Tag Archives: sustainability

Emily Newton, Revolutionized Magazine
In the Food Lab

Will a New Method of Freezing Foods Improve Food Quality and Food Processing?

By Emily Newton
No Comments
Emily Newton, Revolutionized Magazine

As the world veers on the edge of serious climate trouble, it makes sense for companies to collectively start looking into greener and more efficient alternatives. While research is ongoing, every so often, there’s a win that can make a huge difference if and when it is implemented. That’s precisely what’s happening with cutting-edge frozen food and processing technologies, thanks to scientists from the University of California-Berkeley who conducted a study on the concept with the USDA’s Agricultural Research Service.

It came at just the right time, too, as both freezing foods and standard food processing technologies have a rather large energy footprint, with extensive carbon emissions. Globally, those levels have to come down or the results will be disastrous. This new method, proposed by researchers, could reduce the global energy consumption of the frozen foods industry by up to 6.5 billion kilowatt-hours per year. Just to put that into perspective, it is the equivalent of removing one million cars from the road, and keeping them out of regular operation.

Called isochoric freezing, the method essentially involves placing foods in a sealed and rigid container. The storage container, made of hard plastic or metal, is then filled with liquid—like water—and frozen. The catch is that not all of the liquid in the container is frozen, so the food does not turn to solid ice. Only about 10% of the volume freezes during the process, and as long as the food remains within the hardened ice, crystallization will not happen. In addition, pressure that builds up inside the container naturally prevents the ice from expanding.

Isochoric freezing also has implications for fresh foods that are significantly affected by standard freezing techniques, such as small fruits, vegetables (i.e., tomatoes and potatoes), and even some meats.

The best part is that this method can be deployed “without requiring any significant changes in current frozen food manufacturing equipment and infrastructure,” according to USDA food technologist Cristina Bilbao-Sainz.

Why Is Icochoric Freezing Better?

Freezing foods may be a quick and relatively accessible way to preserve them, but many chemical changes happen during the freezing process as well as when those items thaw. Some foods deteriorate when frozen, just at slower rates. What’s more, depending on when and how you freeze or store those items, the composition may change during the entire process.

Some frozen products may develop a rancid smell or taste, after being oxidized or exposed to air. Others may see texture or size changes, and moisture loss at any time (or poor packaging) can result in freezer burn.

A lot of these same problems do not occur with isochoric freezing because the items are not frozen solid. Even more promising is that the new method also improves the quality of frozen foods, boosts safety, and reduces energy use. And during processing it actually kills microbial contaminants.

“The entire food production chain could use isochoric freezing—everyone from growers to food processors, product producers to wholesalers, to retailers. The process will even work in a person’s freezer at home after they purchase a product—all without requiring any major investments in new equipment,” said said Tara McHugh, co-lead on the study and director of the Western Regional Research Center in a USDA press release. “With all of the many potential benefits, if this innovative concept catches on, it could be the next revolution in freezing foods.”

Making the Discovery

Boris Rubinsky, a UC-Berkeley biomedical engineer and co-leader of the project, developed the freezing method while trying to cryopreserve tissues and organs that were designated for use during transplants. The goal was to better preserve these items, under more optimized conditions, with a minimal quality loss after thawing.

While this certainly does have major implications for the frozen foods, cold storage, and food processing industries, it can also be used elsewhere. For example, areas like medicine, science, or space travel can all benefit.

It may be some time before the technology is ready, but the research team is now working on developing commercially viable options, to match modern industry needs.

Will It Lower Carbon Emissions?

If the technology, and method, are adopted on a wide scale, it could vastly lower carbon emissions across many fields, and it may even lower emissions of consumer applications, too. Imagine applying isochoric freezing on a smaller scale, at home, to better preserve leftovers, frozen meals, and much more.

Of course, it will be interesting to see major organizations adopt this method, if and when the resources are available. The food processing industry could see revolutionary reductions in carbon emissions and energy consumption in the years ahead.

Anthony Macherone, Agilent
FST Soapbox

The Link Between Exposure to Xenobiotic Pesticides and Declining Honeybee Colonies and Honey

By Anthony Macherone, Ph.D.
No Comments
Anthony Macherone, Agilent

According to data from the Bee Informed Partnership, a national collaboration of leading research labs and universities in agricultural science, managed honeybee populations declined by nearly 40% between Oct. 1, 2018 and April 1, 2019. This is a 7% greater decline compared to the same timeframe during the previous winter.1

Scientists are examining different environmental factors such as the increased use of pesticides and the use of chemicals in agriculture as causes for the rapid decline in global honeybee numbers.

Recent research conducted by my team and I revealed a potentially key reason for the decline in honeybee populations as a result of Nosema ceranae (N. ceranae), a prevalent infection in adult honeybee populations. My team established a link between N. ceranae-infected honeybee colonies and changes in pheromone levels, which in turn, may have a social impact on communication in honeybee colonies.

Moreover, the significant decline in the global honeybee population is likely to be driving an increase in fraudulent honey, meaning that both governments and regulators need to invest in the latest technology to test honey products for authenticity, nutritional values and safety.

The Significance of Honey in Our Global Diet and the Problem at Hand

Honey has been a part of our diet for the past 8,000 years, and with numerous health benefits in addition to having a favorable taste, it is one of the most popular foods across the globe.2

Honeybees produce honey from the nectar of flowering plants, and they are considered a “keystone species” since one-third of human food supply depends on pollination by honeybees.3The species is responsible for pollinating numerous fruit, nut, vegetable and field crops such as apples, almonds, onions and cotton.

The increase of pesticides and chemicals in the environment has been cited as a reason for the decline in bee populations, which has occurred in Western European countries such as France, Belgium, Germany, the UK, Italy, Spain, and the Netherlands, as well as countries such as the United States, Russia and Brazil.4 In fact, the number of honeybee colonies in Europe fell by an average of 16 per cent over the winter of 2017–2018, according to findings published in the Journal of Apiculture Research.5

Global pesticide usage was predicted to increase to 3.5 million tons globally in 2020, which could mean that honeybee populations will continue to diminish at an exponential rate due to the increased use of pesticides.6

The Impact of Pesticides on Global Honeybee Populations

In 2019, a research project was initiated to explore the link between exposure to xenobiotic pesticides and increasing susceptibility to the N. ceranae infection in honeybee colonies, one of the most common infections in adult honeybee populations. The findings suggested that it is not the amount of pesticide exposure, nor a particular kind of pesticide exposure, but rather the number of exposure events from different xenobiotics that is associated with N. ceranae, which infected hives, thereby causing them to diminish.7

For discovery-based (non-targeted) exposome profiling of honeybee extracts, a gas chromatography/quadrupole time-of-flight mass spectrometer (GC/Q-TOF) was used. Additionally, spectral library searches and compound annotation were performed using the NIST 14, RTL Pesticides and the Fiehn Metabolomics libraries to provide efficient and timely research outputs.8

Expanding on this research further in 2021, a scientist’s team established a link between N. ceranae-infected honeybee colonies and changes in pheromone levels, which showed a potential impact on social communication in honeybee colonies. While it was concluded that further analysis is required, as research points to the real possibility that N. ceranae-infected honeybee colonies show increased alarm pheromones and may affect hive communication, which could ultimately, be a reason for the collapse of colonies.9

As N. ceranae is causing honeybee populations to dwindle worldwide, the decline in ‘real’ honey supplies is correspondent with an increase in ‘fake’ honey. Inauthentic honey products cause businesses and consumers to lose out, as ‘fake’ honey floods the market and makes producing ‘real’ honey more expensive.

Growth in Fake Honey

The global honey market has grown from 1.5 million tons produced annually in 2007 to more than 1.9 million tons in 2019 and the market is estimated to be worth $7 billion, however the decline in bee populations has led to an increase in honey adulteration to fill the global demand for honey.10

Declining supplies of authentic honey combined with the strong consumer demand for honey has driven significant adulteration of this product. Honey is considered to be one of the most adulterated foods after milk and olive oil, with every seventh jar of honey opened daily around the globe thought to be fake.11, 12 Consequently, legitimate honeybee keepers and business owners are forced to slash costs, which is problematic for those who depend on selling authentic honey.

To put into perspective the scale of the issue, the European agricultural organization, Copa-Cogeca noted that most honey imported from China into Europe is mixed with syrup.13 In 2018, the Honey Authenticity Project in Mexico commissioned tests for British supermarket honey products, and 10 out of 11 products failed the tests due to suspected sugar adulteration.14

While in the United States, it was recently reported that thousands of commercial beekeepers have taken legal action against the country’s largest honey importers and packers for allegedly flooding the market with hundreds of thousands of tons of “fake” honey.15 Furthermore, a recent workshop led by the South Africa Bee Industry Organization (SABIO) also conducted research on the impact of fraudulent honey, and the organization found that honey imports into South Africa have tripled to 6,000 tons a year, 60% of which come from China.16 As the demand for honey products stays robust but authentic honey supplies dwindle, the issue of counterfeit honey will continue to worsen.

Testing Methods to Identify Authentication

The issue of fraudulent food products like honey has driven governments to set up laws and departments dedicated to food integrity. Examples include FSMA, the UK National Food Crime Unit, Chinese Food Safety Law, and European Commission Food Integrity Project.

Food retailers often have contractual agreements with suppliers that require them to carry out authenticity testing of their ingredients, which can be carried out by third-party laboratories.17 Food adulteration can be identified via targeted and non-targeted testing and common testing methods include molecular spectroscopy solutions for ‘in the field’ screening and more in-depth laboratory analysis to determine quantities of ingredients.

Analytical instrument manufacturers have been working closely with governments to provide the latest methods to test the authenticity of honey products, as well as working with the Association of Official Agricultural Chemists (AOAC) on the development of both targeted and non-targeted standards for authenticity testing in milk, honey and olive oil.
Measuring contaminants is a key solution to identifying counterfeit honey and gas chromatographs are able to analyze and quantify the absence or presence of hundreds of pesticides in organic-labeled honey.18

Testing and analysis can be done using a range of analytical instrumentation such as solid phase microextraction followed by gas chromatography/mass spectrometry (SPME-GC/MS), inductively coupled plasma-mass spectrometry (ICP-MS), and gas/liquid chromatography/quadrupole time-of-flight (GC/Q-TOF and LC/Q-TOF). These instruments can be coupled with innovative software solutions for advanced data analysis.19

Future Research Must Continue

The spread of diseases such as N. ceranae, which have been shown to be aggravated by human-induced environmental factors, are decimating global honeybee populations, which in turn is negatively impacting ecosystems and humans, and the availability of authentic honey. This demise in authentic honey supplies is additionally fueling a rise in fake honey products, where consumers are misled into buying counterfeit honey.

Future research must continue to seek associations with environmental exposures effects on biological pathways and adverse health outcomes in honeybee populations, and in fact, novel environmental exposures have been found to be associated with seven of the top diseases known to affect honeybees. These putative associations must be validated with targeted follow-up studies to determine if they are causative factors in the decline of honeybee populations. If proven to be causative, scientists and policy makers can work together to mitigate these factors and hopefully reverse the global trend of honeybee colony decline.

References

  1. Loss & Management Survey, Bee Informed. Last accessed: June 2021
  2. Agilent.‘The Buzz around Fake Honey’. 2018. Last accessed: June 2021
  3. University of California – Berkeley. ‘Pollinators Help One-third Of The World’s Food Crop Production’. 2006. Last accessed: June 2021
  4. European Parliament. ‘What’s behind the decline in bees and other pollinators?’. 2021. Last accessed: June 2021
  5. Journal of Apiculture Research. ‘Loss rates of honeybee colonies during winter 2017/18 in 36 countries participating in the COLOSS survey, including effects of forage sources’. 2019. Last accessed: June 2021
  6. SN Applied Sciences. ‘Worldwide pesticide usage and its impacts on ecosystem’. 2019. Last accessed: June 2021
  7. PLOS ONE. ‘Honey bee (Apis mellifera) exposomes and dysregulated metabolic pathways associated with Nosema ceranae infection’. 2019. Last accessed: June 2021
  8. PLOS ONE. ‘Honey bee (Apis mellifera) exposomes and dysregulated metabolic pathways associated with Nosema ceranae infection’. 2019. Last accessed: June 2021.
  9. Royal Society Open Science. ‘Increased alarm pheromone component is associated with Nosema ceranae infected honeybee colonies’. 2021. Last accessed: June 2021
  10. Statista. ‘Global market value of honey 2019-2027’. 2021. Last accessed: June 2021
  11. Insider.com. ‘Honey is one of the most faked foods in the world, and the US government isn’t doing much to fix it.’ 2020. Last accessed: June 2021
  12. Dow Jones. ‘Hi honey. I’m not from home.’ Last accessed: June 2021
  13. Apiservices.biz. ‘Copa-Cogeca Position Paper on the European Honey Market.’ February 2020. Available at: Copa-Cogeca position paper on the European honey market (apiservices.biz)
  14.  WIRED. ‘The honey detectives are closing in on China’s shady syrup swindlers’. 2021. Last accessed: June 2021
  15.  The Guardian. ‘US beekeepers sue over imports of Asian fake honey’. 2021. Last accessed: June 2021
  16.  Times Live. ‘Falsely labelled, mixed with syrup or ‘laundered’: Honey fraud is rife in SA’. 2021. Last accessed: June 2021.
  17.  UK Parliament Post. Postnote, number 624. ‘Food Fraud’. Last accessed: June 2021
  18. Agilent. ‘The Health Benefits of Honey’. 2017. Last accessed: June 2021
  19. Agilent. ‘Protecting our honey against food adulteration’. Last accessed: June 2021.

 

GFSI, The Consumer Goods Forum

Trust, Transparency and Collaboration Are Highlights of 2021 GFSI Conference

By Food Safety Tech Staff
No Comments
GFSI, The Consumer Goods Forum

The second and third days of this year’s virtual 2021 GFSI Conference (see GFSI Day 1 Wrap) took the opportunity to recognize the impact of COVID-19 on the industry but more importantly, addressed the future of providing safe food to a global population. “The COVID-19 pandemic has been an exceptional challenge to public health and food systems and everyone in the world, but it has also been an opportunity to reimagine safer, more resilient and sustainable food systems,” said Naoko Yamamoto, M.D., a physician and epidemiologist at the World Health Organization. “We need to seek more collaborative approaches to be inclusive and innovative when working across sectors to achieve food safety.”

Speakers discussed the importance trust and transparency related to food safety and sustainability. With the United Nations’ Sustainable Development Goals deadline set at 2030, GFSI developed a new code of ethical conduct in its new Governance rules. “We need strong engagement from the private sector for our agrifood systems to become more efficient, more inclusive, more resilient and more sustainable,” said Qu Dongyu, Director-General of the Food and Agriculture Organization of the United Nations.

In addition to networking breaks during the event, concurrent special sessions targeted auditing, chemical hazards, pest management and technology solutions. Day three also featured Ask GFSI sessions, which were conducted in Zoom, and allowed speakers to field questions from the live attendees.

Read GFSI’s full update of Day Two of the conference.

Read GFSI’s full update of Day Three of the conference.

 

GFSI, The Consumer Goods Forum

Day 1 of 2021 GFSI Conference Reflects on Leadership and Resilience

By Food Safety Tech Staff
No Comments
GFSI, The Consumer Goods Forum

The 20th annual GFSI Conference convened yesterday, but instead of bringing together an international group of food industry stakeholders in one central location, the event was held online, streamed throughout offices and homes across the globe.

Day one kicked off with a welcome from Wai-Chan Chan, managing director of The Consumer Goods Forum, Qu Dongyu, Director-General of the Food and Agriculture Organisation of the United Nations, who addressed the humanitarian and consumer perspective of food safety. “We need a strong engagement of the private sector for our agrifood systems to become more efficient, more inclusive, more resilient and more sustainable,” Chan stated. The conversation about the global importance of sustainability continued with a conversation led by Erica Sheward, GFSI Director, and Howard Popoola, vice president, corporate food technology and regulatory compliance for The Kroger Company and Roy Kirby, global director, microbiology, food safety and toxicology for Mondelez International. They talked about GFSI’s program, Race to the Top, and the /global Markets Programme capability tool, which was established more than 10 years ago to help companies implement continuous improvement to develop an effective food safety management system, and its potential in developing markets. “Think about what this could do for farmers, think about what it could do for families in Africa, in those places described as countries of opportunity, producing niche products, who just need an opportunity to be able to sell their products into the world stage,” said Popoola, who is also a GFSI steering committee member.

During the course of the day, stakeholders also discussed pandemic-specific issues including supply chain disruptions, and the role of crisis communications and messaging to consumers related to the safety of the food supply.

More exclusive updates will be available from Food Safety Tech. Read GFSI’s full update on Day One of the conference.

Stephen Dombroski, QAD
FST Soapbox

Regulatory Issues and Transportation: Critical Factors in the Quest for Sustainability in Food Manufacturing

By Stephen Dombroski
No Comments
Stephen Dombroski, QAD

Over the last several months, we have been exploring the details of several critical factors that are impacting the food and beverage manufacturing sector in terms of sustainability, including:

Two additional factors that food manufacturers now have to manage regarding sustainable practices are transportation and regulatory restrictions. Each can be discussed as a separate topic, but they are intertwined, as there have always been regulations regarding food transportation, and obviously food has always needed to be transported. Now that sustainability is an important topic in all areas of food manufacturing, it makes sense to discuss these two subjects both individually and collectively.

Transportation and Regulatory Joint Concerns

Ensuring that all areas of food transportation incorporate sustainable practices is a critical component of achieving sustainability in food manufacturing. To this point, however, these types of practices have not fully been implemented or even designed. This area is still evolving. From a straight transportation point of view, governments globally have been imposing restrictions for decades. These restrictions vary from country to country, province to province, region to region, and so on, and this causes confusion when inter- or intra-region transportation of food is required. There are also several regulatory differences based on mode of transportation. Land, air and sea transportation can and should have different regulations.

Another ingredient that should be added to this product mix of sustainability, transportation and regulations is food safety and the integrity of the food materials being transported whether it is ingredients, work-in-process foods or finished products. Various modes of transportation can affect the chemical composition, physical appearance, nutritional value and quality and safety of food. It could be straightforward to start implementing restrictions, regulations and new methods of how to package, manufacture and transport food to satisfy the growing trend of sustainable food behaviors. However, what cannot get lost in this is the issue of food safety and integrity.

Sustainability More than Recycling and Litter

When discussing regulations around transportation and food, many people immediately think of littering, of some uncaring individual throwing a soda pop can out of a car window. Littering regulations, laws, fines, penalties and public service campaigns have been in place globally for more than 50 years. The next time you go outside, take a look around at how effective those have been. Sustainability goes far beyond the issue of litter. One area that works hand in hand with transportation of food is climate change. Governments have been evaluating the current practices and have begun implementing changes designed to positively affect climate change. Some examples include:

  • 23 American states and Washington, D.C. limit idling by some or all vehicles.
  • The California Air Resources Board adopted the TRU Airborne Toxic Control Measure in 2004 to reduce diesel particulate matter pollutant emissions.
  • In 2020, the International Maritime Organization will implement a new regulation for a 0.50% global sulfur cap for marine fuels.

The food and beverage industry is actively embracing other changes that affect sustainability. Electric trucks fit well with the F&B distribution hub model, with clean, quiet, short-run deliveries. Fuel usage during transportation is being considered from every angle. Local and regional food systems, where farmers and processors sell and distribute their food to consumers within a given area, use less fossil fuel for transportation because the distance from farm to consumer is shorter. This shorter distance also can help to reduce CO2 emissions.

Change Starts with Money

During many conversations I have had with my wife about a variety of subjects, especially those that can be considered controversial, one of us always raises the same question which is: “When in doubt, what is it all about?” And most of the time, the answer is money. Regulations around sustainability in food manufacturing are being driven by demands made by the consumer. The purchasers of the finished food product dictate almost every aspect of that product to the manufacturer because, let’s face it, if the consumer doesn’t like it, they won’t buy it. And if they don’t buy it, what will eventually happen to the manufacturer? That’s right—it goes out of business.

Now there is a good definition of sustainability or at least of what is not sustainable. From the transportation side of things, manufacturers in almost all cases pay the freight of shipping their food products to the members of the value chain. This obviously affects the costs of goods sold, which is a direct component of the bottom line and the profitability of the business. And with margins typically low in food and beverage manufacturing, transportation costs are always on the minds of the executives. So as the drive for sustainable transportation practices rolls into food manufacturing, you can bet that in addition to meeting sustainable practices, they will fit into the financial plans of the organization as well.

Sustainability: Just Another Component in a Long Line of Disruptors in Food Manufacturing

Years ago, when the topic of disruption in food manufacturing came up, many would mention things like a customer changing an order, an ingredient not arriving on time, or a packaging line going down for an hour. Today, these occurrences are just part of the day-to-day process and reality of food manufacturing. They are going to happen, and disruptions are the things that will make a food manufacturer have to change their business model and force them to change their philosophy and begin to evaluate their business practices and systems to adjust to the world in which they operate.

Sustainability is another one of those disruptions that will impact the process of food transportation long term. Sustainability will be an area that eventually forces manufacturers to operate within new regulatory parameters imposed on how they produce and ship their food. Through these changes, manufacturers will have to ensure that food meets the current and future safety regulations while maintaining profitability. That is where real sustainability will be measured. Changes to business, movements like sustainability are adding to the disruption of the food industry at unprecedented rates of speed. In order to survive and thrive, and to meet these disruptions head on and be sustainable themselves, global food manufacturers must be able to innovate and adapt their business models.

Stephen Dombroski, QAD
FST Soapbox

The Drive to Sustainable Food Manufacturing Begins with Three Critical Factors

By Stephen Dombroski
No Comments
Stephen Dombroski, QAD

Sustainability, without question, is one of the hottest social and political topics today. It is as complex as it is simple. Sustainability gets discussed in almost every walk of life, but in the world of food manufacturing, there are few subjects more debated than this one. It is a contentious subject because in the manufacturing arena, it is not just a social or political issue, it is a financial issue—a big financial issue. Sustainability and related issues around it are critical factors and components that are now impacting the bottom lines of food manufacturers. The impact is seen in terms of both red and black.

In a low-margin business like food manufacturing, profits are at a premium and even a minor disruption can negatively impact those profits. Adapting to all the issues that are involved in and around sustainability is, without question, a disruption for manufacturers. At the same time, manufacturers can make positive impacts through smart operational decision-making, which is where sustainability has the greatest presence. When sustainability is discussed in regards to food and beverage manufacturing, a number of topics surface. Some topics are discussed individually and some are grouped together. Consumer preferences, new foods, and packaging are three such areas. At first glance, you might ask why they are lumped together. They are lumped together because they are actually very closely related. Let’s explore those connections especially as they relate to finances.

Consumer Preferences: Paving the Sustainable Path

Consumer preferences have always been one of the leading factors determining what food and beverage manufacturers produce and send to market. For generations, countless amounts of time and money have been spent on trying to predict what consumers want and when they want it. A tremendous amount of data is painstakingly analyzed by manufacturers trying to figure out the consumer’s next move.

According to a 2018 Global Web Index survey, half of digital consumers say environmental concerns influence their purchasing decisions. Millennials—sometimes named the Green Generation—and Generation Z lead the way. About 61% of millennials and 58% of Gen Z’ers say they would pay more for eco-friendly products. Green consumers want brands to embrace purpose and sustainability, and they want their purchases to contribute to the greater good, or at least, do no harm.

These preferences started among millennials and Gen Z’ers, but with the influence of social media, they have expanded to all age groups. This expansion has contributed greatly to a change in what consumers purchase and to what manufacturers produce. In recent years, consumers have changed their eating habits in terms of what they eat, how they eat and when they eat, and those changes have impacted both food service and retail food producers. They have largely centered on healthier foods, pure ingredients and products that promote an eco-friendly culture and a sustainable world. The changes have been felt up and down manufacturing organizations, but most importantly they are reflected in the bottom line.

The industry has been forced to introduce healthier products, with more ethically sourced ingredients and more transparent supply chains. Younger consumers, especially, often trace a brand’s sustainability record with QR codes or smart labels. They want to know where their food originates. They don’t just want to know in which state the potato used in their organic baked potato crisp was grown. They want to know the county, town, farm, field and names of the people who picked it so they can connect with them on Facebook to determine if they practice safe hygiene principles! If a product doesn’t fit the consumers’ predetermined sustainable criteria, they buy a product from another manufacturer. Talk about an impact to profits. The consumer focus on sustainability has increased competition and costs, forced organizational changes and made food manufacturers figure out what processes and systems need to be in place to ensure their decisions keep consumers happy and their profits on the right side of the ledger. These consumer actions and attitudes are now influencing the development of new food items as manufacturers realize consumers are not just taking notice but taking actions as well.

New Foods: Where’s the Beef? Not Here!

As consumers change their food preferences for health and sustainability reasons, food and beverage producers have the opportunity, responsibility and if they want to survive, the mandate to develop new food products built on a reputation for sustainability. Brands have been working on protein alternatives for some time, but not until Burger King and McDonald’s introduced plant-based burgers did plant-based protein go “viral” so to speak. Talk about “Where’s the beef?” In addition to meeting the needs of the drive for sustainable foods, food manufacturers are developing plant-based proteins and many new foods to support the healthier lifestyle movement. As consumers embrace Keto diets, veganism, vegetarianism and other new eating and living practices, tofu, soybeans, seeds, nuts, legumes and other vegetable-based products are now being routinely used as replacements for protein, carbohydrate-heavy flours and food foundation bases.

Ten years ago, if I said in 2021 we would be eating pizza with a crust made of cauliflower, what would the public reaction have been? People in Chicago would have thrown away their deep-dish pans. Food manufacturers now introduce new products on a weekly basis and it is having a tremendous impact on sales and bottom lines. These rapid introductions also impact other key areas of the organization including supply chain, product development cycle and manufacturing cost infrastructure.

Substituting vegetables for carbohydrate-rich grains, of course, costs money. It can increase material costs, manufacturing costs, warehousing costs and distribution costs, which combine to raise retail prices. Luckily, as we have illustrated, consumers are willing to pay more for products that they perceive as having a sustainable footprint. Utilizing products differently to respond to the push for sustainability is a smart tactic that can expand the value chain, open up new markets and drive sales for food and beverage manufacturers.

Packaging Sells Products and Sustainability

Sustainable packaging can mean many things. It can mean packaging made with 100% recycled or raw materials, packaging with a minimized carbon footprint due to a streamlined production process or supply chain, or packaging that is recycled or reused. There is also biodegradable packaging like containers made from cornstarch being used for takeout meals.

For generations, packaging has had a tremendous influence on what consumers buy. Human beings are visual creatures. They are drawn to things that have visual and physical characteristics that appeal to the senses. How many products in the marketplace are known for a certain shape or color configuration? Many times, these shapes or colors can only be created using certain glass, plastic or other materials that might not meet the sustainable criteria. This has caused problems for manufacturers as consumers still want those products but are conflicted if their sustainable beliefs are compromised. Adapting new eco-friendly materials while retaining generations of packaging history and nostalgia can increase costs. But, to keep their customers, manufacturers make these changes, absorb the extra costs and try to make up for lost profits in other ways.

Packaging, especially smart packaging, can also help fight the battle against food waste. Packaging companies are creating and producing intelligent packaging for food products that have built-in sensors and monitors to determine when a product will lose its nutritional value or spoil. Smart labels are being used in conjunction with new packaging materials to monitor external factors that can influence product freshness. Packaging can be a driving force to reaching the goal of sustainability.

Adapting to changing consumer preferences, demand for new foods and new packaging materials and designs is critical for manufacturers trying to reach sustainable goals. Consumer preferences drive what manufacturers produce. Consumer preferences drive the development of new foods that consumers think they need in order to live a healthier lifestyle. Packaging is the wrapper that keeps the new foods fresh and catches the consumer’s eye, which in turn drives sales and thus drives profits. These three critical areas can be the foundation of the sustainable movement and manufacturing’s response to it. Food producers must embrace the sustainable movement if they want to stay in business. To meet this challenge, manufacturers of packaging and food need to evaluate their processes and systems and implement the ones that can help them cost-effectively transition to becoming sustainable manufacturers.

Stephen Dombroski, QAD
FST Soapbox

Food Insecurity Vs. Food Waste: Producers and Manufacturers Can Affect the Balance

By Stephen Dombroski
No Comments
Stephen Dombroski, QAD

As the population continues to grow and the effects of climate change, global warming, pollution and other factors impact humanity’s ability to grow and provide enough food for itself, the concern that the world could run out of food is increasing.. The COVID-19 pandemic has put more focus on how fragile the food supply chain is and how easy it is to disrupt the process of feeding the world. For years, it has been mostly a topic of discussion. But with so many disruptions, it is now an issue that needs to be acted on. Social groups, civic associations, government bodies and food manufacturers have taken notice of the problem and are attempting to get their hands around the issues. One of the key points in this discussion revolves around the amount of food and food sources that will be needed in the future. It always starts with the same question: “Will there be enough food?” Most people immediately say no. But is that 100% true? This is where the debate between food insecurity and food waste begins.

What is Food Insecurity?

According to the Office of Disease Prevention and Health Promotion, food insecurity is defined as “the disruption of food intake or eating patterns due to lack of money or other resources…Food insecurity does not necessarily cause hunger, but hunger is a possible outcome.” The debate about whether there is or isn’t enough food can get pretty contentious. There are many people in many countries that are “food insecure.” The problem in many cases, however, is due to affordability rather than availability. There are distinct issues and differences between availability and affordability. Go to any grocery store or purchasing venue in most developed countries and for the most part, the shelves are well stocked. The obvious conclusion is that there is enough food. However, can the entire population afford that food? Now, go to countries that are not as developed and you would be hard-pressed to find a grocery store that is as well stocked. Even if the population can afford to buy it, there simply is not enough food to buy. The difference between these two scenarios is where the debate begins. People talk about climate change making it challenging to produce enough food to meet the world’s needs, but store shelves in developed countries are full. All the while edible food is getting thrown away and destroyed in ridiculous amounts each day.

The world agrees that manufacturers, governments and consumers have a social responsibility to do their part to combat world hunger. Consumers are becoming more aware of food security and the threat that climate change poses. There are trends supporting sustainability in daily diets, with meals lower in environment impact and awareness of plate portions and food waste. Government agencies are working with manufacturers to resize portions and package sizes to align with scientific research on the necessary amount of food and nutrients needed in diets. Manufacturers and their customers (retail channels) are working more closely to create accurate and realistic “best by dates” to reduce the amount of food that is thrown out as “expired.”

World health organizations are increasing their focus as well. The U.N. World Food Program (WFP) is addressing hunger and emphasizing “food security.” WFP provides 15 billion meals to nearly 100 million people suffering from the effects of life-threatening hunger in over 80 countries. Manufacturers are expanding their participation in this area by increasing and improving donation programs, developing nutritional foods from new sources and incorporating limited perishability to make foods last longer and minimize food waste.

Wasted Food: An Understated and Complex Problem

If you think about it, the two largest consumers of food are garbage disposals and landfills. Both are well fed. Landfills receive both expired food that is not used and consumer food waste. Obviously, garbage disposals are used by consumers for cooked food that is not eaten or saved. I bring this up because it sparks the discussion of defining food waste. People use this term often and many times it is about food that consumers discard. But food waste has multiple categories and mirrors the supply chain. Food waste occurs at the following levels:

  • Growers/agricultural
  • Supplier
  • Primary producer/manufacturer
  • Distribution/transportation
  • Retail
  • Foodservice providers
  • The consumer

Approximately one-third of the total food produced globally—about 1.4 billion tons—is wasted. In addition to the loss of a great deal of edible food, there are other consequences to this waste. Food waste and food loss impact climate change, accounting for roughly 10% of the world’s greenhouse gas emissions. Human behavior is a significant contributor to climate change. Luckily, habits can be changed through education, like encouraging composting or recycling. Portion control at restaurants and in the home can make us healthier and also help to reduce food waste. Another trend in recent years is the migration for many consumers to healthier eating. This typically consists of using and consuming fresh ingredients with less processing and chemical additives. These ingredients, however, typically have shorter shelf lives and end up contributing to the growing amount of food waste. Over the last 10 years, food manufacturers, suppliers and the greater agricultural community have focused on efforts to reduce food and other wastes that fall into the sustainability category such as energy, water, materials used in packaging, etc. Food producers have figured out ways to repurpose unused ingredients, by-products and waste. Many sell to farms to be converted to feed and fertilizer. Some is sold to pet and animal feed producers to convert into sellable products. It is actually quite a profitable business for many manufacturers.

Balancing Between Food Insecurity and Food Waste

Analyzing both concepts requires a balancing act. On one hand, you can argue that if you recoup 1.4 billion tons of wasted food, or let’s say, even half of it, we might eliminate the hunger problem. But then consider the issue of food costs. When people go shopping for food, an often-heard comment is, “I can’t believe how much this food costs.” You have said it, and I have too. However, I have spent a significant amount of time in food manufacturing facilities of almost every vertical segment and I have a hard time not saying, “I can’t believe this only costs this much.” The entire process from field to fork for most food items is extraordinarily complex and comes with a wide array of costs. Most food manufacturing businesses are meager margin. They turn a profit but most feel the social responsibility to provide quality food at reasonable prices.

The industry is making significant progress, however, and more can be done. With new technology including IoT, Industry 4.0 and Smart Agriculture, resources such as land, water and space are being utilized much more efficiently to increase supply. This reduces costs. Through the use of technology, farmers are growing healthier more sustainable crops that minimize waste. Food and beverage manufacturers are now using business systems and processes to better communicate with suppliers. Adaptive ERP and integrated business planning are simplifying the supply chain, helping to maximize shelf lives and minimize food waste. As we move into 2021 and beyond, technology and integrated business systems and processes throughout the entire food supply and value chain will help minimize food waste and hopefully reduce costs. This should bridge the gap between food insecurity and food waste.

Stephen Dombroski, QAD
FST Soapbox

Combating Climate Change in the Food Industry Through Regenerative Agriculture

By Stephen Dombroski
No Comments
Stephen Dombroski, QAD

Everybody has to eat. That is the mantra of many companies involved in the food and beverage industry. It sounds so simple. Yet, in recent years, especially this one, it is becoming more challenging than we ever thought it could be. Disruptions from the beginning to the end of the food supply chain are making the task of feeding the masses more difficult. The COVID-19 pandemic has made people in all walks of life question the food supply chain. It is being evaluated in new ways with the goal of ensuring that there is food available in not just crisis times but in normal circumstances, too, as the population continues to grow and more disruptions interrupt the supply chain. Climate change is one disruption that is impacting the food and beverage industry and is possibly the biggest threat to overall food sustainability. When people think about climate change they only think about weather events and global warming, but if you look at the definition of “climate,” other issues need to be considered in addition to looking out the window and checking the thermometer.

Global warming, greenhouse gases, carbon emissions, the earth’s normal evolution and consumer behaviors can all contribute to climate change. Everyone talks about limiting greenhouse gases and carbon emissions but is it really happening? Almost every day, some government agency or industrial company announces policy changes touting the drive to 100% sustainable packaging by this year and that year. “Company X announced today that it will use fully-sustainable packaging by 2035.” Fully sustainable packaging; what does that even mean? And 2035, what’s the hurry?! There are other programs in the works, but the question is, are they quick fixes that are really just Band-Aids on a gunshot wound? Are they actually long-term solutions and are they happening fast enough? The adoption of electric vehicles could have a huge impact on our climate but it is just a small piece of the solution for total carbon emission elimination. Water to be used in non-farming consumption is getting harder to come by due to climate change. Land space is eroding and available farm space is decreasing. The process of raising and harvesting livestock is getting more complex and costly, making plant-based substitution options more attractive. But is that really a long-term solution if we are already running out of traditional farming space? Consumers hope that recycling will help combat the problem but it is barely making a dent and their changing food habits impact the climate as well. The earth itself is constantly going through a geological evolution in spite of what we humans do to the planet.

Global warming is accelerating climate change and causing a number of serious issues. The earth’s poles are warming, which is promoting permafrost, causing glaciers to melt and oceans to rise, which is impacting sea levels, irrigation methods and land temperatures that promote erosion. Higher than average temperatures can potentially impact the growing of certain crops in terms of yields and even where they are grown. Climate change is impacting all areas of agriculture, the environment and the total ecosystem. Insect behaviors are evolving and these changes affect crops. The food manufacturing and farming industries have realized that a “new way” needs to be implemented to grow food in environments that can combat these changes.

Sustainability initiatives call for practices that maintain or improve soil conservation and improve the overall health of soil. Two processes, regenerative agriculture and precision agriculture, working in conjunction, may actually provide a long-term solution by combining environmental and farm science with technology. Regenerative agriculture goes beyond soil conservation. It is a process that looks to reverse the effects of climate change. The regenerative process focuses on restoring soil health, solving water issues, reversing carbon cycles, and creating new topsoils and growing environments.

Precision agriculture focuses on increasing the land used for farming as well as increasing the productivity of that land. It utilizes newly available IoT devices like GPS services, guidance systems, mapping tools and variable rate technologies (VRT) to optimize crop yields. These new management systems collect data that transmit valuable metrics to farmers. Every aspect of farming, from planting to harvesting, can benefit from these emerging technologies. The information about the moisture of soil, for example, is sent to a computer, which then identifies signs of health or stress. Based on these signals, farmers can provide water, pesticide or fertilizer in adequate dosages. As a result, precision farming can help conserve resources and produce healthier crops.

Climate-smart agriculture, which is an approach to dealing with the new realities of climate change, is another smart agricultural method. Climate-smart agriculture improves agricultural systems by enhancing sustainability, which leads to improved food security. Food production has struggled to keep up with erratic weather patterns and natural resources have been stretched alarmingly thin, signaling a call for action. With this new approach, crop yields can adapt accordingly and productivity will increase.

The regenerative food system market has drawn a great deal of interest from investment groups. Initial investments have focused on water and soil reconstitution and development. Restoring soil strength reduces water usage and at the same time produces stronger and more available food sources. Underground and hydroponic versions of regenerative agriculture are also emerging.

Advanced technologies like these are making their way into the food, beverage and agriculture industries. Traditional agricultural methods are being replaced with climate-smart methods. Peripheral areas like streamlining the supply chain and optimizing manufacturing operations can receive “sustainable” benefits from these new agri-methods. The good news is that smart agricultural methods are making progress in counteracting climate change and revolutionizing farming worldwide.

Regenerative and precision agriculture are without question the leading processes and philosophies being used today to help all food industries combat climate change and other disruptors to the total food supply chain. These new technologies will continue to efficiently solve farming practices. In addition, there will be rollover benefits to food processors and manufacturers who will now have improved access to data. This will enable better communication, and improved traceability at all levels of the supply chain and throughout operations, distribution and procurement. This data will allow all involved in growing and producing food to communicate better and enable society to adapt to these changes.

Stephen Dombroski, QAD
FST Soapbox

8 Reasons Sustainability is Critical in Food and Beverage Manufacturing

By Stephen Dombroski
No Comments
Stephen Dombroski, QAD

Sustainability pushes a lot of our hot buttons—it’s a political issue, an economic concern, and a social conversation. Some people even see it as a moral matter. Sometimes it’s on the back burner, but then it blazes back into the headlines. Sustainability is, arguably, an industry unto itself, since the economic impact on companies trying to adhere to government guidelines or react to consumer preferences can be in the billions of dollars across a wide range of markets. Sustainability demands are hitting a variety of industries, not just food and beverage. For example, the move from the internal combustion engine to the electric vehicle can be called a “sustainability” issue.

Exclusive Series on Food Safety Tech:
The Eight Elements of Sustainability
1. Consumer preferences
2. Climate change
3. Food insecurity
4. Food waste
5. New foods
6. Packaging
7. Regenerative agriculture
8. Transportation and regulatory restrictions
In light of the many disruptors in the food and beverage industry and most recently, due to the impact of the COVID-19 pandemic, sustainability is now front-page news. This article will discuss eight reasons why sustainability is now one of the defining issues in food and beverage manufacturing. Future articles in this series will examine each issue in more detail.

Consumer Preferences

The green consumer wants brands to embrace purpose and sustainability, and they want their purchases to contribute to the greater good, or at least, do no harm. The demand started among millennials and Gen Zers, but with the influence of social media, it’s expanded to all demographics.

The industry has been forced to introduce healthier products, with more ethically-sourced ingredients and more transparent supply chains. Younger consumers, especially, often trace a brand’s sustainability record with QR codes or smart labels. They want to know from where their food originates.

These consumer actions and attitudes are now influencing the development of new food items and packaging designs as manufacturers realize consumers are taking notice.

Climate Change

Warming is causing the earth’s poles, permafrost and glaciers to melt and the oceans to rise. Average sea levels have swelled more than eight inches since 1880, with about three of those inches gained in the last 25 years. Here’s the impact on sustainability—when sea levels rise and warm, flooding can occur, causing coastal seawater contamination and erosion of valuable farmland. Higher air temperatures may also rule out the cultivation of some valuable crops (gasp, chocolate!).

Hotter temperatures can also cause insect body temperatures to rise; they need to eat more to survive and may live through the winter instead of dying off. A larger, more active insect population could threaten crops. And changes to water, soil and temperature could affect the complex ecosystems of the world’s farms, causing plant stress and increasing susceptibility to disease. The food manufacturing and farming industries are starting to investigate new ways of growing food in environments that can protect crops from these changes.

Food Insecurity

Food demand is expected to increase anywhere from 59% to 98% by 2050. Populations are growing and due to rising incomes, demand is ramping up for meat and other high-grade proteins. At the same time, climate change is putting pressure on natural and human resources, making it challenging to produce enough food to meet the world’s needs.

The world agrees that governments, manufacturers and consumers have a social responsibility for to do their part to combat world hunger. Consumers are becoming more aware of food security and the threat that climate change poses. People are attempting to eat sustainably with meals designed to have a lower environmental impact, and incorporating an awareness of plate portions and food waste.

World health organizations are also stepping up. The United Nations World Food Programme (WFP) is the food-assistance branch of the United Nations and the world’s largest humanitarian organization, addressing hunger and promoting food security. The WFP works to help lift people out of hunger who cannot produce or obtain enough food for themselves, providing food assistance to an average of 91.4 million people in 83 countries each year. Food brands worldwide are offering support through donation programs, new product development to provide more nutrition with less and new sources of food.

Food Waste

Around one-third of the total food the world produces—around 1.3 billion tons—is wasted. It’s more than just the direct loss; food waste contributes heavily to climate change, making up around eight percent of total global greenhouse gas emissions. Food manufacturers are making significant efforts to reduce their food waste footprint. Is it possible to anticipate and plan for potential glitches in frozen food processing? Sustainable brands make contingency plans in advance so that food can be stored safely while a broken line is fixed, rather than let it go to waste. What should be done with raw materials left over after processing? Perhaps there are other creative uses for it—vegetable waste, for example, has been used for fertilizer.

Human behavior is a main contributor to climate change and the motivator for new sustainable practices. Over time, community attitudes can change habits, like encouraging commitments to composting or recycling. In certain communities, grocery stores and restaurants contribute leftover food to charities. Portion control at restaurants and in the home can make us healthier and also help to reduce food waste.

New Foods

In response to changing food preferences and the demand by consumers for healthier options, food and beverage companies have the opportunity to develop new foods and build a reputation for sustainability.

Brands have been working on protein alternatives, but one can argue that plant-based protein went mainstream when news broke in 2019 that both McDonald’s and Burger King were testing plant-based burgers. And with veganism and vegetarianism growing, tofu, seeds, nuts and beans are also showing up in kitchens more frequently, as are products made from them.

Did it surprise you the first time you heard about cauliflower pizza crust? Food manufacturers have been actively introducing new products like this, substituting vegetables for carbohydrate-rich grains. Product manufacturers have brought us new product options like zoodles made from squash as a substitute for spaghetti. Utilizing products differently is a sustainable tactic. In addition, it opens up new markets, expands the value chain and increases business opportunities for food and beverage manufacturers.

Packaging

Sustainability also involves sustainable or “eco-friendly” packaging. Packaging with a reduced environmental impact is becoming a consumer priority.

What is sustainable packaging? It can mean packaging made with 100% recycled or raw materials, packaging with a minimized carbon footprint due to a streamlined production process or supply chain, or packaging that is recycled or reused. There is also biodegradable packaging like containers made from cornstarch being used for takeout meals.

To help fight food waste, intelligent packaging for food can use indicators or sensors to monitor factors outside the packaging like temperature and humidity, or internal factors like freshness. Smart labels can tell an even more complete story about what sustainable practices have been used in packaging manufacturing or along the supply chain via a QR code or webpage.

Optimizing product density for transport is another sustainability technique. Minimizing packaging can reduce shipping weight and packaging waste to minimize an organization’s carbon footprint. An added benefit is that manufacturers can deliver more in less time thus improving customer service and keeping the supply chain moving.

Regenerative Agriculture

Sustainability may call for practices that maintain soil health, but regenerative agriculture goes further; it looks to reverse climate change. Regenerative techniques promote the need to restore soil health, rebalance water and carbon cycles, create new topsoil and grow food in a regenerative way—so nature has the boost it needs to sustain improvement. If the quantity of carbon in farm soils increases 0.4% each year, says the European “4 Per 1000” initiative, it could offset the 4.3 billion tons of CO2 emissions that humans pump into the atmosphere annually.

The regenerative food system market has drawn investors, wedding the benefits to both water and soil to economic incentives. Unhealthy soil requires more water to produce the same amount of food. Healthy soil resulting from regenerative agricultural practices holds more water and therefore requires less water to be added. Underground and hydroponic versions of regenerative agriculture are also emerging.

Transportation and Regulatory Restrictions

Sustainability is also dependent on transportation and the supply chain. Governments are evaluating current practices and implementing changes that can positively affect climate change.

The food and beverage industry is actively embracing other changes that affect sustainability. Electric trucks fit well with their distribution hub model, with clean, quiet, short run deliveries. Fuel usage during transportation is being considered from every angle. Local and regional food systems, where farmers and processors sell and distribute their food to consumers within a given area, use less fossil fuel for transportation because the distance from farm to consumer is shorter, and therefore reduce CO2 emissions.

These eight areas are the defining issues facing food and beverage manufacturers today in sustainability. Sustainability impacts all of us, everywhere, and food and beverage manufacturing is right in the middle of it. What this means to the manufacturing world is that they must prepare their processes, systems, infrastructure and mindset to evolve their business in tune to the evolving issue of sustainability.

Karil Kochenderfer, LINKAGES
FST Soapbox

GFSI at 20 YEARS: Time for a Reboot?

By Karil Kochenderfer
No Comments
Karil Kochenderfer, LINKAGES

The marketplace has experienced dramatic changes that were barely on the horizon 20 years ago—by that, I mean mobile phones, Instagram, Facebook, climate change, consumer transparency, globalization, novel new products delivered to your doorstep and now COVID-19, too.

I write from a perspective of both pride and concern. I had the privilege of representing GFSI in North America and helping the organization expand beyond Europe as new food safety laws were implemented in both the United States and Canada.

Questionable Utility of Multiple, Redundant and Costly Certifications

However, I also sympathized with small and medium food companies that struggled with minimal resources and food safety expertise to understand GFSI and then to become certified not once, but multiple times for multiple customers. GFSI’s mantra, “Once Certified, Accepted Everywhere,” was far from their GFSI reality…or, frankly, the reality of many food companies. My concern was not insignificant. The food industry is populated by a majority of small businesses, each seeking that one big break that could possibly, maybe open up access to retail shelves. Their confusion about being audited and certified to one standard was significant. Certification to multiple and redundant standards presented a daunting and costly endeavor for these start-ups. I heard their anxiety in their voices as I served as GFSI’s 1.800 “customer service rep” in North America for years.

Karil Kochenderfer will present “GFSI at 20 Years: Time for a Reboot?” during the 2020 Food Safety Consortium Virtual Conference Series | Her session takes place on December 17Transparency

In the 20 years since GFSI was established, the world has become much more transparent. Today, entire industries operate on open, international, consensus-based ISO management standards in far bigger and more complex sectors than the food sector (e.g., the automotive, airline and medical device sectors). And, in the 20 years since GFSI was established, an ISO food safety management system standard has been developed that is now used widely throughout the world with more than 36,000 certifications (i.e., ISO 22000).

Auditing and certifying a facility to a single, international, public standard would enhance GFSI transparency. It also would help to hurdle government concerns related to the lack of public input into the development of private standards, enabling private certifications like GFSI to be used efficiently as a compliance tool—a benefit to both government and food interests and to consumer health, safety and trade.

New Technologies

Many new technologies, such blockchain, artificial intelligence, sensors and the Internet of Things are being heralded widely now as well, particularly for businesses with complex supply-chains like those in like the fast-moving food and retail sectors. The benefits of these technologies are predicated on the use of a common digital language…or standard. Multiple and diverse standards, like GFSI, complicate the use of these new technologies, which is why FDA is examining the harmonizing role of standards and data management in its proposed New Era of Smarter Food Safety.

Sustainable Development

Today, food safety often is managed in tandem with other corporate environment, health and safety programs. The Consumer Goods Forum, which oversees GFSI, should take a similar approach and merge GFSI with its sustainability, and health and wellness programs to help CGF members meet their existing commitments to the United Nations’ Sustainable Development Goals (SDGs) and to encourage others to do the same. Here, once again, adoption of a single, transparent ISO standard can help. Adoption of ISO 22000 as the single and foundational standard for GFSI makes it easy to layer on and comply with other ISO standards—for example, for the environment (ISO 14000), worker protection (ISO 45001), energy efficiency (ISO 50001) and information/data security (ISO 27001)— and to simultaneously meet multiple SDGs.

Globalization

As I write, the COVID pandemic rages. It may re-align global supply chains and set back global trade temporarily, but the unprecedented rise in consumer incomes and corresponding decrease in poverty around the world attests to the importance of the global trade rules established by the World Trade Organization (WTO). Among these rules is a directive to governments (and businesses) to use common standards to facilitate trade, which uniquely recognizes ISO standards as well as those of Codex and OIE. When trade disputes arise, food interests that use ISO 22000 are hands-down winners, no questions asked. So, why use many and conflicting private standards?

Supply Chain Efficiency

Finally, ISO 22005, part of the ISO 22000 family of food management standards, also is aligned with GS1 Standards for supply-chain management, used throughout the food and retail sectors in North America and globally to share information between customers and suppliers. GS1 is most well known for being the administrators of the familiar U.P.C. barcode. The barcode and other “data carriers” provide visibility into the movement of products as well as information about select attributes about those products—including whether they have been certified under GFSI. Both GS1 and ISO GS1 standards are foundational to the new technologies that are being adopted in the fast-moving food, consumer products, healthcare and retail sectors both in the United States and globally. That alignment puts a spotlight on safety, sustainability, mobility, efficiency and so much more.

Focus Less on the Change, More on the Outcome

My proposal will surely set tongues in motion. Proposals to switch things up generally do. Disruption has become the norm, however, and food businesses are prized for their agility and responsiveness to the endless changes in today’s fast-moving marketplace. Still, ISO and Codex standards already are embedded in the GFSI benchmark so what I’m proposing should not be so disruptive and no one scheme or CPO should benefit disproportionately. And, less differentiation in the standard of industry performance will compel scheme or certification owners to shift their focus away from compliance with their standards and audit checklists to working with customers to truly enhance and establish “food safety-oriented cultures.” If they do, all of us emerge as winners.

The New Normal?

Around us new food businesses are emerging just as old businesses reinvent theirs. Trucks now operate as restaurants and athletes deliver dinner on bicycles. For a long time, we’ve operated businesses based on 20th century models that don’t resonate in the 21st century world. Are we at an inflection point, with both small and large businesses paying for costly and inefficient practices that no longer apply, and is it time for GFSI to change?

I welcome your thoughts. I truly do. Better, let’s discuss on a webinar or video call of your choosing. I look forward to connecting.

Submit questions you want Karil to answer during her session at the 2020 Food Safety Consortium Virtual Conference Series in the Comments section below.