Tag Archives: SOPs

James Davis, OSI Group
FST Soapbox

Applying Food Plant Sanitation Best Practices to Facility Janitorial Programs

By James T. Davis
No Comments
James Davis, OSI Group

The COVID-19 pandemic propelled food processors to scrutinize various aspects of their existing employee hygiene and environmental safety programs in an effort to protect facility workers’ health. Implementation of measures such as social distancing, illness screening, workspace barriers, additional personal protective equipment (PPE) and enhanced cleaning measures have aided the industry in reducing employee sickness and unplanned shutdowns.1 Of these actions, effective cleaning protocols in non-production areas, under the scope of facility janitorial programs, have been brought to heightened attention as a critical preventative measure for surface contamination of SARS-CoV-2.1 Through incorporation of the fundamental principles of sanitation programs utilized for food production zones, processors can elevate the effectiveness of their janitorial cleaning programs in non-production areas.

Scope of Janitorial Program

Food processing facilities should evaluate, using a risk-based assessment, all non-production areas that employees occupy on a routine basis, for inclusion into the janitorial cleaning program. Examples of areas that are routinely subject to high employee traffic and regular congregation include, but are not limited to, locker rooms, restrooms, break rooms, cafeterias, hallways, conference rooms and offices.

Additionally, specific surfaces within each of the identified non-production areas for inclusion into the program should also be evaluated in the risk-based assessment. Surfaces within these identified areas that are frequently touched, and present a greater likelihood of contamination to employees, would be considered higher-risk, and thus, command more focus during routine janitorial cleaning activities. Examples of such surfaces may include the following: Door handles, tables, desks, chairs, toilet and faucet handles, vending machines, phones, computers and other electronic devices.

Janitorial Best-Practice Examples

Sanitation Standard Operating Procedures
Sanitation standard operating procedures (SSOPs), or written cleaning instructions, should be developed for all janitorial cleaning tasks of selected employee and welfare areas, in a similar manner as those for production area equipment and infrastructure. These documents should contain pertinent information to effectively perform the desired janitorial tasks, such as the following: The individual(s) responsible for the task, appropriate chemicals, personal protective equipment (PPE) and other safety measures, frequency of cleaning, steps of cleaning execution and verification measures.

Chemical Selection & Use
Selection of chemicals for cleaning of employee and welfare areas is critically important in ensuring biological agents are effectively removed from surfaces during janitorial activities. Much like in production areas, the facility janitorial cleaning program should utilize an appropriate detergent suitable for removing residual surface soils as a base of the program. Inadequate removal of soils, such as grease or food debris in break rooms, will inhibit the effective removal of adverse biological agents.2 Additionally, the program should include an application of sanitizer or disinfectant to the target surface effective in neutralizing SARS-CoV-2.3

Cleaning Process & Frequency
An effective cleaning process for routine janitorial tasks can be modeled after the established Seven Steps of Sanitation commonly utilized in food production zones.4 Typical steps in this process applicable for janitorial cleaning should include: area preparation and dry cleaning, wiping surfaces with fresh water, application and wiping with detergent, removal of detergent with fresh water wiping, inspection verification activities and application of sanitizer or disinfectant to target surfaces for required dwell time (subsequent wiping of chemical after dwell time may be required). The frequency of cleaning and additional sanitizing activities should be validated and take into consideration times of employees breaks, level of non-production area occupancy and extent of employee contact with higher-risk surfaces. Additionally, individuals who performed the required cleaning tasks should ensure appropriate PPE is worn, not only to protect from chemicals utilized, but from biological agents that may be present on surfaces.

Master Sanitation Schedule
A master sanitation schedule, or MSS, encompassing janitorial cleaning activities that occur on a non-daily basis should be maintained either separately, or included in an existing sanitation schedule.

Sanitation, misting
Misting frequently touched surfaces with an additional disinfectant chemical approved to inactivate SARS-Cov-2. Image courtesy of OSI Group.

Examples of non-routine janitorial tasks may include:

  • Emptying and cleaning of personnel storage lockers
  • Cleaning of difficult-to-access surfaces for daily cleaning, such as ceilings, walls and around vending machines
  • Misting of frequently touched surfaces, or entire rooms, with an additional disinfectant chemical approved to inactivate SARS-Cov-2

The appropriate frequencies of these non-routine tasks should be validated through a risk-based assessment and continually verified to ensure effectiveness.

Employee Training
All employees who are required to perform routine and non-routine janitorial tasks should be fully trained and records maintained. This should not only include adequate training knowledge of required practices and documentation, but also chemical selection and handling specific to janitorial activities. Retention of knowledge should be verified and included in existing facility training programs. Routine auditing of the cleaning practices by facility personnel will ensure continued acceptable outcomes of the program.

Documentation

Completion of all janitorial cleaning activities should be documented and records maintained following similar practices for sanitation in production areas. As a best practice, documentation, such as checklists, should be made visible to employees who utilize the welfare areas as a means to convey facility hygiene practices and ease potential health concerns.

Validation & Verification of Cleaning Effectiveness
To ensure an established janitorial cleaning program for non-production areas is effective in achieving appropriate hygiene outcomes, the facility must validate and routinely verify the process. Validating the effectiveness of janitorial programs can be undertaken in much the same manner as performed for the traditional sanitation process in food production zones. A combination of visual inspection, environmental sampling and other methods should be utilized both during the validation and subsequent routine verification process. Specific to the COVID-19 pandemic, several contract laboratories offer surface environmental testing for SARS-CoV-2 (via RT-qPCR) that should be incorporated into janitorial validation and verification protocols.2,5 Routine absence of the virus will assist in demonstrating effectiveness of the facility janitorial cleaning program.

Conclusion

With the increased scrutiny of employee welfare during the COVID-19 pandemic, maintaining effective facility hygiene remains a critical goal of food processing facilities. Through incorporation of current sanitation best practices utilized in food production zones, facilities can elevate the outcomes of their janitorial cleaning programs, ensuring effective hygiene.

References

  1. North American Meat Institute. (November 12, 2020). Significant Events and Progress Involving the Meat and Poultry Industry during the COVID-19 Pandemic.
  2. American Society for Microbiology. (October 8, 2020). Detecting SARS-CoV-2 in the Environment.
  3. United States Environmental Protection Agency. (November 25, 2020). List N: Disinfectants for Coronavirus (COVID-19).
  4. International Association of Food Protection. (December 7, 2017). Cleaning, Sanitizing and the Seven Steps of Sanitation [Webinar].
  5.  IEH Laboratories & Consulting Group. (December 2020). SARS CoV-2 Environmental Monitoring.
Allison Kopf, Artemis

How Technologies for Cultivation Management Help Growers Avoid Food Safety Issues

By Maria Fontanazza
No Comments
Allison Kopf, Artemis

Visibility, accountability and traceability are paramount in the agriculture industry, says Allison Kopf, founder and CEO of Artemis. In a Q&A with Food Safety Tech, Kopf explains how growers can take advantage of cultivation management platforms to better arm them with the tools they need to help prevent food safety issues within their operations and maintain compliance.

Food Safety Tech: What are the key challenges and risks that growers face in managing their operations?

Allison Kopf: One of the easiest challenges for growers to overcome is how they collect and utilize data. I’ve spent my entire career in agriculture, and it’s been painful to watch operations track all of their farm data on clipboards and spreadsheets. By not digitizing processes, growers become bogged down by the process of logging information and sifting through old notebooks for usable insights—if they even choose to do that.

Allison Kopf, Artemis
Allison Kopf is the founder and CEO of Artemis, a cultivation management platform serving the fruit, vegetable, floriculture, cannabis, and hemp industries. She is also is an investment partner at XFactor Ventures and serves on the boards of Cornell University’s Controlled Environment Agriculture program and Santa Clara University’s College of Arts and Sciences.

I was visiting a farm the other day and the grower pulled out a big binder. The binder contained all of his standard operating procedures and growing specifications for the varieties he’s grown over the past 20 years. Then he pulled out a pile of black notebooks. If you’ve ever worked on a farm, you’d recognize grower notebooks anywhere. They’re used to log data points such as yield, quality and notes on production. These notebooks sit in filing cabinets with the hopeful promise of becoming useful at some point in the future—to stop production from falling into the same pitfalls or to mirror successful outcomes. However, in reality, the notebooks never see the light of day again. The grower talked about the pain of this process—when he goes on vacation, no one can fill his shoes; when he retires, so does the information in his head; when auditors come in, they’ll have to duplicate work to create proper documentation; and worse, it’s impossible to determine what resources are needed proactively based on anything other than gut. Here’s the bigger issue: All of the solutions are there; they’re just filed away in notebooks sitting in the filing cabinet.

Labor is the number one expense for commercial growing operations. Unless you’re a data analyst and don’t have the full-time responsibilities of managing a complex growing operation, spreadsheets and notebooks won’t give you the details needed to figure out when and where you’re over- or under-staffing. Guessing labor needs day-to-day is horribly inefficient and expensive.

Another challenge is managing food safety and compliance. Food contamination remains a huge issue within the agriculture industry. E. coli, Listeria and other outbreaks (usually linked to leafy greens, berries and other specialty crops) happen regularly. If crops are not tracked, it can take months to follow the contamination up the chain to its source. Once identified, growers might have to destroy entire batches of crops rather than the specific culprit if they don’t have appropriate tracking methods in place. This is a time-consuming and expensive waste.

Existing solutions that growers use like ERPs are great for tracking payroll, billing, inventory, logistics, etc., but the downside is that they’re expensive, difficult to implement, and most importantly aren’t specific to the agriculture industry. The result is that growers can manage some data digitally, but not everything, and certainly not in one place. This is where a cultivation management platform (CMP) comes into play.

FST: How are technologies helping address these issues?

Kopf: More and more solutions are coming online to enable commercial growers to detect, prevent and trace food safety issues, and stay compliant with regulations. The key is making sure growers are not just tracking data but also ensuring the data becomes accessible and functional. A CMP can offer growers what ERPs and other farm management software can’t: Detailed and complete visibility of operations, labor accountability and crop traceability.

A CMP enables better product safety by keeping crop data easily traceable across the supply chain. Rather than having to destroy entire batches in the event of contamination, growers can simply trace it to the source and pinpoint the problem. A CMP greatly decreases the time it takes to log food safety data, which also helps growers’ bottom line.

CMPs also help growers manage regulatory compliance. This is true within the food industry as well as the cannabis industry. Regulations surrounding legal pesticides are changing all the time. It’s difficult keeping up with constantly shifting regulatory environment. In cannabis this is especially true. By keeping crops easily traceable, growers can seamlessly manage standard operating procedures across the operation (GAP, HACCP, SQF, FSMA, etc.) and streamline audits of all their permits, licenses, records and logs, which can be digitized and organized in one place.

FST: Where is the future headed regarding the use of technology that generates actionable data for growers? How is this changing the game in sustainability?

Kopf: Technology such as artificial intelligence and the internet of things are changing just about every industry. This is true of agriculture as well. Some of these changes are already happening: Farmers use autonomous tractors, drones to monitor crops, and AI to optimize water usage.

As the agriculture industry becomes more connected, the more growers will be able to access meaningful and actionable information. Plugging into this data will be the key for growers who want to stay profitable. These technologies will give them up-to-the-second information about the health of their crops, but will also drive their pest, labor, and risk & compliance management strategies, all of which affect food safety.

When growers optimize their operations and production for profitability, naturally they are able to optimize for sustainability as well. More gain from fewer resources. It costs its customers less money, time and hassle to run their farms and it costs the planet less of its resources.

Technology innovation, including CMPs, enable cultivation that will provide food for a growing population despite decreasing resources. Technology that works both with outdoor and greenhouse growing operations will help fight food scarcity by keeping crops growing in areas where they might not be able to grow naturally. It also keeps production efficient, driving productivity as higher yields will be necessary.

Beyond scarcity, traceability capabilities enforce food security which is arguable the largest public health concern across the agricultural supply chain. More than 3,000 people die every year due to foodborne illness. By making a safer, traceable supply chain, new technology that enables growers to leverage their data will protect human life.

Data protection, security

The Digital Transformation of Global Food Security

By Katie Evans
No Comments
Data protection, security

Modern food supply chains are inherently complex, with products typically passing through multiple suppliers and distributors, as well as countries and continents, before they end up on the supermarket shelf. While global supply chains offer consumers greater choice and convenience, they also make protecting the security of food products more challenging. With additional stakeholders between farm and fork, products are exposed to an elevated risk of biological or chemical contamination, as well as food counterfeiting and adulteration challenges—potentially putting consumer health and brand reputation in jeopardy.

Given the importance of maintaining the safety, quality and provenance of food products, global regulatory bodies are placing the integrity of supply chains under increased scrutiny. In the United States, for example, the adoption of FSMA moved the focus from responding to foodborne illnesses to preventing them by prioritizing comprehensive food testing measures, enforcing inspections and checks, and enabling authorities to react appropriately to safety issues through fines, recalls or permit suspensions.1 Similarly, China’s revised Food Safety Law (known as FSL 2015) is widely considered to be the strictest in the country’s history, and seeks to drive up quality standards by empowering regulators, and enhancing traceability and accountability through robust record-keeping. 2 The European Union continues to closely regulate and monitor food safety through its General Food Law, which is independently overseen by the European Food Safety Authority from a scientific perspective.

Achieving the Highest Standards of Food Security, Integrity and Traceability

For producers, manufacturers and distributors, the heightened regulatory focus on the security and integrity of the food supply chain has placed additional emphasis on accurate record-keeping, transparent accountability and end-to-end traceability. To meet the needs of the modern regulatory landscape, food chain stakeholders require robust systems and tools to manage their quality control (QC), environmental monitoring and chain of custody data. Despite this, many businesses still handle this information using paper-based approaches or localized spreadsheets, which can compromise operational efficiency and regulatory compliance.

The fundamental flaw of these traditional data management approaches is their reliance on manual data entry and transcription steps, leaving information vulnerable to human error. To ensure the accuracy of data, some companies implement resource-intensive verification or review checks. However, these steps inevitably extend workflows and delay decision-making, ultimately holding up the release of products at a high cost to businesses. Moreover, as paper and spreadsheet-based data management systems must be updated by hand, they often serve merely as a record of past events and are unable to provide insight into ongoing activities. The time lag associated with recording and accessing supply chain information means that vital insight is typically unavailable until the end of a process, and data cannot be used to optimize operations in real-time.

Furthermore, using traditional data management approaches, gathering information in the event of an audit or food safety incident can be extremely challenging. Trawling through paperwork or requesting information contained in spreadsheets saved on local computers is time-consuming and resource-intensive. When it comes to establishing accountability for actions, these systems are often unable to provide a complete audit trail of events.

Digital Solutions Transform Food Security and Compliance

Given the limitations of traditional workflows, food supply chain stakeholders are increasingly seeking more robust data management solutions that will allow them to drive efficiency, while meeting the latest regulatory expectations. For many businesses, laboratory information management systems (LIMS) are proving to be a highly effective solution for collecting, storing and sharing their QC, environmental monitoring and chain of custody data.

One of the most significant advantages of managing data using LIMS is the way in which they bring together people, instruments, workflows and data in a single integrated system. When it comes to managing the receipt of raw materials, for example, LIMS can improve overall workflow visibility, and help to make processes faster and more efficient. By using barcodes, radiofrequency identification (RFID) tags or near-field communication, samples can be tracked by the system throughout various laboratory and storage locations. With LIMS tracking samples at every stage, ingredients and other materials can be automatically released into production as soon as the QC results have been authorized, streamlining processes and eliminating costly delays.

By storing the standard operating procedures (SOPs) used for raw material testing or QC centrally in a LIMS, worklists, protocols and instrument methods can be automatically downloaded directly to equipment. In this way, LIMS are able to eliminate time-consuming data entry steps, reducing the potential for human error and improving data integrity. When integrated with laboratory execution systems (LES), these solutions can even guide operators step-by-step through procedures, ensuring SOPs are executed consistently, and in a regulatory compliant manner. Not only can these integrated solutions improve the reliability and consistency of data by making sure tests are performed in a standardized way across multiple sites and testing teams, they can also boost operational efficiency by simplifying set-up procedures and accelerating the delivery of results. What’s more, because LIMS can provide a detailed audit trail of all user interactions within the system, this centralized approach to data management is a robust way of ensuring full traceability and accountability.

This high level of operational efficiency and usability also extends to the way in which data is processed, analyzed and reported. LIMS platforms can support multi-level parameter review and can rapidly perform calculations and check results against specifications for relevant customers. In this way, LIMS can ensure pathogens, pesticides and veterinary drug residues are within specifications for specific markets. With all data stored centrally, certificates of analysis can be automatically delivered to enterprise resource planning (ERP) software or process information management systems (PIMS) to facilitate rapid decision-making and batch release. Furthermore, the sophisticated data analysis tools built into the most advanced LIMS software enable users to monitor the way in which instruments are used and how they are performing, helping businesses to manage their assets more efficiently. Using predictive algorithms to warn users when principal QC instruments are showing early signs of deterioration, the latest LIMS can help companies take preventative action before small issues turn into much bigger problems. As a result, these powerful tools can help to reduce unplanned maintenance, keep supply chains moving, and better maintain the quality and integrity of goods.

While LIMS are very effective at building more resilient supply chains and preventing food security issues, they also make responding to potential threats much faster, easier and more efficient. With real-time access to QC, environmental monitoring and chain of custody data, food contamination or adulteration issues can be detected early, triggering the prompt isolation of affected batches before they are released. And in the event of a recall or audit, batch traceability in modern LIMS enables the rapid retrieval of relevant results and metadata associated with suspect products through all stages of production. This allows the determination of affected batches and swift action to be taken, which can be instrumental in protecting consumer safety as well as brand value.

Using LIMS to Protect Security and Integrity of the Food Supply Chain

Increasingly, LIMS are helping businesses transform food security by bringing people, instruments and workflows into a single integrated system. By simplifying and automating processes, providing end-to-end visibility across the food supply chain, and protecting the integrity of data at every stage, these robust digital solutions are not only helping food supply chain stakeholders to ensure full compliance with the latest regulations; they are enabling businesses to operate more efficiently, too.

References

  1. FDA. (2011). FDA Food Safety Modernization Act. Accessed October 3, 2019. Retrieved from https://www.fda.gov/food/food-safety-modernization-act-fsma/full-text-food-safety-modernization-act-fsma.
  2. Balzano, J. (2015). “Revised Food Safety Law In China Signals Many Changes And Some Surprises”. Forbes. Accessed October 3, 2019. Retrieved from https://www.forbes.com/sites/johnbalzano/2015/05/03/revised-food-safety-law-in-china-signals-many-changes-and-some-surprises/#624b72db6e59.
Brian Sharp, SafetyChain Software
FST Soapbox

How Industry 4.0 Affects Food Safety and Quality Management

By Brian Sharp
No Comments
Brian Sharp, SafetyChain Software

The food and beverage industry is moving towards a fully connected production system with more methods available to automate data collection than ever before. But with all the promises of Industry 4.0, what are the true capabilities of communicating real-time plant floor insights? This article will explain how better capturing methods and analysis can drive data-driven decision making to optimize safety, quality and efficiency in food and beverage operations.

What Is Industry 4.0?

The term Industry 4.0 has many pseudonyms, such as Industrial Internet of Things, Manufacturing 4.0, and Smart Manufacturing, but they generally all refer to the idea that manufacturers will be able to connect all operations in their plants. Where the name Industry 4.0 comes into play is the thought that manufacturing is in its fourth wave of change. In the 1780s, the first industrial revolution started with machines and the “production line” and evolved to mass production in the 1870s; manufacturing entered into a new wave after the 1950s when automation was introduced.

In this current fourth wave of manufacturing, new technology is driving the change in production and the capabilities of what can be accomplished in facilities. A report from Deloitte Insights entitled “The Smart Factory” explains this new way of operations as “ a leap forward from more traditional automation to a fully connected and flexible system—one that can use a constant stream of data from connected operations and production systems to learn and adapt to new demands.”

By way of more sensors, connectivity, analytics, and breakthroughs in robotics and artificial intelligence, the future food and beverage plants will be able to meet customers’ demands for higher-quality products while increasing productivity. However, there is a stark reality that many food and beverage manufacturing facilities are over 50 years old and dealing with legacy equipment. And if an investment in new technology is made, often it is made because food and beverage plants need to reach compliance or fill a customer’s requirement.

“Regulatory compliance is huge,” says Steve Hartley of Matrix Control Systems during a recent SafetyChain webinar. “But if you are able to attach additional business value to that compliance, then incorporating technology into the organization becomes a lot easier.”

For instance, new technology that can help a facility follow regulated processes in food manufacturing can also help to create more consistency and increase the quality of your products. Additionally, if input from the entire organization is collected when investing in more technology and automation, then multiple departments will support the budget costs.

“One of the big things that we see happening with our customers is that they are digging into that production equipment,” says Hartley. “Lots of food manufacturing facilities are filled with all sorts of wonderful processing equipment, but leveraging not only the manufacturing capabilities, but also the data collection capabilities of that equipment is really powerful.”

What Automated Data collection Systems Can Do

Because large food and beverage companies sell a high volume of goods to a large number of customers, many have already automated their data collection. These facilities also receive goods from an intricate supply chain that spans vast distribution networks, thus making automated data collection from receiving all the way through shipping a necessity.

However, many companies are going beyond this and integrating production equipment on the plant floor to provide a deeper level of production and quality data. These types of operations are generally interested in going beyond just being in regulatory compliance, but working on their continuous improvement. What this data can do is to provide better data for better decision making. By knowing what parts of the plant are operating optimally and what areas aren’t, plant managers can to make changes that will unlock more potential from the production line.

Getting the most out of operations is one of the most frequently cited needs of food and beverage manufacturers. The best way to do this is to drive plant efficiencies, which means measuring performance, setting baselines and goals, and holding employees accountable. The key here is to not confine efficiencies to just one area of the facility, but to broaden the scope to include end-to-end processes, from supplier to customer.

“Take a scope that is relevant to everyone and that is relevant to the strategy of the company,” states Daniel Campos of London Consulting Group. A company’s overall strategy should drive the focus of all departments. No one lives in a silo, and every part of your operations affects all the other parts. So any one area that is falling below the goal set takes away value from the system as a whole. This becomes more crucial as the enterprise grows even more connected and dependent on data from each other.

Shortfalls of Industrial Automation Systems

When evaluating the scope of an operation, all areas of the plant should be assessed in terms of how data is being collected. Part of this information assessment is to learn what processes aren’t covered by automated data collection. This includes equipment without sensors that can record accurate measurements and readings.

Another area that should be identified as an entry point for possible faulty or incorrect data is where an operator is required to input information. Some of this might be simply validating that SOPs were followed, such as whether a piece of equipment was cleaned or not and if detergents were actually changed when required.

The quality and fidelity of the data is directly related to the effectiveness of the decisions made. As the saying goes, “Garbage in, garbage out.” But even good data alone doesn’t drive value, but rather information gleaned from the facts collected is where the true benefits can be harnessed to improve the food safety and quality of products produced.

So, if data is analyzed and found not to conform to a desired specification, then the goal is to find out why this is happening. Is the data being collected accurate? If not, why? If it is accurate, then what else is going on?
Additionally, the speed and complexity of today’s food processing plants requires this data to not just be in real time, but able to be captured in smaller increments to make better decisions. This type of data that is collected and analyzed infrequently can slip through the cracks because systems to collect and manage this category can be hard to find, unlike industrial automation systems.

One solution to this problem can be found in capturing data via mobile devices. Tablets and phones moving through the plant with operators can help collect information at the source. Plus, these devices enable managers and executives to see critical control point data as well as summaries of operational performance and out-of-spec occurrences, anytime and anywhere.

As food and beverage manufacturing plants continue to automate their data collection and increasingly connect their production processes, more data will come online in a multitude of ways, allowing for better decision making. Ultimately, this is the promise of Industry 4.0 and why digital transformation promises a higher level of food safety and quality in the future.

Why Should Food Manufacturers Consider Lab Automation?

By Dr. Christine Paszko
No Comments

Food manufacturers that think strategically understand that labor efficiency is a measure of how effectively a workforce completes a task in comparison to industry. Companies frequently access efficiency and other metrics to identify weak points in their operations, with the end goal of enhancing data quality and streamlining costs. This approach has led many food and beverage manufacturers to embrace lean manufacturing and six sigma programs in their organizations. These leaders have a clear understanding that labor is money (or money is stored labor), and money equals margins. Food and beverage manufacturers often acquire several raw materials and convert them into finished products for consumers to purchase. These manufacturers have found that robotics and automation have greatly increased productivity and enhanced product quality while maximizing resources and profitability.

LIMS offer a variety of benefits. Image courtesy of ATL
LIMS offer a variety of benefits. Image courtesy of ATL

Ease Operations with Automation

Analytical testing laboratories within food manufacturing firms leverage LIMS to realize automation savings. LIMS is an acronym for Laboratory Information Management System, which can also be a manual paper/Excel based solution, however, this article will focus on completely automated, computerized, enterprise, software solutions. Manual systems are cumbersome, costly, and lack efficiency.

Just as automation and robotics have transformed the food manufacturing process, intelligent laboratory operations leverage LIMS, because it enables increased quality and faster turnaround, while providing significant cost savings. LIMS are computerized systems that organize, manage and communicate all of the laboratory test data and related information such as Standard Operating Procedures (SOPs) and Certificates of Analysis (COAs), final analysis reports, invoices, nutritional labels, formulations and information to support an organization’s operations and meet regulatory compliance goals.

Traditional LIMS facilitate overall laboratory organization, from sample management to test data to final reporting and disposal. LIMS begin with sample management and typically the generation of barcoded labels (of a unique identification number), testing is automatically assigned based on project or sample type (Note: Additional tests can be added or deleted, and ad hoc samples can also be logged). Some laboratories test all raw materials that arrive to confirm acceptance criteria against the COA, in addition to in-process, final product testing and environmental testing. Once samples are logged into the system, worklists are created in the LIMS of the samples to be run and the information is scanned via barcode and sent to the instrument controller. Tests that include associated quality control data are run by loading instruments. Results are electronically imported back into the LIMS from instrumentation (this is the most common and most efficient method). For manual, subjective tests that require interpretation, results must be entered into the LIMS by hand. Managers can also manage and track samples that have been subcontracted to other laboratories (i.e., for testing capabilities that do not exist internally). Once the subcontracted data is submitted back to the laboratory in an electronic format, it can be directly imported into the LIMS, and all data related to the sample is stored in a single, secure database.

Automation significantly reduces cost, enhances quality and provides a means to rapidly scale production. This image shows a cheese processing plant. Image courtesy of ATL
Automation significantly reduces cost, enhances quality and provides a means to rapidly scale production. This image shows a cheese processing plant. Image courtesy of ATL

This approach offers a major advantage, especially to global operations, due to the ability to deliver real-time data across an enterprise. End-users can leverage the technology to make intelligent buying decisions based on product specifications of incoming raw materials, customer demand, specification criteria and blending simulations.

Managers can view a variety of metrics, including the number of samples that have been run for a particular product, statistical process control charts, instruments in service for workload management, and supplier performance in any given period. Complete product traceability is possible.

LIMS has evolved to manage many additional functions, such as communications with ERP/SAP systems, shelf life studies, performing skip lot testing, formulations, and field and plant data collection by integration with tablets and smartphones for real-time updates, managing competitive analysis data as well as special projects. A few of the major areas in which LIMS are leveraged include:

  1. Sample management of all testing initiated
  2. Quality assurance (including in process quality checks)
  3. Workflow management (optimization of processes)
  4. Regulatory compliance (FSMA, GFSI, HACCP, FDA)
  5. Specification management, formulations and blending
  6. Dashboards for real-time updates (in a single site or across operations)
  7. Customer relationship management (organizing and responding to customer inquiries)
  8. Reporting (COA, final analysis and invoice reports)
  9. Inventory management and product release

Enabling Standardization

A LIMS not only enhances communication across a laboratory, but also across a global organization with multiple sites, ensuring effective cooperation and relationships between suppliers, production and customers. A LIMS promotes standardization in global firms and gives management teams real-time data access from site to site, so that data is readily available for better management and resource allocation decisions. Standardization makes business and financial sense, as organizations can realize cost savings in buying testing equipment and supplies in larger quantities, exchanging staff to different sites (potentially reducing training costs), and managing a user-friendly, single secure database that supports localization (each site can implement LIMS in its native language). Standardization does not mean that systems must be ridged; each facility can leverage its own unique workflows and terminology while saving data to a standard database format.

A LIMS can manage an entire organization’s laboratory SOPs or work instructions, and documents associated with the following:

  • Laboratory testing
  • Assets
  • Inventory
  • Laboratory chemicals
  • Supplies
  • Formulations
  • Blending
  • Automated calculations
  • Customer interactions
  • Employee training records
  • Laboratory instrumentation
  • Purchase orders
  • Sample storage
  • Reporting
  • Invoicing
  • Facilitating governmental laboratory compliance requirements

Today, LIMS’ have expanded to manage all aspects of laboratory operations and have significant overlap with ERP, SAP systems and other enterprise solutions. The goal is to move away from multiple separate databases and distinct islands to one centralized data management solution. Amazingly, some laboratories do not make the investment in new LIMS technology and continue use in-house created database systems, manual paper systems and Excel spreadsheets (or a combination of these systems) to manage portions of the critical product testing data. These systems are often costly, labor intensive, subject to data loss, and difficult to manage and maintain.

A LIMS ensures that analytical resources have been best utilized to maximize productivity and efficiency to generate high-quality data to support operations, while facilitating regulatory compliance goals. Organizations that embrace quality often leverage technology such as LIMS, and typically hold ISO 17025 certification and embrace six sigma, lean manufacturing and other best practices.

Robotics has transformed food manufacturing to allow greater volumes of final product to be produced, with an emphasis on speed, standardization, consistent product quality and volume, with increased efficiency and cost savings. LIMS’ have transformed the manufacturing process and the laboratory analysis process from raw material testing to in-process /environmental testing and finished product testing. For example, on-line monitors can feed data into an LIMS (i.e. flow, temperature from freezers or incubators), and if there are any alarming data points, instant notification is provided to the team via email or a phone call. This rapid response saves time for a corrective action to be put into place. Within the laboratory, if a shelf life study is underway and the incubator fails, an alert can be sent after one out-of-range temperature measurement, allowing the problem to be corrected and the study saved, versus having to start over.

The analytical testing group in any food and beverage testing facility generates hundreds, thousands, even millions of data points a year. They gather data on raw materials (based on COAs), in-process manufacturing (quality checks, statistical process control and specification confirmation), environmental monitoring, and finished product testing as well as performing competitive analysis. These are some of the main areas that are impacted by sample collection and testing. LIMS and laboratory automation have transformed the way that data is collected, monitored and analyzed. Today’s LIMS’ are based on modern technology, providing a valuable tool to ensure that product is within specification, and collected and disseminated in real-time to improve efficiency, reduce costs, increase profitability.