Tag Archives: standardization

Arun Apte, CloudLIMS
In the Food Lab

Is Your Food Testing Lab Prepping for an ISO/IEC 17025 Audit?

By Arun Apte
No Comments
Arun Apte, CloudLIMS

With the increasing globalization of the food industry, ensuring that products reaching consumers are safe has never been more important. Local, state and federal regulatory agencies are increasing their emphasis on the need for food and beverage laboratories to be accredited to ISO/IEC 17025 compliance. This complicated process can be simplified and streamlined through the adoption of LIMS, making accreditation an achievable goal for all food and beverage laboratories.

With a global marketplace and complex supply chain, the food industry continues to face increasing risks for both unintentional and intentional food contamination or adulteration.1 To mitigate the risk of contaminated products reaching consumers, the International Organization for Standardization (ISO), using a consensus-based approval process, developed the first global laboratory standard in 1999 (ISO/IEC 17025:1999). Since publication, the standard has been updated twice, once in 2005 and most recently in 2017, and provides general requirements for the competence of testing and calibration laboratories.2

In the recent revision, four key updates were identified:

  1. A revision to the scope to include testing, calibration and sampling associated with subsequent calibration and testing performed by a laboratory.3
  2. An emphasis on the results of a process instead of focusing on prescriptive procedures and policies.4
  3. The introduction of the concept of a risk-based approach used in production quality management systems.2
  4. A stronger focus on information technologies/management systems, specifically Laboratory Information Management System (LIMS).4

As modern-day laboratories reduce their reliance on hard copy documents and transition to electronic records, additional emphasis and guidance for ISO 17025 accreditation in food testing labs using LIMS was greatly needed. Food testing laboratories have increased reliance on LIMS to successfully meet the requirements of accreditation. Food and beverage LIMS has evolved to increase a laboratory’s ability to meet all aspects of ISO 17025.

ISO 17025 requirements
Figure 1. A schematic representation of some of the requirements of ISO/IEC 17025:2017 compliance. (Figure courtesy CloudLIMS)

Traceability

Chain of Custody
A key element for ISO 17025 accredited laboratories is the traceability of samples from accession to disposal.5 Sometimes referred to as chain of custody, properly documented traceability allows a laboratory to tell the story of each sample from the time it arrives until the time it is disposed of.

LIMS software allows for seamless tracking of samples by employing unique sample accession numbers through barcoding processes. At each step of sample analysis, a laboratory technician updates data in a LIMS by scanning the sample barcode, establishing time and date signatures for the analysis. During an ISO 17025 audit, this information can be quickly obtained for review by the auditor.

Procurement and Laboratory Supplies
ISO 17025 requires the traceability of all supplies or inventory items from purchase to usage.6 This includes using approved vendors, documentation of receipt, traceability of supply usage to an associated sample, and for certain products, preparation of supply to working conditions within the laboratory. Supply traceability impacts multiple departments and coordinating this process can be overwhelming. A LIMS for food testing labs helps manage laboratory inventory, track usage of inventory items, and automatically alerts laboratory managers to restock inventory once the quantity falls below a threshold level.

A food LIMS can ensure that materials are ordered from approved vendors only, flagging items purchased outside this group. As supplies are inventoried into LIMS, the barcoding process can ensure accurate storage. A LIMS can track the supply through its usage and associate it with specific analytical tests for which inventory items are utilized. As products begin to expire, a LIMS can notify technicians to discard the obsolete products.

One unique advantage of a fully integrated LIMS software is the preparation and traceability of working laboratory standards. A software solution for food labs can assist a technician in preparing standards by determining the concentration of solvents needed based on the input weight from a balance. Once prepared, LIMS prints out a label with barcodes and begins the supply traceability process as previously discussed.

Quality Assurance of Test and Calibration Data

This section of ISO 17025 pertains to the validity of a laboratory’s quality system including demonstrating that appropriate tests were performed, testing was conducted on properly maintained and calibrated equipment by qualified personnel, and with appropriate quality control checks.

Laboratory Personnel Competency
Laboratory personnel are assigned to a specific scope of work based upon qualifications (education, training and experience) and with clearly defined duties.7 This process adds another layer to the validity of data generated during analysis by ensuring only appropriate personnel are performing the testing. However, training within a laboratory can be one of the most difficult components of the accreditation process to capture due to the rapid nature in which laboratories operate.

With a food LIMS, management can ensure employees meet requirements (qualifications, competency) as specified in job descriptions, have up-to-date training records (both onboarding and ongoing), and verify that only qualified, trained individuals are performing certain tests.

Calibration and Maintenance of Equipment
Within the scope of ISO 17025, food testing laboratories must ensure that data obtained from analytical instruments is reliable and valid.5 Facilities must maintain that instruments are in correct operating condition and that calibration data (whether performed daily, weekly, or monthly) is valid. As with laboratory personnel requirements, this element to the standard adds an additional layer of credibility that sample data is precise, accurate, and valid.

A fully integrated software solution for food labs sends a notification when instrument calibration is out of specification or expired and can keep track of both routine internal and external maintenance on instruments, ensuring that instruments are calibrated and maintained regularly. Auditors often ask for instrument maintenance and calibration records upon the initiation of an audit, and LIMS can swiftly provide this information with minimal effort.

Figure 2. A preconfigured food LIMS to manage instrument calibration and maintenance data. (Figure courtesy of CloudLIMS)

Measurement of Uncertainty (UM)
Accredited food testing laboratories must measure and report the uncertainty associated with each test result.8 This is accomplished by using certified reference materials (CRM), or known spiked blanks. UM data is trended using control charts, which can be prepared using labor-intensive manual input or performed automatically using LIMS software. A fully integrated food LIMS can populate control data from the instrument into the control chart and determine if sample data analyzed in that batch can be approved for release.

Valid Test Methods and Results
Accurate test and calibration results can only be obtained with methods that are validated for the intended use.5 Accredited food laboratories should use test methods that are current and contain embedded quality control standards.

A LIMS for food testing labs can ensure correct method selection by technicians by comparing data from the sample accession input with the test method selected for analysis. Specific product identifiers can indicate if methods have been validated. As testing is performed, a LIMS can track time signatures to ensure protocols are properly performed. At the end of the analysis, results of the quality control samples are linked to the test samples to ensure only valid results are available for clients. Instilling checks at each step of the process allows a LIMS to auto-generate Certificates of Analysis (CoA) knowing that the testing was performed accurately.

Data Integrity
The foundation of a laboratory’s reputation is based on its ability to provide reliable and accurate data. ISO 17025:2017 includes specific references to data protection and integrity.10 Laboratories often claim within their quality manuals that they ensure the integrity of their data but provide limited details on how it is accomplished making this a high priority review for auditors. Data integrity is easily captured in laboratories that have fully integrated their instrumentation into LIMS software. Through the integration process, data is automatically populated from analytical instruments into a LIMS. This eliminates unintentional transcription errors or potential intentional data manipulation. A LIMS for food testing labs restricts access to changing or modifying data, allowing only those with high-level access this ability. To control data manipulation even further, changes to data auto-populated in LIMS by integrated instrumentation are tracked with date, time, and user signatures. This allows an auditor to review any changes made to data within LIMS and determine if appropriate documentation was included on why the change was made.

Sampling
ISO 17025:2017 requires all food testing laboratories to have a documented sampling plan for the preparation of test portions prior to analysis. Within the plan, the laboratory must determine if factors are addressed that will ensure the validity of the testing, ensure that the sampling plan is available to the laboratory (or the site where sampling is performed), and identify any preparation or pre-treatment of samples prior to analysis. This can include storage, homogenization (grinding/blending) or chemical treatments.9

As sample information is entered into LIMS, the software can specify the correct sampling method to be performed, indicate appropriate sample storage conditions, restrict the testing to approved personnel and provide electronic signatures for each step.

Monitoring and Maintenance of the Quality System

Organization within a laboratory’s quality system is a key indicator to assessors during the audit process that the facility is prepared to handle the rigors that come with accreditation.10 Assessors are keenly aware of the benefits that a food LIMS provides to operators as a single, well-organized source for quality and technical documents.

Document Control
An ISO 17025 accredited laboratory must demonstrate document control throughout its facility.6 Only approved documents are available for use in the testing facility, and the access to these documents is restricted through quality control. This reduces the risk of document access or modification by unauthorized personnel.

LIMS software efficiently facilitates this process in several ways. A food LIMS can restrict access to controlled documents (both electronic and paper) and require electronic signatures each time approved personnel access, modify or print them. This digital signature provides a chain of custody to the document, ensuring that only approved controlled documents are used during analyses and that these documents are not modified.

Software, LIMS
Figure 3. A software solution for food labs helps manage documents, track their revision history, and ensure document control. (Figure courtesy of CloudLIMS)

Corrective Actions/Non-Conforming Work
A fundamental requirement for quality systems is the documentation of non-conforming work, and subsequent corrective action plans established to reduce their future occurrence.5

A software solution for food labs can automatically maintain electronic records of deviations in testing, flagging them for review by quality departments or management. After a corrective action plan has been established, LIMS software can monitor the effectiveness of the corrective action by identifying similar non-conforming work items.

Conclusion

Food and beverage testing laboratories are increasingly becoming accredited to ISO 17025. With recent changes to ISO 17025, the importance of LIMS for the food and beverage industry has only amplified. A software solution for food labs can integrate all parts of the accreditation process from personnel qualification, equipment calibration and maintenance, to testing and methodologies.11 Fully automated LIMS increases laboratory efficiency, productivity, and is an indispensable tool for achieving and maintaining ISO 17025 accreditation.

References

  1. Spink, J. (2014). Safety of Food and Beverages: Risks of Food Adulteration. Encyclopedia of Food Safety (413-416). Academic Press.
  2. International Organization for Standardization (October 2017). ISO/IEC 17025 General requirements for the competence of testing and calibration laboratories. Retrieved from: https://www.iso.org/files/live/sites/isoorg/files/store/en/PUB100424.pdf
  3. 17025 Store (2018). Transitioning from ISO 17025:2005 to ISO/IEC 17024:2017. Standards Store.
  4. Perry Johnson Laboratory Accreditation (2019). An Overview of Changes Between 17025:2005 and 17025:2017. ISO/IEC 17025:2017 Transition. https://www.pjlabs.com/downloads/17025-Transition-Book.pdf
  5. Analytical Laboratory Accreditation Criteria Committee. (2018). AOAC INTERNATIONAL Guidelines for Laboratories Performing Microbiological and Chemical Analyses of Food, Dietary Supplements, and Pharmaceuticals, An Aid to Interpretation of ISO/IEC 17025. Oxford, England: Oxford University Press.
  6. Cokakli, M. (September 4, 2020). Transitioning to ISO/IEC 17025:2017. New Food Magazine.
  7. ISO/IEC 17025:2017. General requirements for the competence of testing and calibration laboratories.
  8. Bell, S. (1999). A Beginner’s Guide to Uncertainty of Measurement. Measurement Good Practice Guide. 11 (2).
  9. 17025Store (2018). Clause 7: Process requirements. Standards Store.
  10. Dell’Aringa, J. (March 27, 2017). Best Practices for ISO 17025 Accreditation: Preparing for a Food Laboratory Audit (Part I). Food Safety Tech.
  11. Apte, A. (2020). Preparing for an ISO 17025 Audit: What to Expect from a LIMS?
Selvarani Elahi, Food Authenticity Network
Food Fraud Quick Bites

Food Fraud Information Sharing

By Karen Everstine, Ph.D., Selvarani Elahi
No Comments
Selvarani Elahi, Food Authenticity Network

Coordination among the various agencies and laboratories responsible for food safety is an ongoing challenge. Coordination and standardization of laboratories and methods related to food authenticity testing can be even more challenging. As noted in the Elliott Review into the Integrity and Assurance of Food Supply Networks (conducted following the 2013 horsemeat incident):

“Official controls of food authenticity require a wide range of analytical and molecular biological techniques, many with exacting instrumentation requirements and in-depth scientific interpretation of the datasets generated. No single institution…could field the complete range of such techniques with the required expertise.”

One of the recommendations in Elliott Review was the establishment of an “Authenticity Assurance Network” to facilitate standardized approaches to food authenticity testing. This network would also enable better coordination among government departments related to policies, surveillance and criminal investigation around food fraud. The Food Authenticity Network (FAN) was subsequently established in 2015 by the U.K. government and serves as a repository for news and information on best practices for food authenticity testing methods and food fraud mitigation. At the heart of FAN, there is a network of laboratories that provide authenticity testing, which are designated as Food Authenticity Centers of Expertise (CoE). A contact person is named for every CoE so that stakeholders can communicate with them regarding food authenticity testing. There is a call currently open for UK Food Authenticity Centres of Expertise, so take a look and see if your laboratory fits the requirements.

Over the past four years, FAN has grown to more than 1,500 members from 68 countries/territories and in 2019, more than 12,000 unique users accessed information on the network’s website.

Food Authenticity Network
Heatmap of Food Authenticity Network membership. (Graphic courtesy of FAN)

The site currently hosts 101 government reports, 77 standard operating procedures (SOPs), 16 survey reports, and 22 reports on nitrogen factors (which are used for meat and fish content calculations). Importantly, the site also includes a section on food fraud mitigation, which signposts some of the world’s leading services, guidance and reports aimed at preventing fraud from occurring.

FAN posts periodic newsletters with updates on funded projects, research reports, government activity, upcoming conferences, and other news of interest related to assuring the integrity of food. The latest newsletter has just been issued.

In its efforts to create a truly global network, as well as reaching out to the international food community, FAN is collaborating with other governments. In 2019, Selvarani Elahi gave presentations on FAN in Ghana and Vietnam, and discussions are currently taking place with the Ghana Food and Drugs Administration and the International Atomic Energy Agency about creating bespoke country-specific pages. In 2018, FAN was recognized at a Codex Alimentarius Commission meeting as being a “leading example of an integrity network.” Discussions are also in progress with multiple Codex Member countries.

FAN is an open access platform and membership is free (you can sign up here). The benefits of membership include access to closed discussion fora on the site, customizable email alerts, and options to communicate with other network members, as well as a monthly highlights email that rounds up the month’s activities in one convenient location.

The Network was set-up with funding from the Department for Environment, Food and Rural Affairs, the Food Standards Agency, Food Standards Scotland, and is currently supported with public-private partnership funding from the Department for Business, Energy and Industrial Strategy, McCormick and Company, LGC Standards and the Institute of Food Science & Technology.

John McPherson, rfxcel
FST Soapbox

End-to-End Supply Chain Traceability Starts with High-Quality Data

By John McPherson
No Comments
John McPherson, rfxcel

End-to-end traceability technology across the food and beverage (F&B) supply chain has many benefits for companies at all nodes of the chain, not least of which is the ability to act to prevent problems such as irreversible damage, loss, and theft. For these technologies to best deliver on their promise, however, they need standardized and quality-assured data. F&B supply chain stakeholders need to take steps to achieve effective data management to truly take advantage of the benefits of traceability and real-time monitoring technologies.

Since FSMA was introduced in 2011, actors across the F&B supply chain have had to change their behavior. Prior to FSMA, companies tended to react to events; today, proactive and preemptive measures are the norm. This is in line with what the legislation was designed to do: Encourage the prevention of foodborne illness instead of responding after their occurrance.

F&B manufacturers and distributors rely on technology to help predict potential obstacles and mitigate issues along their supply chains. But expressing a desire to embrace technologies such as real-time monitoring solutions and predictive analytics isn’t enough to achieve ultimate supply chain efficiency. Only by taking the necessary steps can companies get on track to ensure results.

Any company that is thinking about deploying a traceability solution has a lot to consider. Foremost, data must be digitized and standardized. This might seem challenging, especially if you’re starting from scratch, but it can be done with appropriate planning.

Let’s examine what F&B companies stand to gain by adopting new, innovative technologies and how they can successfully maximize data to achieve end-to-end supply chain traceability.

New Technologies Hold Huge Potential for F&B Supply Chains

The advantages of adopting new technologies far outweigh the time and effort it takes to get up and running. To smooth the process, F&B companies should work with solution providers that offer advisory services and full-service implementation. The right provider will help define your user requirements and create a template for the solution that will help ensure product safety and compliance. Furthermore, the right provider will help you consider the immediate and long-term implications of implementation; they’ll show you how new technologies “future-proof” your operations because they can be designed to perform and adapt for decades to come.

Burgeoning technologies such as the Internet of Things (IoT), artificial intelligence (AI) and blockchain are driving end-to-end traceability solutions, bridging the gap between different systems and allowing information to move seamlessly through them.

For example, real-time tracking performed by IoT-enabled, item-level sensors allows companies to detect potential damage or negative events such as theft. These devices monitor and send updates about a product’s condition (e.g., temperature, humidity, pressure, motion and location) while it is in transit. They alert you as soon as something has gone wrong and give you the power to take action to mitigate further damage.

This is just one example of how data from a fully implemented real-time, end-to-end traceability platform can yield returns almost immediately by eliminating blind spots, identifying bottlenecks and threats, and validating sourcing requirements. Such rich data can also change outcomes by, for example, empowering you to respond to alerts, intercept suspect products, extend shelf life, and drive continuous improvement.

As for AI technologies, they use data to learn and predict outcomes without human intervention. Global supply chains are packed with diverse types of data (e.g., from shippers and suppliers, information about regulatory requirements and outcomes, and public data); when combined with a company’s internal data, the results can be very powerful. AI is able to identify patterns through self-learning and natural language, and contextualize a single incident to determine if a larger threat can be anticipated or to make decisions that increase potential. For example, AI can help automate common supply chain processes such as demand forecasting, determine optimal delivery routes, or eliminate unforeseeable threats.

Blockchain has garnered a lot of buzz this year. As a decentralized and distributed data network, it’s a technology that might help with “unknowns” in your supply chain. For example, raw materials and products pass through multiple trading partners, including suppliers, manufacturers, distributors, carriers and retailers, before they reach consumers, so it can be difficult to truly know—and trust—every partner involved in your supply chain. The immutable nature of blockchain data can build trust and secure your operations.

To date, many F&B companies have been hesitant to start a blockchain initiative because of the capital risks, complexity and time-to-value cost. However, you don’t have to dive in head-first. You can start with small pilot programs, working with just a few stakeholders and clearly defining pilot processes. If you choose the right solution provider, you can develop the right cultural shift, defining governance and business models to meet future demands.

To summarize, new technologies are not disruptive to the F&B industry. If you work with an experienced solution provider, they will be constructive for the future. Ultimately, it’s worth the investment.

So how can the F&B industry start acting now?

How to Achieve End-to-End Traceability

Digitize Your Supply Chain. We live in a digital world. The modern supply chain is a digitized supply chain. To achieve end-to-end traceability, every stakeholder’s data must be digitized. It doesn’t matter how big your company is—a small operation or a global processor—if your data isn’t digitized, your supply chain will never reach peak performance.

If you haven’t begun transitioning to a digitalized supply chain, you should start now. Even though transforming processes can be a long journey, it’s worth the effort. You’ll have peace of mind knowing that your data is timely and accurate, and that you can utilize it to remain compliant with regulations, meet your customer’s demands, interact seamlessly with your trading partners, and be proactive about every aspect of your operations. And, of course, you’ll achieve true end-to-end supply chain traceability.

Standardize Your Data. As the needs of global F&B supply chains continue to expand and become more complex, the operations involved in managing relevant logistics also become more complicated. Companies are dealing with huge amounts of non-standardized data that must be standardized to yield transparency and security across all nodes of the supply chain.

Many things can cause inconsistencies with data. Data are often siloed or limited. Internal teams have their own initiatives and unique data needs; without a holistic approach, data can be missing, incomplete or exist in different systems. For example, a quality team may use one software solution to customize quality inspections and manage and monitor remediation or investigations, while a food safety team may look to a vendor management platform and a supply chain or operations team may pull reports from an enterprise resource planning (ERP) system to try and drive continuous improvement. Such conflict between data sources is problematic—even more so when it’s in a paper-based system.

Insights into your supply chain are only as good as the data that have informed them. If data (e.g., critical tracking events) aren’t standardized and quality-assured, companies cannot achieve the level and quality of information they need. Data standards coming from actors such as GS1 US, an organization that standardizes frameworks for easy adoption within food supply chains, can help with this.

There are many solutions to ensure data are standardized and can be shared among different supply chain stakeholders. With recent increases in recalls and contamination issues in the United States, the need for this level of supply chain visibility and information is even more critical.

Data Security. Data security is crucial for a successful digital supply chain with end-to-end traceability, so you must plan accordingly—and strategically. You must ensure that your data is safe 24/7. You must be certain you share your data with only people/organizations who you know and trust. You must be protected against hacks and disruptions. Working with the right solution provider is the best way to achieve data security.

Incentive Structures. Incentives to digitize and standardize data are still lacking across some parts of the F&B supply chain, increasing the chances for problems because all stakeholders are not on the same page.

Companies that continue to regard adopting traceability as a cost, not an investment in operations and brand security, will most likely do the minimum from both fiscal and regulatory standpoints. This is a strategic mistake, because the benefits of traceability are almost immediate and will only get bigger as consumers continue to demand more transparency and accuracy. Indeed, we should recognize that consumers are the driving force behind these needs.

Being able to gather rich, actionable data is the key to the future. Industry leaders that recognize this and act decisively will gain a competitive advantage; those that wait will find themselves playing catch-up, and they may never regain the positions they’ve lost. We can’t overstate the value of high-quality digitized and standardized data and the end-to-end traceability it fuels. If companies want to achieve full visibility and maximize their access to information across all nodes of their supply chains, they must embrace the available technologies and modernize their data capabilities. By doing so, they will reap the benefits of a proactive and predictive approach to the F&B supply chain.

Craig Powell, Natura Life ≠ Science
FST Soapbox

Standardization of the Cannabis Supply Chain Drives Product Safety and Consumer Trust

By Craig Powell
No Comments
Craig Powell, Natura Life ≠ Science

When it comes to mainstream consumer food brands, customers expect to receive the same product each time they buy it. That consistency brings consumers back to the same brands over and over again. Unfortunately, the same can’t be said about products sold in the cannabis industry. Consumers aren’t building long-term relationships with brands because consumers don’t have consistent product experiences and often take their business to other brands.

This inconsistency plaguing the cannabis industry can be attributed to an unreliable supply chain, which plays out in multiple ways.

First, cannabis companies are having difficulty meeting state regulations. This happens because the legal cannabis industry is still relatively young and there isn’t a substantial institutional knowledge about regulatory compliance, nor are there any standardized best practices in place. Regulation is expensive and requires human and financial capital that most cannabis companies don’t have in place. Complicating things further, regulations keep changing, making it more difficult for compliant businesses to keep up, even when they have the best intentions.

Second, testing of cannabis products has been complicated. Because cannabis isn’t federally legal, standardized testing guidelines have not been developed, leaving individual states in charge of dictating their own requirements and enforcement framework. There have been numerous reports in the past few years of labs in California either improperly reporting testing results, or worse, submitting fraudulent results.

Third, problems also arise on production end of the supply chain—not only with consistency, but also with consumer safety. According to an estimate from New Frontier Data, approximately 80% of sales are still conducted through the black market. Many growers are using banned pesticides in amounts way beyond recommended levels. In addition, as the recent vape issue has demonstrated, black market manufactured products are being adulterated with toxic substances that pose significant health hazards to consumers.

Given these consistency challenges, the standardization of the supply chain—especially compliance, testing and safety measures—should be a top priority for new cannabis brands. Luckily, many best practices and standardized procedures can be adopted from the food, agriculture and pharmaceutical industries, where companies have successfully developed protocols to ensure safe and reliable products.

In addition to standardization and best practices, cannabis companies should also utilize the following recent innovations in transaction technology to provide peace-of-mind to both new brands and consumers that cannabis products are tested and safe.

Modernized Retail POS systems. Common in other consumer packaged goods industries, such as food, wine, beverages and soft drinks, RFID tags can be used throughout the supply chain to track products from seed to sale. These tags, like the “chips” on credit cards, hold electronically stored information about a product that can be accessed to verify compliance and safety.

QR Codes. While QR codes are mostly used today as marketing gimmicks, they actually have potential to provide true value for curious customers. Batch-specific QR codes could be applied to cannabis products to show detailed information about when and where it was made, what strains of cannabis were used, and testing results. This technology could be used to increase transparency between companies and to consumers.

Data Informatics. A strong information technology infrastructure can be put in place to collect and store inventory and customer data. That data can then be run through algorithms, AI and machine learning systems to help cannabis brands make better decisions about how to optimize the production of their products and how to achieve better results on future batches.

Video Surveillance. Granted, this is a more ‘low-tech’ approach, but effective, nonetheless. Video cameras can go way beyond security purposes. Footage can be viewed and compared to collected data sets to gain a deeper understanding of product flows, personnel movement and logistics that might impact a company’s final product. Video can also be analyzed automatically using AI to provide important insight to help a company fine tune their business strategies.

Consumers want to know that the cannabis products they purchase are safe, compliant and tested. Consumers also have a right to know what they are buying and expect product consistency over time from companies they trust. Ensuring supply chain consistency is key to making this happen as the industry matures. An experienced and trusted supply chain partner can help companies across different cannabis sectors, ranging from medical to food, and ensure product safety and consumer trust today through standardization and consistency. Ultimately, cannabis businesses want to cultivate a culture of excitement, not fear or uncertainty, to help the market flourish and bring quality products to our customers.