Tag Archives: sustainability

Are Traasdahl, Crisp
FST Soapbox

How a History of Slow Technology Adoption Across Food Supply Chains Nearly Broke Us

By Are Traasdahl
1 Comment
Are Traasdahl, Crisp

The COVID-19 crisis has exacerbated existing disconnects between food supply and demand. While some may be noticing these issues on a broader scale for the first time, the reality is that there have been challenges in our food supply chains for decades. A lack of accurate data and information sharing is the core of the problem and had greater impact due to the pandemic. Outdated technologies are preventing advancements and efficiencies, resulting in the paradox of mounting food insecurity and food waste.

To bridge this disconnect, the food industry needs to implement innovative AI and machine learning technologies to prevent shortages, overages and waste as COVID-19 subsides. Solutions that enable data sharing and collaboration are essential to build more resilient food supply chains for the future.

Data-sharing technologies that can help alleviate these problems have been under development for decades, but food supply chains have been slow to innovate compared to other industries. By reviewing the top four data-sharing technologies used in food industry and the year they were introduced to food supply chains, it’s evident that the pace of technology innovation and adoption needs to accelerate to advance the industry.

A History of Technology Adoption in the Food Industry

The Barcode – 19741
We’re all familiar with the barcode—that assemblage of lines translated into numbers and letters conveying information about a product. When a cashier scans a barcode, the correct price pops up on the POS, and the sale data is recorded for inventory management. Barcodes are inexpensive and easy to implement. However, they only provide basic information, such as a product’s name, type, and price. Also, while you can glean information from a barcode, you can’t change it or add information to it. In addition, barcodes only group products by category—as opposed to radio-frequency identification (RFID), which provides a different code for every single item.

EDI First Multi-Industry Standards – 19812
Electronic data interchange (EDI) is just what it sounds like—the concept of sharing information electronically instead of on paper. Since EDI standardizes documents and the way they’re transferred, communication between business partners along the supply chain is easier, more efficient, and human error is reduced. To share information via EDI, however, software is required. This software can be challenging for businesses to implement and requires IT expertise to handle updates and maintenance.

RFID in the Food Supply Chain – 20033
RFID and RFID tags are encoded with information that can be transmitted to a reader device via radio waves, allowing businesses to identify and track products and assets. The reader device translates the radio waves into usable data, which then lands in a database for tracking and analysis.

RFID tags hold a lot more data than barcodes—and data is accessible in remote locations and easily shared along the supply chain to boost transparency and trust. Unlike barcode scanners, which need a direct line of sight to a code, RFID readers can read multiple tags at once from any direction. Businesses can use RFID to track products from producer to supplier to retailer in real time.

In 2003, Walmart rolled out a pilot program requiring 100 of its suppliers to use RFID technology by 2005.3 However, the retail giant wasn’t able to scale up the program. While prices have dropped from 35–40 cents during Walmart’s pilot to just 5 cents each as of 2018, RFID tags are still more expensive than barcodes.4 They can also be harder to implement and configure. Since active tags have such a long reach, businesses also need to ensure that scammers can’t intercept sensitive data.

Blockchain – 20175
A blockchain is a digital ledger of blocks (records) used to record data across multiple transactions. Changes are recorded in real-time, making the history unfalsifiable and transparent. Along the food supply chain, users can tag food, materials, compliance certificates and more with a set of information that’s recorded on the blockchain. Partners can easily follow the item through the physical supply chain, and new information is recorded in real-time.

Blockchain is more secure and transparent, less vulnerable to fraud, and more scalable than technologies like RFID. When paired with embedded sensors and RFID tags, the tech offers easier record-keeping and better provenance tracking, so it can address and help solve traceability problems. Blockchain boosts trust by reducing food falsification and decreasing delays in the supply chain.6

On the negative side, the cost of transaction processing with blockchain is high. Not to mention, the technology is confusing to many, which hinders adoption. Finally, while more transparency is good news, there’s such a thing as too much transparency; there needs to be a balance, so competitors don’t have too much access to sensitive data.

Cloud-Based Demand Forecasting – 2019 to present7
Cloud-based demand forecasting uses machine learning and AI to predict demand for various products at different points in the food supply chain. This technology leverages other technologies on this list to enhance communication across supply chain partners and improve the accuracy of demand forecasting, resulting in less waste and more profit for the food industry. It enables huge volumes of data to be used to predict demand, including past buying patterns, market changes, weather, events and holidays, social media input and more to create a more accurate picture of demand.

The alternative to cloud-based demand forecasting that is still in use today involves Excel or manual spreadsheets and lots of number crunching, which are time-intensive and prone to human error. This manual approach is not a sustainable process, but AI, machine learning and automation can step in to resolve these issues.

Obtaining real-time insights from a centralized, accurate and accessible data source enables food suppliers, brokers, distributors, brands and retailers to share information and be nimble, improving their ability to adjust supply in response to factors influencing demand.8 This, in turn, reduces cost, time and food waste, since brands can accurately predict how much to produce down to the individual SKU level, where to send it and even what factors might impact it along the way.

Speeding Up Adoption

As illustrated in Figure 1, the pace of technology change in the food industry has been slow compared to other industries, such as music and telecommunications. But we now have the tools, the data and the brainpower to create more resilient food supply chains.

Technology adoption, food industry
Figure 1. The pace of technology change in the food industry has been slow compared to other industries. Figure courtesy of Crisp.

Given the inherent connectivity of partners in the food supply chain, we now need to work together to connect information systems in ways that give us the insights needed to deliver exactly the rights foods to the right places, at the right time. This will not only improve consumer satisfaction but will also protect revenue and margins up and down food supply chains and reduce global waste.

References

  1. Weightman, G. (2015). The History of the Bar Code. Smithsonian Magazine.
  2. Locken, S. (2012). History of EDI Technology. EDI Alliance.
  3. Markoff, R, Seifert, R. (2019). RFID: Yesterday’s blockchain. International Institute for Management Development.
  4. Wollenhaupt, G. (2018). What’s next for RFID? Supply Chain Dive.
  5. Tran, S. (2019). IBM Food Trust: Cutting Through the Complexity of the World’s Food Supply with Blockchain. Blockchain News.
  6. Galvez, J, Mejuto, J.C., Simal-Gandara, J. (2018). Future Challenge on the use of blockchain for food traceability analysis. Science Direct.
  7. (2019). Crisp launches with $14.2 million to cut food waste using big data. Venture Beat.
  8. Dixie, G. (2005). The Impact of Supply and Demand. Marketing Extension Guide.
Salim Al Babili, Ph.D., KAUST
Food Genomics

To Boost Crop Resilience, We Need to Read Our Plants’ Genetic Codes

By Salim Al Babili, Ph.D.
No Comments
Salim Al Babili, Ph.D., KAUST

In just 30 years, worldwide food production will need to nearly double to feed the projected population of 9 billion people. Challenges to achieving food security for the future include increasing pressures of global warming and shifting climatic belts, a lack of viable agricultural land, and the substantial burdens on freshwater resources. With the United Nations reporting nearly one billion people facing food insecurity today, our work must begin now.

A key research area to meet this crisis is in developing crops resilient enough to grow in a depleting environment. That’s why we need to search for ways to improve crop resilience, boost plant stress resistance and combat emerging diseases. Researchers around the world, including many of my colleagues at Saudi Arabia-based King Abdullah University of Science and Technology (KAUST), are exploring latest genome editing technologies to develop enough nutritious, high-quality food to feed the world’s growing population.1

Where We’ve Been, and Where We Need to Go

Farmers have been genetically selecting crop plants for thousands of years, choosing superior-looking plants (based on their appearance or phenotype) for breeding. From the early 20th century, following breakthroughs in understanding of genetic inheritance, plant breeders have deliberately cross-bred crop cultivars to make improvements. In fact, it was only a few decades ago that Dr. Norman Borlaug’s development of dwarf wheat saved a billion lives from starvation.

However, this phenotypic selection is time-consuming and often expensive—obstacles that today’s global environment and economy don’t have the luxury of withstanding.

Because phenotypic selection relies on traits that are already present within the crop’s genome, it misses the opportunity to introduce resilient features that may not be native to the plant. Features like salt tolerance for saltwater irrigation or disease resistance to protect against infections could yield far larger harvests to feed more people. This is why we need to explore genome editing methods like CRISPR, made popular in fighting human diseases, to understand its uses for agriculture.

What Our Research Shows

We can break down these issues into the specific challenges crops face. For instance, salt stress can have a huge impact on plant performance, ultimately affecting overall crop yields. An excess of salt can impede water uptake, reduce nutrient absorption and result in cellular imbalances in plant tissues. Plants have a systemic response to salt stress ranging from sensing and signaling to metabolic regulation. However, these responses differ widely within and between species, and so pinpointing associated genes and alleles is incredibly complex.2

Researchers must also disentangle other factors influencing genetic traits, such as local climate and different cultivation practices.

Genome-wide association studies, commonly used to scan genomes for genetic variants associated with specific traits, will help to determine the genes and mutations responsible for individual plant responses.3 Additionally, technology like drone-mounted cameras could capture and scan large areas of plants to measure their characteristics, reducing the time that manual phenotyping requires. All of these steps can help us systematically increase crops’ resilience to salt.

Real-world Examples

“Quinoa was the staple ‘Mother Grain’ that fueled the ancient Andean civilizations, but the crop was marginalized when the Spanish arrived in South America and has only recently been revived as a new crop of global interest,” says Mark Tester, a professor of plant science at KAUST and a colleague of mine at the Center for Desert Agriculture (CDA). “This means quinoa has never been fully domesticated or bred to its full potential even though it provides a more balanced source of nutrients for humans than cereals.”

In order to further understand how quinoa grows, matures and produces seeds, the KAUST team combined several methods, including cutting-edge sequencing technologies and genetic mapping, to piece together full chromosomes of C. quinoa. The resulting genome is the highest-quality quinoa sequence to date, and it is producing information about the plant’s traits and growth mechanisms.4,5

The accumulation of certain compounds in quinoa produces naturally bitter-tasting seeds. By pinpointing and inhibiting the genes that control the production of these compounds, we could produce a sweeter and more desirable crop to feed the world.

And so, complexity of science in food security increases when we consider that different threats affect different parts of the world. Another example is Striga, a parasitic purple witchweed, which threatens food security across sub-Saharan Africa due to its invasive spread. Scientists, including my team, are focused on expanding methods to protect the production of pearl millet, an essential food crop in Africa and India, through hormone-based strategies for cleansing soils infested with Striga.6

Other scientists with noteworthy work in the area of crop resilience include that of KAUST researchers Simon Krattinger, Rod Wing, Ikram Blilou and Heribert Hirt; with work spanning from leaf rust resistance in barley to global date fruit production.

Looking Ahead

Magdy Mahfouz, an associate professor of bioengineering at KAUST and another CDA colleague, is looking to accelerate and expand the scope of next-generation plant genome engineering, with a specific focus on crops and plant responses to abiotic stresses. His team recently developed a CRISPR platform that allows them to efficiently engineer traits of agricultural value across diverse crop species. Their primary goal is to breed crops that perform well under climate-related stresses.

“We also want to unlock the potential of wild plants, and we are working on CRISPR-guided domestication of wild plants that are tolerant of hostile environments, including arid regions and saline soils,” says Mahfouz.

As climate change and population growth drastically alters our approach to farming, no singular tool may meet the urgent need of feeding the world on its own. By employing a variety of scientific and agricultural approaches, we can make our crops more resilient, their cultivation more efficient, and their yield more plentiful for stomachs in need worldwide. Just as technology guided Dr. Bourlag to feed an entire population, technology will be the key to a food secure 21st century.

References

  1. Zaidi, SS. et al. (2019). New plant breeding technologies for food security. Science. 363:1390-91.
  2. Morton, M. et al. (2018). Salt stress under the scalpel – dissecting the genetics of salt tolerance. Plant J. 2018;97:148-63.
  3. Al-Tamimi, N. et al. (2016). Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nature Communicat. 7:13342.
  4. Jarvis, D.E., et.al. (2017). The genome of Chenopodium quinoa. Nature. 542:307-12.
  5. Saade. S., et. al. (2016). Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Sci Reports. 6:32586.
  6. Kountche, B.A., et.al. (2019). Suicidal germination as a control strategy for Striga hermonthica (Benth.) in smallholder farms of sub‐Saharan Africa. Plants, People, Planet. 1: 107– 118. https://doi.org/10.1002/ppp3.32
Karen Everstine, Decernis
Food Fraud Quick Bites

COVID-19 and Food Fraud Risk

By Karen Everstine, Ph.D.
No Comments
Karen Everstine, Decernis

While foodborne transmission of the novel coronavirus is unlikely , the virus has significantly affected all aspects of food production, food manufacturing, retail sales, and foodservice. The food and agriculture sector has been designated as a “critical infrastructure,” meaning that everyone from farm workers to pest control companies to grocery store employees has been deemed essential during this public health crisis.* As a society, we need the food and agriculture sector to continue to operate during a time when severe illnesses, stay-at-home orders and widespread economic impacts are occurring. Reports of fraudulent COVID-19 test kits and healthcare scams reinforce that “crime tends to survive and prosper in a crisis.” What does all of this mean for food integrity? Let’s look at some of the major effects on food systems and what they can tell us about the risk of food fraud.

Supply chains have seen major disruptions. Primary food production has generally continued, but there have been challenges within the food supply chain that have led to empty store shelves. Recent reports have noted shortages of people to harvest crops, multiple large meat processing facilities shut down due to COVID-19 cases, and recommendations for employee distancing measures that reduce processing rates. One large U.S. meat processor warned of the need to depopulate millions of animals and stated “the food supply chain is breaking.” (An Executive Order was subsequently issued to keep meat processing plants open).

Equally concerning are reports of supply disruptions in commodities coming out of major producing regions. Rice exports out of India have been delayed or stopped due to labor shortages and lockdown measures. Vietnam, which had halted rice exports entirely in March, has now agreed to resume exports that are capped at much lower levels than last year. Other countries have enacted similar protectionist measures. One group has predicted possible food riots in countries like India, South Africa and Brazil that may experience major food disruption coupled with high population density and poverty.

Supply chain complexity, transparency and strong and established supplier relationships are key aspects to consider as part of a food fraud prevention program. Safety or authenticity problems in one ingredient shipment can have a huge effect on the market if they are not identified before products get to retail (see Figure 1). Widespread supply chain disruptions, and the inevitable supplier adjustments that will need to be made by producers, increase the overall risk of fraud.

Reconstructed supply chain
Figure 1. Reconstructed supply chain based on recall data following the identification of Sudan I in the chili powder supply chain in 2005. Data source: Food Standards Agency of the U.K. National Archives and The Guardian. Figure from: Everstine, K. Supply Chain Complexity and Economically Motivated Adulteration. In: Food Protection and Security – Preventing and Mitigating Contamination during Food Processing and Production. Shaun Kennedy (Ed.) Woodhead Publishing: 26th October 2016. Available at: https://www.elsevier.com/books/food-protection-and-security/kennedy/978-1-78242-251-8

Regulatory oversight and audit programs have been modified. The combination of the public health risk that COVID-19 presents with the fact that food and agriculture system workers have been deemed “critical” has led to adjustments on the part of government and regulatory agencies (and private food safety programs) with respect to inspections, labeling requirements, audits, and other routine activities. The FDA has taken measures including providing flexibility in labeling for certain menus and food products, temporarily conducting remote inspections of food importers, and generally limiting domestic inspections to those that are most critical. USDA FSIS has also indicated they are “exercising enforcement discretion” to provide labeling flexibilities. The Canadian Food Inspection Agency (CFIA) announced they are prioritizing certain regulatory activities and temporarily suspending those activities determined to be “low risk.” GFSI has also taken measures to allow Certification Program Owners to provide certificate extensions due to the inability to conduct in-person audits.

While these organizations have assured stakeholders and the public that food safety is of primary importance, the level of direct regulatory and auditing oversight has been reduced to reduce the risk of virus transmission during in-person activities. Strong auditing programs with an anti-fraud component are an important aspect of food fraud prevention. Adjustments to regulatory and auditing oversight, as necessary as they may be, increase the risk of fraud in the food system.

There is a focus on safety and sustainability of foods. The food industry and regulatory agencies are understandably focused on basic food safety and food sustainability and less focused on non-critical issues such as quality and labeling. However, there is a general sense among some in industry that the risk of food fraud is heightened right now. Many of the effects on the industry due to COVID-19 are factors that are known to increase fraud risk: Supply chain disruptions, changes in commodity prices, supplier relationships (which may need to be changed in response to shortages), and a lack of strong auditing and oversight. However, as of yet, we have not seen a sharp increase in public reports of food fraud.

This may be due to the fact that we are still in the relatively early stages of the supply chain disruptions. India reported recently that the Food Safety Department of Kerala seized thousands of kilograms of “stale” and “toxic” fish and shrimp illegally brought in to replace supply shortages resulting from the halt in fishing that occurred due to lockdown measures.

High-value products may be particularly at risk. Certain high-value products, such as botanical ingredients used in foods and dietary supplements, may be especially at risk due to supply chain disruptions. Historical data indicate that high-value products such as extra virgin olive oil, honey, spices, and liquors, are perpetual targets for fraudulent activity. Turmeric, which we have discussed previously, was particularly cited as being at high risk for fraud due to “‘exploding’ demand ‘amidst supply chain disruptions.’”

How can we ensure food sufficiency, safety, and integrity? FAO has recommended that food banks be mobilized, the health of workers in the food and agriculture sector be prioritized, that governments support small food producers, and that trade and tax policies keep global food trade open. They go on to say, “by keeping the gears of the supply chains moving and actively seeking international cooperation to keep trade open, countries can prevent food shortages and protect the most vulnerable populations.” FAO and WHO also published interim guidance for national food safety control systems, which noted the increased risk of food fraud. They stated “during this pandemic, competent authorities should investigate reported incidences involving food fraud and work closely with food businesses to assess the vulnerability of supply chains…”.

From a food industry perspective, some important considerations include whether businesses have multiple approved suppliers for essential ingredients and the availability of commodities that may affect your upstream suppliers. The Acheson Group recommends increasing supply chain surveillance during this time. The Food Chemicals Codex group recommends testing early and testing often and maintaining clear and accurate communication along the supply chain.1 The nonprofit American Botanical Council, in a memo from its Botanical Adulterants Prevention Program, stated “responsible buyers, even those with relatively robust quality control programs, may need to double- or even triple-down on QC measures that deal with ingredient identity and authenticity.”

Measures to ensure the sufficiency, sustainability, safety and integrity of foods are more closely linked than ever before. In this time when sufficiency is critical, it is important to avoid preventable food recalls due to authenticity concerns. We also need to stay alert for situations where illegal and possibly hazardous food products enter the market due to shortages created by secondary effects of the virus. The best practices industry uses to reduce the risk of food fraud are now important for also ensuring the sufficiency, sustainability and safety of the global food supply.

Reference

  1. Food Safety Tech. (April 24, 2020). “COVID-19 in the Food Industry: Mitigating and Preparing for Supply Chain Disruptions “. On-Demand Webinar. Registration page retrieved from https://register.gotowebinar.com/recording/1172058910950755596

*Foodborne transmission is, according to the Food Standards Agency in the U.K., “unlikely” and, according to the U.S. FDA, “currently there is no evidence of food or food packaging being associated with transmission of COVID-19.”

John McPherson, rfxcel
FST Soapbox

Clear Waters Ahead? The Push for a Transparent Seafood Supply Chain

By John McPherson
No Comments
John McPherson, rfxcel

The seafood supply chain handles 158 million metric tons of product every year, 50% of which comes from wild sources. Operating in every ocean on the planet, the industry is struggling to figure out how to overcome the numerous obstacles to traceability, which include unregulated fishing, food fraud and unsustainable fishing practices. With these and other problems continuously plaguing the supply chain, distributors and importers cannot consistently guarantee the validity, source or safety of their products. Furthermore, there are limits to what a buyer or retailer can demand of the supply chain. Niche solutions abound, but a panacea has yet to be found.

In this complex environment, there are increasing calls for better supply chain management and “catch to plate” provenance. One problem, however: The industry as a whole still regards traceability as a cost rather than an investment. There are signs this attitude is changing, however, perhaps due to pressure from consumers, governments and watchdog-type organizations to “clean up” the business and address the mounting evidence that unsustainable fishing practices cause significant environmental problems. Today, we’ve arrived at a moment when industry leaders are being proactive about transparency and technologies such as mobile applications and environmental monitoring software can genuinely help reform the seafood supply chain.

A Global Movement for Seafood Traceability

There are several prominent examples of the burgeoning worldwide commitment to traceability (and, by default, the use of new technologies) in the seafood supply chain. These include the Tuna 2020 Traceability Declaration, the Global Tuna Alliance, and the Global Dialogue on Seafood Traceability. Let’s focus on the latter to illustrate the efforts to bring traceability to the industry.

The Global Dialogue on Seafood Traceability. The GDST, or the Dialogue, is “an international, business-to-business platform established to advance a unified framework for interoperable seafood traceability practices.” It comprises industry stakeholders from different parts of the supply chain and civil society experts from around the world, working together to develop industry standards to, among other things, improve the reliability of information, make traceability less expensive, help reduce risk in the supply chain, and facilitate long-term social and environmental sustainability.

On March 16, 2020, the Dialogue launched its GDST 1.0 Standards, which will utilize the power of data to support traceability and the ability to guarantee the legal origin of seafood products. These are guidelines, not regulations; members who sign a pledge commit themselves to bringing these standards to their supply chains.

GDST 1.0 has two objectives. First, it aims to harmonize data standards to facilitate data sharing up and down the supply chain. It calls for all nodes to create Electronic Product Code Information Services (EPCIS) events to make interoperability possible (EPCIS is a GS1 standard that allows trading partners to share information about products as they move through the supply chain.). Second, it defines the key data elements that trading partners must capture and share to ensure the supply chain is free of seafood caught through illegal, unreported and unregulated (IUU) fishing and to collect relevant data for resource management.

Why Transparency Is Critical

By now it’s probably clear to you that the seafood sector is in dire need of a makeover. Resource depletion, lack of trust along the supply chain, and the work of global initiatives are just a few of the factors forcing thought leaders in the industry to rethink their positions and make traceability the supply chain default.

However, despite more and more willingness among stakeholders to make improvements, the fact is that the seafood supply chain remains opaque and mind-bogglingly complex. There are abundant opportunities for products to be compromised as they change hands over and over again across the globe on their journey to consumers. The upshot is that the status quo rules and efforts to change the supply chain are under constant assault.

You may ask yourself what’s at stake if things don’t change. The answer is actually quite simple: The future of the entire seafood sector. Let’s look at a few of the most pressing problems facing the industry and how transparency can help solve them.

Illegal, unreported, and unregulated fishing. IUU fishing includes fishing during off-season breeding periods, catching and selling unmanaged fish stocks, and trading in fish caught by slaves (yes, slaves). It threatens the stability of seafood ecosystems in every ocean.

According to the Food and Agriculture Organization of the United Nations, IUU fishing accounts for as much as 26 million tons of fish every year, with a value of $10–23 billion. It is “one of the greatest threats to marine ecosystems” and “takes advantage of corrupt administrations and exploits weak management regimes.” It occurs in international waters and within nations’ borders. It can have links to organized crime. It depletes resources available to legitimate operations, which can lead to the collapse of local fisheries. “IUU fishing threatens livelihoods, exacerbates poverty, and augments food insecurity.”

Transparency will help mitigate IUU fishing by giving buyers and wholesalers the ability to guarantee the source of their product and avoid seafood that has come from suspect sources. It will help shrink markets for ill-gotten fish, as downstream players will demand data that proves a product is from a legal, regulated source and has been reported to the appropriate government agencies.

International food fraud. When the supply for a perishable commodity such as seafood fluctuates, the supply chain becomes vulnerable to food fraud, the illegal practice of substituting one food for another. (For seafood, it’s most often replacing one species for another.) To keep an in-demand product flowing to customers, fishermen and restaurateurs can feel pressure to commit seafood fraud.

The problem is widespread. A 2019 report by Oceana, which works to protect and restore the Earth’s oceans, found through DNA analysis that 21% of the 449 fish it tested between March and August 2018 were mislabeled and that one-third of the establishments their researchers visited sold mislabeled seafood. Mislabeling was found at 26% of restaurants, 24% of small markets, and 12% of larger chain grocery stores. Sea bass and snapper were mislabeled the most. These results are similar to earlier Oceana reports.

Consumer health and food safety. It’s difficult to guarantee consumer health and food safety without a transparent supply chain. End-to-end traceability is critical during foodborne illness outbreaks (e.g., E. coli) and recalls, but the complex and global nature of the seafood supply chain presents a particularly daunting challenge. Species substitution (i.e., food fraud) has caused illness and death, and mishandled seafood can carry high histamine levels that pose health risks. Consumers have expectations that they are eating authentic food that is safe; the seafood industry has suffered from a lack of trust, and is starting to realize that the modern consumer landscape demands transparency.

Why Seafood Traceability Supports the Whole Supply Chain

Most seafood supply chain actors are well-intentioned companies. They regard themselves as stakeholders of a well-managed resource whose hardiness and survival are critical to their businesses and the global food supply chain. Many have implemented policies that require their buyers to verify—to the greatest extent possible—that the seafood they procure meets minimum standards for sustainability, safety and quality.

This kind of self-regulation has been an important first step, but enforcing such standards has been hampered by the lack of validated traceability systems in a digital supply chain. Of course, it costs money to implement these systems, which has been a sticking point, but industry leaders are starting to realize the value of the investment.

Suppliers. A key benefit of traceability for suppliers (i.e., processors and manufacturers) is that it allows them to really protect their business investments. Traceability achieves this because it demonstrates to consumers and trading partners that suppliers are doing things the correct way. Traceability also gives them better control over their supply chains and improves the quality of their product—other important “indicators” for consumers and trading partners.

These advantages also create opportunities for suppliers to build their brand reputations. For example, they can engage with consumers directly, using traceability data to explain that they are responsible stewards of fish populations and the environment and that their products are sustainably sourced and legitimate.

The bottom line is that suppliers that don’t modernize and digitize their supply chains probably won’t be able to stay in business. This stark realization should make them embrace traceability, as well as adopt practices that comply with the regulations that govern their operations. And once they “get with the program,” they should also be more inclined to follow initiatives and guidelines such as the GDST 1.0 Standards. This will invariably create more trust with their customers and partners.

Brands (companies) and distributors. These stakeholders also have a lot to gain from traceability. In a nutshell, they can know exactly what they’re purchasing and have peace of mind about the products’ origins, sustainability, and legitimacy. Like suppliers, they can readily comply with regulations, such as the U.S. Seafood Import Monitoring Program (SIMP), a risk-based traceability effort that requires importers to provide and report key data about 13 fish and fish products identified as vulnerable to IUU fishing and/or seafood fraud.

And, of equal importance to their own fortunes, brands and distributors can use traceability to bolster their reputations and build and solidify their relationships with customers. Being able to prove the who, what, when, where, how, and why of the products they’re selling is a powerful branding and communications tool.

The end of the supply chain: Retailers, food service groups/providers, and consumers. High-quality products with traceable provenance mean retailers and food service companies will have better supply chain control and more “ammunition” to protect their brands. As with the stakeholders above, they’ll also garner more customer loyalty. For their part, consumers will know where their seafood comes from, be assured that their food is safe, feel good about being responsible buyers, and be inclined to purchase only products they can verify.

Transparency, Technology, Trust and Collaboration

The seafood industry is at a critical point in its very long history. It’s not a new story in business: Adapt, adopt and improve or face the consequences—in this case, government penalties, sanction from environmental groups, consumer mistrust and abandonment, and decreased revenues or outright failure.

There is one twist to the story, however: What the industry does now will affect more than just its own interests. The health of all fish species, the environment, and the future of the food supply for an ever-growing population hang in the balance.

But as we’ve demonstrated, there is good news. Supply chain transparency, driven by international initiatives and new technologies, is catching on in the industry. Though companies still struggle to see transparency as an investment, not a cost, their stances seem to be softening, their attitudes changing. The writing is on the wall.

The message I want to end with is that supply chain stakeholders should know that transparency is attainable—and it needn’t be painful. Help is available from many quarters, from government and global initiatives like the GDST to consumers themselves. Working with the right solution provider is another broad avenue leading to supply chain transparency. Technology is at the point now that companies have solid options. They can integrate their current systems with new solutions. They can consider replacing outdated and expensive-to-operate systems with less complicated solutions that, in the long run, do more for less. Or they can procure an entirely new supply chain system that closes all the gaps and jumps all the hurdles to transparency.

Whatever path the industry decides follow, the time to act is now.

Tatiana Bravo, INTURN
FST Soapbox

Looking Ahead: The Digital Supply Chain and Fast-Moving Consumer Goods

By Tatiana Bravo
No Comments
Tatiana Bravo, INTURN

The global supply chain is changing. The fast-moving supply chains that power many of the world’s top businesses are being transformed before our very eyes, as companies all over the globe compete to beat their competitors through digitalization.

What we’re now seeing is the emergence of a digital supply chain, with processes powered by innovative and exciting new ideas turned into software.

As we look ahead to the coming months and years, we can expect to see incredible changes affecting the supply chains of all manner of businesses. In fact, we’d go so far as to say that any business that’s serious about competing on the global stage will have no choice but to embrace these innovations and go digital.

So, what exactly can we expect to see from the digital supply chain in the near future, and how might these changes affect fast-moving consumer goods?

Advanced Analytics

The potential of analytics is incredible, particularly when you look at supply chains.

Recent years have seen data rise to the forefront of many business leaders’ concerns. Increasing numbers of companies have started to pick up on the impact that informative data can have on their strategies, and ultimately their chances of ongoing success in the marketplace.

The supply chain is no exception to this rule. As the power of analytical software improves, businesses will be clamoring to gain access to, and make use of, the huge amount of data that’s now available.

We’re likely to see those managing data put under increasing amounts of pressure to use that data effectively, helping to inform decisions that impact supply chain processes and limit wastage. This data will also be invaluable in determining the real impact of critical supply chain decisions and informing future strategies.

The Emergence of AI
AI is the next big thing in business, and it’s set to transform the way the digital supply chain works. Artificial intelligence is now emerging as a hugely powerful tool, capable of helping businesses to make the right decisions for their supply chains.

As the potential of AI improves, we can expect to see its impact felt more widely throughout global supply chains. Look out for AI being used to inform businesses on changing customer preferences, disruptions in supply chains, increasing costs and other obstacles to product delivery. Artificial intelligence will predict future problems before they occur, giving business owners plenty of time to steer clear of potential pitfalls and keep things moving.

AI will also prove invaluable when it comes to anticipating the purchasing habits of existing customers and establishing the value of new leads and potential purchasers. If used effectively, this information could have a dramatic impact on the success of a wide range of different businesses—particularly those focused on fast-moving consumer goods.

Automation of Supply Chain Tasks

Automation itself isn’t a new idea, but the way it’s being used in digital supply chains is.

In the coming months and years, we’re likely to see automation transform the way supply chains work. The automation of processes will help businesses to cut costs, improve efficiency and eliminate any skills gaps by which they may be affected.

Supply chain tasks are being automated with the help of something called robotic process automation, or RPA. This form of automation is even smarter than traditional automated processes.

Informed by software bots or AI, RPA is a significant step forward in the world of digital supply chains. It’s highly scalable, incredibly effective and, importantly, it’s been proven to be hugely reliable. So, even businesses dedicated to the very highest standards of quality are now beginning to automate processes using RPA.

Climate Change Challenges

Climate change continues to be a hot topic in the news, and supply chains are likely to feel the impact of these concerns.

Consumers’ purchasing habits are increasingly led by environmental considerations. It’s therefore important that companies consider the environmental impact of their supply chain processes and provide visibility on these, for those who have an interest.

It’s expected that issues surrounding sustainability will become ever more critical in the future. Inevitably, supply chains will be impacted. Companies making use of digitalization will be best placed to prepare for the challenges of sustainability, reducing waste and making speedy adjustments to their processes as and when required.

A Shift in Transportation

The digitalization of supply chain processes has given ecommerce companies and online retailers the edge over traditional high street retailers. And this has led to a shift towards online shopping, which shows no sign of waning. As we continue into 2020 and beyond, we can expect to see more and more consumers choosing to shop online, and that’s going to have a knock-on effect on the transportation of goods.

Experts are predicting a transportation crunch, when demand begins to outstrip the availability of transport for online goods. This is likely to lead to a shift in how goods are transported, which could well align with changes to logistics designed to improve sustainability and reduce the carbon footprint of products.

Changes in Trade Agreements

Changes in trade agreements between many of the world’s leading economies are likely to impact supply chains in the future. With Brexit looming and trade issues between the United States and China continuing, it’s important that companies remain aware of how political decisions might affect the way they work.

Digital supply chains provide enhanced flexibility for companies, enabling organizations to quickly adapt to changes that could be outside of their control. So, companies that continue to provide a fast and reliable service despite changing trade agreements could well gain an edge over less efficient competitors as time goes on.

Companies making full use of digitalization will be best placed to make the most of new opportunities, and avoid supply chain disruption as a result of changing trade agreements.

Security Concerns

While businesses are beginning to realize the potential of the data that’s now available to them, consumers too are opening their eyes to the data that they share with the world. And this increased awareness has led to consumers being newly concerned about the data they reveal, and how secure that data is once it’s been shared.

Companies looking to make full use of the digitalization of supply chain processes will be incredibly reliant on data to maximize their efficiency. For this reason, it will be vital that companies establish trust with their existing customers and new prospects.

Security measures should therefore be top of the agenda for forward-thinking businesses. Companies that fall foul of security breaches and data losses are unlikely to be trusted with consumers’ data going forward, and this could have a detrimental impact on the efficiency of their digital supply chains in the future.

Digitalization is sweeping through the supply chains of companies all over the planet, and its potential is mind boggling. The automation of supply chain processes has already transformed the way supply chains are managed, massively increasing the speed and efficiency of a huge number of different companies.

In the future, we’re likely to see further improvements to digital supply chains, as companies begin to make better use of artificial intelligence and robotics. Look out for supply chains managed by AI-powered software and RPA, and get ready for astounding productivity from early adopters of these exciting new technologies.

GREG BALESTRIER, Green Rabbit
Retail Food Safety Forum

Solving Food Safety Challenges in Today’s eCommerce Driven World

By Greg Balestrieri
No Comments
GREG BALESTRIER, Green Rabbit

Think about this number for a second: Consumers spent more than $19 billion on online grocery in 2019. While this is still a small segment of the overall $800 billion U.S. grocery market, more consumers than ever before are turning to eCommerce for the fulfillment and delivery of perishable goods, positioning the grocery delivery market to grow dramatically, especially as companies like Amazon continue to innovate in this area.

Adding to this, a recent survey found that 68% of consumers feel the freshness of perishable items is the number one quality they look for in online grocery retail. This is where things become complicated, as shipping perishables introduces an entirely new set of quality challenges for eCommerce brands. This is hindering the market from reaching its full potential until the biggest problem is solved: Ensuring food safety and freshness in every order.

This is a double-edged sword for retailers, grocers and CPGs: Interest in their service is taking off, but it takes just one package of spoiled meat or wilted vegetables to potentially lose a customer to a competitor—or even worse, get someone sick.

Today, spoilage and food safety issues are primarily driven by breakdowns in the cold chain, and it only takes one mishap to affect the quality of food throughout the rest of the delivery lifecycle. To achieve optimal freshness and keep customers happy, grocers, retailers and their trusted partners need to focus on three primary food freshness factors: Temperature, storage and packaging.

Controlling each of these issues starts at the warehouse.

Freshness Starts at the Warehouse

For most parcels, such as clothing, books and other commonly ordered goods, temperature control is rarely an issue. However, facilities that store perishable foods have a constant component to manage—temperature fluctuation.

According to the NRDC, cooling and refrigeration inconsistency is one of the biggest contributors to food spoilage and waste. This is because every food item has a definable maximum shelf life, and storing them at less than optimal or constantly changing temperatures can exacerbate and drastically shorten its timeline.

Mistakes with heightened temperatures on items like meat and poultry can also lead to bacteria growth and foodborne illnesses. In fact, the CDC estimates that 48 million people get sick, 128,000 are hospitalized and 3,000 die from foodborne diseases each year in the United States, putting a spotlight on how seriously food safety issues need to be taken.

The Need for Proper Rotation Processes

First expiration, first out (FEFO) is a motto all organizations should live by when stocking inventory. In addition, it is a critical process when working to avoid the food spoilage crisis. It may come as a surprise, but not all distribution centers have this type of rotation system in place. This means organizations could send spoiled food to consumers because an item was pushed to the back of a refrigerator during the re-stocking process and unknowingly shipped passed its expiration date. Not only does this create massive amounts of food waste, tarnish a brand and eat into a company’s profits by replacing low margin products, but consuming a spoiled food item can also be detrimental to one’s health.

While it helps to keep these types of costly errors in mind, as warehouse operations grow, there’s no possible way to manually scale this system.

Luckily, breakthroughs in cold chain technology have produced automated solutions that help organizations track everything from expiration dates to potential recalls. These types of technology support the entire cold chain lifecycle and ensure that warehouses and their grocery partners have the visibility they need to ensure freshness from fulfillment to the customer’s doorstep.

However, when the product is ready to leave the warehouse, it’s arguably about to enter the hardest portion of the cold chain lifecycle: Delivery.

Key Considerations for Packaging

For fragile items, packaging is all about keeping the item protected from drops and damage, but for food the focus should be on keeping the item fresh and at optimum temperatures throughout the duration of transit.

Given many grocers outsource delivery, they have little interest in whether food spoils, mainly because they are unaware of the package contents and are more focused on getting the item to the right location fast and effectively.

Yet there are many obstacles that need to be addressed during the last leg of delivery. What is the temperature in the delivery vehicle? If no one is home or at the office, will the package spoil outside in the heat?

For perishables, it is imperative that spoilage rates, delays in shipping schedules and unattended delivery scenarios are important factors in determining the amount of cold pack and protective stuffing that goes into the package. If these factors are not considered, customers could return to spoiled, melted or even crushed perishables.

Getting Food Fast and Fresh

Today, grocers and retailers are bullish on building out omnichannel food initiatives. However, balancing brick and mortar locations while developing profitable and efficient online delivery systems is often more than one organization can take on. While there are trusted partners designed to support eCommerce fulfillment and delivery, few are purpose-built to handle perishable foods.

Either way, in order to see wide-scale adoption of online grocery initiatives, grocers, retailers and ecosystem partners need to start prioritizing the key temperature, storage and packaging considerations and challenges associated shipping perishable foods. Acknowledging these challenges and implementing solutions for them will not only keep your products and deliveries fresh, but they will also keep customers coming back for more.

magnifying glass

Top 10 Food Safety Articles of 2019

By Food Safety Tech Staff
No Comments
magnifying glass

#10

Lessons Learned from Intentional Adulteration Vulnerability Assessments (Part I)

#9

Lead in Spices

#8

Three Practices for Supply Chain Management in the Food Industry

#7

Changes in the Food Safety Industry: Face Them or Ignore Them?

#6

How Technology is Elevating Food Safety Practices & Protocols

#5

Five Tips to Add Food Fraud Prevention To Your Food Defense Program

#4

2019 Food Safety and Transparency Trends

#3

Sustainability Strategies for the Food Industry

#2

Is Food-Grade always Food-Safe?

#1

E. Coli Update: FDA Advises Consumers to Avoid All Romaine Lettuce Harvested in Salinas, California

Allison Kopf, Artemis

How Technologies for Cultivation Management Help Growers Avoid Food Safety Issues

By Maria Fontanazza
No Comments
Allison Kopf, Artemis

Visibility, accountability and traceability are paramount in the agriculture industry, says Allison Kopf, founder and CEO of Artemis. In a Q&A with Food Safety Tech, Kopf explains how growers can take advantage of cultivation management platforms to better arm them with the tools they need to help prevent food safety issues within their operations and maintain compliance.

Food Safety Tech: What are the key challenges and risks that growers face in managing their operations?

Allison Kopf: One of the easiest challenges for growers to overcome is how they collect and utilize data. I’ve spent my entire career in agriculture, and it’s been painful to watch operations track all of their farm data on clipboards and spreadsheets. By not digitizing processes, growers become bogged down by the process of logging information and sifting through old notebooks for usable insights—if they even choose to do that.

Allison Kopf, Artemis
Allison Kopf is the founder and CEO of Artemis, a cultivation management platform serving the fruit, vegetable, floriculture, cannabis, and hemp industries. She is also is an investment partner at XFactor Ventures and serves on the boards of Cornell University’s Controlled Environment Agriculture program and Santa Clara University’s College of Arts and Sciences.

I was visiting a farm the other day and the grower pulled out a big binder. The binder contained all of his standard operating procedures and growing specifications for the varieties he’s grown over the past 20 years. Then he pulled out a pile of black notebooks. If you’ve ever worked on a farm, you’d recognize grower notebooks anywhere. They’re used to log data points such as yield, quality and notes on production. These notebooks sit in filing cabinets with the hopeful promise of becoming useful at some point in the future—to stop production from falling into the same pitfalls or to mirror successful outcomes. However, in reality, the notebooks never see the light of day again. The grower talked about the pain of this process—when he goes on vacation, no one can fill his shoes; when he retires, so does the information in his head; when auditors come in, they’ll have to duplicate work to create proper documentation; and worse, it’s impossible to determine what resources are needed proactively based on anything other than gut. Here’s the bigger issue: All of the solutions are there; they’re just filed away in notebooks sitting in the filing cabinet.

Labor is the number one expense for commercial growing operations. Unless you’re a data analyst and don’t have the full-time responsibilities of managing a complex growing operation, spreadsheets and notebooks won’t give you the details needed to figure out when and where you’re over- or under-staffing. Guessing labor needs day-to-day is horribly inefficient and expensive.

Another challenge is managing food safety and compliance. Food contamination remains a huge issue within the agriculture industry. E. coli, Listeria and other outbreaks (usually linked to leafy greens, berries and other specialty crops) happen regularly. If crops are not tracked, it can take months to follow the contamination up the chain to its source. Once identified, growers might have to destroy entire batches of crops rather than the specific culprit if they don’t have appropriate tracking methods in place. This is a time-consuming and expensive waste.

Existing solutions that growers use like ERPs are great for tracking payroll, billing, inventory, logistics, etc., but the downside is that they’re expensive, difficult to implement, and most importantly aren’t specific to the agriculture industry. The result is that growers can manage some data digitally, but not everything, and certainly not in one place. This is where a cultivation management platform (CMP) comes into play.

FST: How are technologies helping address these issues?

Kopf: More and more solutions are coming online to enable commercial growers to detect, prevent and trace food safety issues, and stay compliant with regulations. The key is making sure growers are not just tracking data but also ensuring the data becomes accessible and functional. A CMP can offer growers what ERPs and other farm management software can’t: Detailed and complete visibility of operations, labor accountability and crop traceability.

A CMP enables better product safety by keeping crop data easily traceable across the supply chain. Rather than having to destroy entire batches in the event of contamination, growers can simply trace it to the source and pinpoint the problem. A CMP greatly decreases the time it takes to log food safety data, which also helps growers’ bottom line.

CMPs also help growers manage regulatory compliance. This is true within the food industry as well as the cannabis industry. Regulations surrounding legal pesticides are changing all the time. It’s difficult keeping up with constantly shifting regulatory environment. In cannabis this is especially true. By keeping crops easily traceable, growers can seamlessly manage standard operating procedures across the operation (GAP, HACCP, SQF, FSMA, etc.) and streamline audits of all their permits, licenses, records and logs, which can be digitized and organized in one place.

FST: Where is the future headed regarding the use of technology that generates actionable data for growers? How is this changing the game in sustainability?

Kopf: Technology such as artificial intelligence and the internet of things are changing just about every industry. This is true of agriculture as well. Some of these changes are already happening: Farmers use autonomous tractors, drones to monitor crops, and AI to optimize water usage.

As the agriculture industry becomes more connected, the more growers will be able to access meaningful and actionable information. Plugging into this data will be the key for growers who want to stay profitable. These technologies will give them up-to-the-second information about the health of their crops, but will also drive their pest, labor, and risk & compliance management strategies, all of which affect food safety.

When growers optimize their operations and production for profitability, naturally they are able to optimize for sustainability as well. More gain from fewer resources. It costs its customers less money, time and hassle to run their farms and it costs the planet less of its resources.

Technology innovation, including CMPs, enable cultivation that will provide food for a growing population despite decreasing resources. Technology that works both with outdoor and greenhouse growing operations will help fight food scarcity by keeping crops growing in areas where they might not be able to grow naturally. It also keeps production efficient, driving productivity as higher yields will be necessary.

Beyond scarcity, traceability capabilities enforce food security which is arguable the largest public health concern across the agricultural supply chain. More than 3,000 people die every year due to foodborne illness. By making a safer, traceable supply chain, new technology that enables growers to leverage their data will protect human life.

food waste

New IBM Challenge Puts Solving Food Waste in the Hands of Developers

By Maria Fontanazza
No Comments
food waste

Nearly 40% of U.S.-produced food is not consumed, according to a 2018 report by The Center for Biological Diversity. In addition, retailers are named as the largest culprits when it comes to food waste. IBM estimates that supermarkets tossed about 16 billion pounds of food last year alone. The technology company is working to get more involved in this problem and is holding the Food Waste Developer Challenge in an effort to find solutions to help reduce waste.

John Walicki, IBM
John Walicki, senior technical staff member, CTO IoT developer advocacy at IBM

“Often, innovation comes from unexpected places. IBM’s sponsorship of the Food Waste Developer Challenge encourages developers to use their unique expertise toward solving some of society’s hardest problems,” says John Walicki, senior technical staff member, CTO IoT developer advocacy at IBM. “We hope to ignite an open community of impassioned developers to create solutions that improve the food supply chain and reduce food waste.” In a Q&A with Food Safety Tech, Walicki explains the important role that technology could play in stopping the ongoing food waste problem.

Food Safety Tech: What are the biggest challenges in addressing food waste?

John Walicki: One big issue is that the data around a product’s age, origin and journey lies with different parties or isn’t being tracked at all. Without shared visibility into these product attributes, at all stages of their life, it’s hard for grocers and producers to optimize how they sell and fulfill each item to guard against waste. And while less waste has a direct impact for the bottom line, more than ever, it has just as big of an impact in the mind of the increasingly belief-driven customer. According the 2018 Edelman Brand Survey, nearly two-thirds of consumers now choose, switch to or boycott a company based on its stand on societal issues, up from 51% in 2017.

FST: What is the goal of IBM’s Food Waste Developer Challenge?

Walicki: The goal of the challenge is to excite and crowd-source the minds of the developer community to create creative cloud-based, AI-enabled solutions for reducing food waste. For example, developers in the challenge have access to open-source code patterns for IoT, blockchain, AI-enabled bots, and more from IBM they can leverage in creating a solution. Nearly all of these capabilities are available for free on the IBM Cloud.

FST: Where are the key areas in which the food industry should be collaborating to solve these issues?

Walicki: The supply chain is the area [that] a lot of food retailers and producers are looking at. Better visibility into where the food is coming from, when, and its conditions are key in understanding when food will perish, etc. This involves collaboration from every partner all the way from the farm to when the customer purchases the product. The food chain is such a connected eco-system today. It’s really a team game in terms of generating solutions.

In addition, retailers are working to get better visibility into real-time on-hand inventories, so they can better know exactly how much of a certain product they have, so they can take prescriptive action if needed. More and more this type of insight requires the integration of data across many systems, both cloud-based and not. This means tight collaboration for food retailers internally and with suppliers.

Megan Nichols
FST Soapbox

Sustainability Strategies for the Food Industry

By Megan Ray Nichols
No Comments
Megan Nichols

Sustainability is a word that you’ll hear a lot these days, especially as industries try to become more eco-friendly. The food industry has been lagging behind in the world of sustainability, and in order to keep up with national and international food demands, it is difficult to implement the kind of change that is necessary to make the world a little greener. However, that doesn’t mean that food companies shouldn’t try. The following are some sustainability strategies that might be easier to implement in the food industry.

Water Conservation

field irrigation
Field irrigation (Wikipedia commons image)

While the majority of the Earth’s surface is covered in water, only about 3% of that water is drinkable—and 2 of that 3% is frozen in the planet’s glaciers and ice caps. This is why water conservation is so important. According to the United States Geological Survey (USGS), roughly 39% of fresh water used in the United States is used to irrigate crops.

Switching from flood irrigation with sprinklers to drip irrigation can reduce water usage.

Wastewater reuse is also a new technique that is gaining traction in the food industry. While it isn‘t practical in all situations due to the technology needed to remove chemicals and impurities from the wastewater, it can help reduce water waste and water use in the food industry. Simply reviewing water usage and switching to procedures that are less water-intensive can save a company money and reduce its overall water usage.

Natural Pest Control

Pesticides and fertilizers are among some of the most dangerous chemicals in the food industry. For largescale operations, however, they are necessary to ensure a large and healthy harvest. Some companies, such as Kemin Industries, are shunning these typical processes in favor of more sustainable options.

“Our mission at Kemin is to improve the quality of life for more than half the world’s population, and we believe sustainability plays an important role in our work,” said Dr. Chris Nelson, president and CEO of Kemin Industries. “Our FORTIUM line of rosemary-extract-based ingredients uses Kemin-grown rosemary for maximum effectiveness against color and flavor degradation. Kemin is the only rosemary supplier that is certified SCS Sustainably Grown, and we’re one of the world’s largest growers of vertically integrated rosemary.”

Vertical integration doesn’t have anything to do with how the rosemary is grown. In the agriculture industry, it means Kemin owns the entire supply chain for its rosemary, from field to processing to distribution.

“We use botanicals—spearmint, oregano, marigold and potato, in addition to rosemary—in our other products as well,” continued Nelson. “As an ingredient manufacturer, we understand the value of good suppliers. When the planet is supplying us with the ingredients we use in our products, it’s important to us that we are responsible in our growing practices.”

Sustainable Distribution

Distribution is one of the biggest problems when it comes to creating eco-friendly and sustainable supply chains. Upwards of 70% of the products in the United States are transported by truck, and each of those trucks generates CO2 and greenhouse gases.

There are two plans of attack for sustainability in food distribution: Reducing the distance food needs to travel, and upgrading trucks to use greener fuel options like biodiesel or electricity, such as the ones Tesla is offering.

Reducing the emissions created by tractor-trailers could help make the entire process a bit more sustainable, although it would require a large investment to upgrade the distribution process.

Back to Their Roots

It’s only in recent decades that agriculture has started being sustainable in an effort to keep up with the demands of the consumer. By going back to our roots and focusing on farming techniques that promote things like soil health—by rotating crops instead of using artificial fertilizers—and lowering water use and pollution, agriculture can become sustainable once again.

Farming, sustainability
Creative Commons image

Modern agricultural techniques are detrimental, both to the environment and to the people who work there. These methods ensure we have enough food to supply consumers, but they lead to soil depletion and groundwater contamination. In addition to this, it can also lead to the degradation of rural communities that would normally be centered on farm work. That’s because corporate farms focus on quotas and large harvests without the community angle.

These commercial farms also cost more to run, and many have poor conditions for farmworkers because of the harsh chemicals used to kill pests and fertilize depleted topsoil.

Farm numbers have dropped since the end of World War II, with corporate farms taking the place of smaller family farms. While the number of farms has dropped, the remaining farms have increased in size. The average farm in 1875 was roughly 150 acres, and there were more than 4 million of them. Today, less than half that number remains, but the average size of the farms has increased to more than 450 acres.

Sustainability is a popular buzzword right now, but it’s a lot more important than most people believe. Switching to sustainable practices, whether that means changing production, distribution or anything in between, will help ensure the food industry can keep fresh, healthy food on our table for decades to come without damaging the environment. Sustainability is something that should be adopted by every industry, especially agriculture.