturers by providing the proper tools to track operations from seed-to-sale. With support for best practices and streamlined and documented processes, companies can incorporate safety and quality initiatives from cultivation to the sale of edible products and beyond. Utilizing the expertise of ERP vendors in the area of food safety management, edible manufacturers are provided with the same benefits that food and beverage companies have experienced for decades with ERP solutions. Cannabis ERP software allows your company to track all aspects of growing, manufacturing, packaging, distribution and sales—providing functionality that manages inventory, traceability, recipes and labeling to support quality initiatives.

The following areas supported by ERP can lead cannabis edible manufacturers to succeed in the realm of food safety:

Inventory Control. ERP’s automatic recording and tracking of inventory attributes, including balances, expiration dates, plant tag ID’s, serial and lot numbers and end-to-end traceability, allows cannabis edible manufacturers to maintain appropriate raw material and product levels, reduce waste, evaluate inventory flow, facilitate rotation methods and avoid overproduction. It provides accurate ingredient and cost tracking throughout the greenhouse operations and supply chain by use of barcode scanning that links product information to batch tickets, shipping documents and labels. Maintaining real-time and integrated information facilitates the ability to locate items in the event of contamination or recall. This detailed level of continuous monitoring mitigates the risk of unsafe consumables entering the market.

Labeling. Accurate product labeling is essential for food safety in the cannabis edibles industry, and its importance cannot be understated. Proper labeling and transparency ensure that consumers are provided a consistent experience and also help to mitigate unintentional consumption of cannabis-infused products. Certain states have enacted labeling requirements to increase accountability and mitigate the misrepresentation of cannabis edibles on the label with unverified, misleading or inaccurate information. Employing an automated ERP system assists with label creation that includes nutrient analysis, ingredient and allergen statements, testing notification for bio-contaminants and pathogens and expiration dates to ensure quality—providing a faster and more efficient method for labeling. Accurate labeling is also an imperative component of product recall planning, as traceability and labeling history documented in ERP software helps to identify and locate items quickly in the event of a recall.

Recipe and Formulation Management. To achieve consistency of products in taste, texture, appearance, potency and intended results, complex recipe and formula management are maintained with a real-time ERP solution that delivers tightly managed control. Raw material data, version and revision information and production notes are documented for each batch. The monitoring of key quality specifications such as THC and CBD percentage, containment and impurities testing, etc. are readily handled within the system and allows for the scalability of recipes as needed. Direct access to the calculation of specific nutritional values, which includes ingredient and allergen information, provides accurate labeling and consumer information for product packaging—a valuable asset in the cannabis edibles market. R&D functionality supports the creation of new and innovative edibles and marijuana-infused beverages in a sandbox environment to meet the demands of this consumer-driven market.

Approved Supplier Relationships. Assurance of cannabis edible safety is enhanced through the acquisition of quality raw materials from trusted vendors. An ERP solution plays an essential role in the process as it maintains a supplier list by documenting detailed supplier information and test results to assure in-house qualifications and potency standards are met. A fully-integrated ERP system regulates quality control testing to ensure consistent and approved materials are being used and undeclared substances, harmful chemicals and impure ingredients are unable to infiltrate the supply chain. Failure to meet quality control standards results in ingredients being quarantined, removed from production and disposed of safely, and indicates that a search for alternate vendors is needed. This detailed level of documentation is a best practice for maintaining current and accurate supplier information in the event of a product recall.

Current Good Manufacturing Practices (cGMPs). As the bedrock for the food and beverage industries, following cGMPs establishes an important foundation for the edibles market. An ERP efficiently documents processes to ensure safe and sanitary manufacturing, storage and packaging of food for human consumption. This includes monitoring equipment status, establishing cleaning and hygienic procedures, training employees, reporting illnesses, maintaining food and cannabis handling certifications and eliminating allergen cross-contact risks. Validating procedures within an ERP solution automates documentation of an audit trail and addresses food safety concerns more efficiently than manual methods.

Hazard Analysis Critical Control Points (HACCP) Requirements. Establishing a food safety team that develops a HACCP plan to enact procedures that protect consumers from the biological, chemical and physical dangers of edibles is a recommended best practice for quality assurance, despite the current lack of federal regulations. Critical control points recorded within an ERP solution prevent and control hazards before food safety is compromised. Parameters within the ERP system can be utilized to identify potential hazards before further contamination can occur. Applying these best practices historically used by food and beverage manufacturers can provide an enhanced level of food safety protocols to ensure quality, consistent and safe consumables.

Food Safety Plan. As a requirement of FSMA, a food safety plan provides a systematic approach of identifying and addressing food safety hazards by implementing preventative food safety procedures throughout the manufacturing, processing, packing and storage of products. With a trained Preventative Control Qualified Individual (PCQI) at the helm to coordinate the company-specific plan, an ERP solution automates and records preventative controls, full forward and backward lot traceability, recall plans and employee training records within an integrated system to ensure that food safety policies and procedures are being followed.

With the growth of the edibles and infused beverage market expected to skyrocket over the next four years, the success of growers, processors and manufacturers will continue to thrive off of technological tools and established best practices. Employing the industry experience of ERP software providers that have implemented food safety and quality control procedures will follow suit of the market and be a sought-after resource when federal regulations are imposed. Proactive cannabis businesses are already experiencing a return on investment in their ability to provide quality, consistent products that meet cannabis enthusiasts’ high expectations and keep them ahead of this trending market.

Richard Wilson, AuditComply
FST Soapbox

Why SaaS and Food Safety Are A Perfect Match

By Richard Wilson
No Comments
Richard Wilson, AuditComply

Food manufacturers, what’s keeping you up at night? What’s the one issue that could damage your reputation so badly that you lose customers? The answer: A food safety crisis that at best, requires your products to be recalled and at worst, puts valued consumers at risk.

Similarly, if you’re a global supply chain manager, what’s your number one worry? The answer: Maintaining continuous compliance with industry standards, meeting increased regulation requirements, or maybe it’s a key supplier failing their BRC audit?

Whatever it is, we all know food manufacturers are under increased pressure, facing multiple internal and external challenges in an ever-changing complex environment. Challenges such as price volatility, stronger competition, increasing customer demands, complex supply chains and globalization are all taking their toll.

Furthermore, to add to this increasing pressure, organizations are still relying on paper-based systems and manual processes to help manage their risk, quality and compliance, and even their environmental health and safety (EHS)! This approach is inefficient, makes the audit and compliance process costly and difficult to scale, while compromising quality and complicating traceability. It’s time to take advantage of the digital age and relieve the pain and pressure of traditional risk and compliance management with a SaaS (software as a service) solution.

What is SaaS (Software as a Service)?

SaaS providers use the internet to deliver their bespoke software offering, usually in the form of a subscription-based service with a monthly or annual fee. The main benefit of SaaS is the cloud, being cloud-based software, upgrades and fixes are managed by the software provider, reducing or eliminating the need for an IT infrastructure—all your data is readily available in real time, on one centralized platform. SaaS is delivering more visibility and mobility without hassling organizations with the details and streamlining software integration across the globe.

SaaS solutions have become a game changer in modern risk management, and the following points illustrate why.

Speed of Deployment

Food and beverage manufacturers require a SaaS solution for multi-site global deployment with complete local management. A SaaS solution will graft onto your business processes immediately. No additional IT hardware should be needed, which means you don’t waste your time procuring and installing an IT infrastructure for multiple sites to benefit. It’s important to remember that the food and beverage industry is moving fast, so if your chosen SaaS solution requires months or years to implement, you’re talking to the wrong people. There is a common saying at my company: “We don’t count in months or years, we count in hours and minutes”.

Providers that offer traditional, on-premise solutions, require extensive configuration and bespoke coding to map to the client’s needs. Long rollout and deployment cycles are inherently expensive to maintain and have poor user experience. This is the reason most consumers revert to Excel/Word and Sharepoint, ultimately losing the ability to manage consistently at scale across their real estate. With an RPM (risk and performance management) SaaS solution you can expect a fast deployment with a comprehensive and configurable enterprise workflow from day one.

Staying Up to Date Is Automatic

Your chosen SaaS provider manage your entire solution from their side, which means upgrades, fixes and customization requests are immediate and automatic. Again, reducing or eliminating, the resource needs of an IT infrastructure. Organizations will have the advantage of immediately being able to utilize the latest features the SaaS solution has to offer. These upgrades will often be driven by feedback from users as organizational and industry requirements change. On-going system development will be crucial to staying in, and assuring, compliance and risk mitigation.

As a food manufacturer, it is important that your SaaS solution comes with a comprehensive document control library—a feature that will always be automatically updated by your SaaS provider. When you are conducting assessments in the field, many users require the ability to refer back to specific document types such as manuals, procedures, work instructions and the latest standards or regulations. These documents should be all managed by your SaaS provider, with teams consistently reviewing and updating important industry documentation on the platform for any user out in the field.

Ease of Use

Proofs of concept are crucial. Living in a world where we have an abundant amount of choice, organizations need to know their chosen SaaS solution has the ability to meet requirements and demands of both the organization and industry. This is made easy with SaaS, allowing organizations to test the software functionality in advance of purchase. Even for large food manufacturers, SaaS offerings can be used to test the software before it is purchased, and there should be no limit to the amount of trial users. The right risk and performance platform will also allow your team to upload specific templates, allowing new users to be familiar with assessments provided on the platform, easing your transition to a digital format.

Mobility and 360o Visibility

For further flexibility, popular SaaS providers will offer their solution in mobile format. Assessments conducted on the platform should be seamlessly synchronized between smartphone, tablet and desktop, allowing you to start an assessment on one platform and then pick it up on another. Users are no longer restricted to one location and can access their robust platform from any device, online or offline. We know that many companies are operating in

harsh environments, whether it’s the scorching temperatures of the Sahara desert or the blistering wind chills of northern Canada—your SaaS solution needs to come equipped with the right tools. By utilizing SaaS mobile offerings, organizations gain full visibility of their risk profile, making room for a culture of continuous compliance whether they’re in the field or back at the office.

Scalability at a Lower Cost

Implementing a SaaS solution means all your data is securely stored in the cloud. This provides scalability to match organizational growth strategies. Food manufacturers can add more users as their business grows without ever thinking about changing the hardware or requiring a full IT department for assistance. However, although SaaS offerings are provided at a lower cost than traditional solutions, each platform has its own rates, so shop around for a solution that will best suit your budget and requirements.

Bottom Line

Cloud-based software models have made risk, quality and compliance more affordable and flexible, considerably improving and streamlining business processes worldwide. Next time you are evaluating a SaaS solution for your food and beverage organizations, remember, the providers are staking their own survival on the software platform working. Whether it’s the protection, security, availability or performance of your data. Providers want to make their platforms a hassle-free and secure option for any food manufacturer looking to thrive in this demanding industry.

Relieve the pain and pressure of traditional risk and compliance management: Realize your investment from day one.