Tag Archives: Testing

FDA

FDA Wants to Change Agricultural Water Requirements in Produce Safety Rule

By Food Safety Tech Staff
No Comments
FDA

After years of foodborne illness outbreaks that have been suspected to originate in pre-harvest agricultural water, FDA is proposing changes to the FSMA Produce Safety Rule. The proposed rule would revise subpart E, changing certain pre-harvest agricultural water requirements for covered produce other than sprouts.

“There have been far too many foodborne illness outbreaks possibly linked to pre-harvest agricultural water in recent years, including water coming from lands nearby produce farms. As a federal government agency charged with protecting public health, the FDA is committed to implementing effective modern, science-based measures designed to prevent these outbreaks from occurring in the future,” said Frank Yiannas, FDA Deputy Commissioner for Food Policy and Response in an agency update. “The proposed rule is the latest action taken by the FDA to continue working towards implementation of key provisions of FSMA. If finalized, we’re confident this proposal would result in fewer outbreaks in the U.S. related to produce, protecting public health and saving lives. This proposed rule is a monumental step towards further improving the safety of the fruits and vegetables Americans serve their families every day, and the FDA looks forward to engaging with stakeholders on the proposed changes.”

Under the proposed rule, farms would be required to conduct yearly systems-based agricultural water assessments to assess and guide measures that would reduce risks related to pre-harvest agricultural water. According to the FDA, the assessment would consist of evaluating the water system, agricultural water use practices, crop characteristics, environmental conditions, potential impacts on source water by activities conducted on adjacent and nearby land.

With the current agricultural water compliance dates for covered produce other than sprouts set to begin in January 2022, the FDA plans to exercise enforcement discretion for those requirements while also proposing another rule that extends the compliance dates for all agricultural water requirements under the Produce Safety Rule.

The full details of the FSMA Proposed Rule on Agricultural Water are available on FDA’s website.

Dole Garden Salad

Possible Listeria Contamination, Dole Recalls Garden Salads

By Food Safety Tech Staff
No Comments
Dole Garden Salad

Dole Fresh Vegetables, Inc. issued a voluntary recall of certain cases of its garden salad over concern of possible Listeria monocytogenes contamination. Although no illnesses have been reported, the company is pulling select lots of its garden salads marketed under the Dole, Marketside, Kroger and Salad Classics names.

The recall was taken as a precaution after a single sample of garden salad tested positive for Listeria monocytogenes in random sampling conducted by the Department of Agriculture in Georgia.

The company announcement states that the product is beyond its “best if used by” date and should no longer be on store shelves. The products were distributed in Alabama, Florida, Georgia, Louisiana, Massachusetts, Maryland, North Carolina, Pennsylvania, South Carolina and Virginia.

Susanne Kuehne, Decernis
Food Fraud Quick Bites

Crisp, But Not Clean

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Palm Oil, Food Fraud
Find records of fraud such as those discussed in this column and more in the Food Fraud Database, owned and operated by Decernis, a Food Safety Tech advertiser. Image credit: Susanne Kuehne

An especially perfidious type of edible oil fraud is the dissolution of inedible plastic material, such as polypropylene or polyethylene packaging material, in hot cooking oil during the frying process. This is supposed to prolong the shelf life and the crispness of deep-fried snack food, not surprisingly with serious health implications. Attenuated total reflectance fourier-transform infrared spectroscopy (ATR-FTIR) in combination with principal component analysis (PCA) provides a straightforward method to analyze samples directly with minimal preparation, to detect polymers in palm cooking oil, as done in this study.

Resource

  1. Ismail, D. et al. (2021). “Classification Model for Detection and Discrimination of inedible Plastic adulterated Palm Cooking Oil using ATR-FTIR Spectroscopy combined with Principal Component Analysis”. Vol 25 No 3. Malaysian Journal of Analytical Sciences (MJAS).

Fast-Growing Salmonella Outbreak Spans 29 States, Origin Still Unknown

By Food Safety Tech Staff
No Comments

The CDC has been unable to determine the origin of a “fast-growing” Salmonella Oranienburg outbreak that has sickened nearly 280 people across 29 states. As of the agency’s latest update on September 24, state and local officials have been collecting food items from restaurants where sick people ate, however since several items were in takeout containers that were contaminated with the strain of Salmonella, the CDC has not been able to identify the source of the outbreak. Sampled items include takeout condiments that contain cilantro and lime.

The first illness was reported on August 3. The CDC also notes that recent illnesses may not yet be reported because it can take three to four weeks to determine whether a sick person is part of an outbreak. Thus far no deaths have been reported.

Anthony Macherone, Agilent
FST Soapbox

The Link Between Exposure to Xenobiotic Pesticides and Declining Honeybee Colonies and Honey

By Anthony Macherone, Ph.D.
No Comments
Anthony Macherone, Agilent

According to data from the Bee Informed Partnership, a national collaboration of leading research labs and universities in agricultural science, managed honeybee populations declined by nearly 40% between Oct. 1, 2018 and April 1, 2019. This is a 7% greater decline compared to the same timeframe during the previous winter.1

Scientists are examining different environmental factors such as the increased use of pesticides and the use of chemicals in agriculture as causes for the rapid decline in global honeybee numbers.

Recent research conducted by my team and I revealed a potentially key reason for the decline in honeybee populations as a result of Nosema ceranae (N. ceranae), a prevalent infection in adult honeybee populations. My team established a link between N. ceranae-infected honeybee colonies and changes in pheromone levels, which in turn, may have a social impact on communication in honeybee colonies.

Moreover, the significant decline in the global honeybee population is likely to be driving an increase in fraudulent honey, meaning that both governments and regulators need to invest in the latest technology to test honey products for authenticity, nutritional values and safety.

The Significance of Honey in Our Global Diet and the Problem at Hand

Honey has been a part of our diet for the past 8,000 years, and with numerous health benefits in addition to having a favorable taste, it is one of the most popular foods across the globe.2

Honeybees produce honey from the nectar of flowering plants, and they are considered a “keystone species” since one-third of human food supply depends on pollination by honeybees.3The species is responsible for pollinating numerous fruit, nut, vegetable and field crops such as apples, almonds, onions and cotton.

The increase of pesticides and chemicals in the environment has been cited as a reason for the decline in bee populations, which has occurred in Western European countries such as France, Belgium, Germany, the UK, Italy, Spain, and the Netherlands, as well as countries such as the United States, Russia and Brazil.4 In fact, the number of honeybee colonies in Europe fell by an average of 16 per cent over the winter of 2017–2018, according to findings published in the Journal of Apiculture Research.5

Global pesticide usage was predicted to increase to 3.5 million tons globally in 2020, which could mean that honeybee populations will continue to diminish at an exponential rate due to the increased use of pesticides.6

The Impact of Pesticides on Global Honeybee Populations

In 2019, a research project was initiated to explore the link between exposure to xenobiotic pesticides and increasing susceptibility to the N. ceranae infection in honeybee colonies, one of the most common infections in adult honeybee populations. The findings suggested that it is not the amount of pesticide exposure, nor a particular kind of pesticide exposure, but rather the number of exposure events from different xenobiotics that is associated with N. ceranae, which infected hives, thereby causing them to diminish.7

For discovery-based (non-targeted) exposome profiling of honeybee extracts, a gas chromatography/quadrupole time-of-flight mass spectrometer (GC/Q-TOF) was used. Additionally, spectral library searches and compound annotation were performed using the NIST 14, RTL Pesticides and the Fiehn Metabolomics libraries to provide efficient and timely research outputs.8

Expanding on this research further in 2021, a scientist’s team established a link between N. ceranae-infected honeybee colonies and changes in pheromone levels, which showed a potential impact on social communication in honeybee colonies. While it was concluded that further analysis is required, as research points to the real possibility that N. ceranae-infected honeybee colonies show increased alarm pheromones and may affect hive communication, which could ultimately, be a reason for the collapse of colonies.9

As N. ceranae is causing honeybee populations to dwindle worldwide, the decline in ‘real’ honey supplies is correspondent with an increase in ‘fake’ honey. Inauthentic honey products cause businesses and consumers to lose out, as ‘fake’ honey floods the market and makes producing ‘real’ honey more expensive.

Growth in Fake Honey

The global honey market has grown from 1.5 million tons produced annually in 2007 to more than 1.9 million tons in 2019 and the market is estimated to be worth $7 billion, however the decline in bee populations has led to an increase in honey adulteration to fill the global demand for honey.10

Declining supplies of authentic honey combined with the strong consumer demand for honey has driven significant adulteration of this product. Honey is considered to be one of the most adulterated foods after milk and olive oil, with every seventh jar of honey opened daily around the globe thought to be fake.11, 12 Consequently, legitimate honeybee keepers and business owners are forced to slash costs, which is problematic for those who depend on selling authentic honey.

To put into perspective the scale of the issue, the European agricultural organization, Copa-Cogeca noted that most honey imported from China into Europe is mixed with syrup.13 In 2018, the Honey Authenticity Project in Mexico commissioned tests for British supermarket honey products, and 10 out of 11 products failed the tests due to suspected sugar adulteration.14

While in the United States, it was recently reported that thousands of commercial beekeepers have taken legal action against the country’s largest honey importers and packers for allegedly flooding the market with hundreds of thousands of tons of “fake” honey.15 Furthermore, a recent workshop led by the South Africa Bee Industry Organization (SABIO) also conducted research on the impact of fraudulent honey, and the organization found that honey imports into South Africa have tripled to 6,000 tons a year, 60% of which come from China.16 As the demand for honey products stays robust but authentic honey supplies dwindle, the issue of counterfeit honey will continue to worsen.

Testing Methods to Identify Authentication

The issue of fraudulent food products like honey has driven governments to set up laws and departments dedicated to food integrity. Examples include FSMA, the UK National Food Crime Unit, Chinese Food Safety Law, and European Commission Food Integrity Project.

Food retailers often have contractual agreements with suppliers that require them to carry out authenticity testing of their ingredients, which can be carried out by third-party laboratories.17 Food adulteration can be identified via targeted and non-targeted testing and common testing methods include molecular spectroscopy solutions for ‘in the field’ screening and more in-depth laboratory analysis to determine quantities of ingredients.

Analytical instrument manufacturers have been working closely with governments to provide the latest methods to test the authenticity of honey products, as well as working with the Association of Official Agricultural Chemists (AOAC) on the development of both targeted and non-targeted standards for authenticity testing in milk, honey and olive oil.
Measuring contaminants is a key solution to identifying counterfeit honey and gas chromatographs are able to analyze and quantify the absence or presence of hundreds of pesticides in organic-labeled honey.18

Testing and analysis can be done using a range of analytical instrumentation such as solid phase microextraction followed by gas chromatography/mass spectrometry (SPME-GC/MS), inductively coupled plasma-mass spectrometry (ICP-MS), and gas/liquid chromatography/quadrupole time-of-flight (GC/Q-TOF and LC/Q-TOF). These instruments can be coupled with innovative software solutions for advanced data analysis.19

Future Research Must Continue

The spread of diseases such as N. ceranae, which have been shown to be aggravated by human-induced environmental factors, are decimating global honeybee populations, which in turn is negatively impacting ecosystems and humans, and the availability of authentic honey. This demise in authentic honey supplies is additionally fueling a rise in fake honey products, where consumers are misled into buying counterfeit honey.

Future research must continue to seek associations with environmental exposures effects on biological pathways and adverse health outcomes in honeybee populations, and in fact, novel environmental exposures have been found to be associated with seven of the top diseases known to affect honeybees. These putative associations must be validated with targeted follow-up studies to determine if they are causative factors in the decline of honeybee populations. If proven to be causative, scientists and policy makers can work together to mitigate these factors and hopefully reverse the global trend of honeybee colony decline.

References

  1. Loss & Management Survey, Bee Informed. Last accessed: June 2021
  2. Agilent.‘The Buzz around Fake Honey’. 2018. Last accessed: June 2021
  3. University of California – Berkeley. ‘Pollinators Help One-third Of The World’s Food Crop Production’. 2006. Last accessed: June 2021
  4. European Parliament. ‘What’s behind the decline in bees and other pollinators?’. 2021. Last accessed: June 2021
  5. Journal of Apiculture Research. ‘Loss rates of honeybee colonies during winter 2017/18 in 36 countries participating in the COLOSS survey, including effects of forage sources’. 2019. Last accessed: June 2021
  6. SN Applied Sciences. ‘Worldwide pesticide usage and its impacts on ecosystem’. 2019. Last accessed: June 2021
  7. PLOS ONE. ‘Honey bee (Apis mellifera) exposomes and dysregulated metabolic pathways associated with Nosema ceranae infection’. 2019. Last accessed: June 2021
  8. PLOS ONE. ‘Honey bee (Apis mellifera) exposomes and dysregulated metabolic pathways associated with Nosema ceranae infection’. 2019. Last accessed: June 2021.
  9. Royal Society Open Science. ‘Increased alarm pheromone component is associated with Nosema ceranae infected honeybee colonies’. 2021. Last accessed: June 2021
  10. Statista. ‘Global market value of honey 2019-2027’. 2021. Last accessed: June 2021
  11. Insider.com. ‘Honey is one of the most faked foods in the world, and the US government isn’t doing much to fix it.’ 2020. Last accessed: June 2021
  12. Dow Jones. ‘Hi honey. I’m not from home.’ Last accessed: June 2021
  13. Apiservices.biz. ‘Copa-Cogeca Position Paper on the European Honey Market.’ February 2020. Available at: Copa-Cogeca position paper on the European honey market (apiservices.biz)
  14.  WIRED. ‘The honey detectives are closing in on China’s shady syrup swindlers’. 2021. Last accessed: June 2021
  15.  The Guardian. ‘US beekeepers sue over imports of Asian fake honey’. 2021. Last accessed: June 2021
  16.  Times Live. ‘Falsely labelled, mixed with syrup or ‘laundered’: Honey fraud is rife in SA’. 2021. Last accessed: June 2021.
  17.  UK Parliament Post. Postnote, number 624. ‘Food Fraud’. Last accessed: June 2021
  18. Agilent. ‘The Health Benefits of Honey’. 2017. Last accessed: June 2021
  19. Agilent. ‘Protecting our honey against food adulteration’. Last accessed: June 2021.

 

Susanne Kuehne, Decernis
Food Fraud Quick Bites

Today’s Pig Is Tomorrow’s…Beef?

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Pig, cow, food fraud
Find records of fraud such as those discussed in this column and more in the Food Fraud Database, owned and operated by Decernis, a Food Safety Tech advertiser. Image credit: Susanne Kuehne

Balkan countries are enduring their share of adulterated foods. In Kosovo, commercial samples of meat labelled as beef or chicken were investigated with ELISA (enzyme-linked immunoassay test) and PCR (polymerase chain reaction) in order to detect pork mitochondrial DNA. The test series looked into the efficiency and cost of different methods and showed a preference for commercial ELISA combined with real-time PCR. Almost a third of beef was adulterated with pork, as were 8% of the chicken samples.

Resource

  1. Gecaj, R.M., et al. (August 2021). “Investigation of pork meat in chicken and beef based commercial products by ELISA and real-time PCR sold at retail in Kosovo”. Czech Academy of Agricultural Science, Open Access CAAS Agricultural Journals.
Katie Banaszewski, NOW Foods
In the Food Lab

Making Supplements Safer: Tackling the Pesticide Problem

By Katie Banaszewski
No Comments
Katie Banaszewski, NOW Foods

Precise, accurate contaminant analysis is crucial to ensure that dietary supplements are of high quality and free from potentially harmful chemicals, such as heavy metals or pesticide residues. As supplements become an increasingly prevalent part of global health culture, with their global market forecast to reach a value of more than $230 billion by 2027, there is an urgent need to ensure their safety for consumers—but manufacturers face many challenges in this area.

Assuring that dietary supplements are free of pesticide contamination is especially difficult given their botanical ingredients, which can be more complex than other analytes. A prominent obstacle is matrix interference. As most botanical ingredients exist in the form of concentrated extracts, smaller sample sizes are needed to overcome heavy matrix interference, in turn requiring highly sensitive instrumentation to detect minute amounts of pesticide residues.

With this in mind, we adopted an analytical workflow comprising both gas and liquid chromatography (GC and LC) systems for orthogonal residue analysis. GC-MS/MS can achieve fast, robust separation of ~300 pesticide residues, while LC-MS/MS enables analysis of ~280 residues. The GC and LC instruments are sufficiently sensitive to allow dilution of samples to mitigate matrix interference— essential to determine potentially low residue levels in complex matrices, and ensure dietary supplements can confidently be certified safe.

Clearing Analytical Hurdles

Matrix complexity is only increased by the fact that botanical ingredients are sourced from across the world and, therefore, exposed to many different agricultural practices. As a wide range and great many of these botanical ingredients are used to produce supplements, it is challenging to develop sample preparation procedures that are suitable for all products.

To prevent frequent iterations of analytical procedures, we developed one sample preparation workflow for GC-MS/MS and another for LC-MS/MS. In both, samples are hydrated and extracted (using acetonitrile:water and the salts anhydrous magnesium sulfate and sodium chloride) before cleanup by solid-phase extraction (SPE). For LC, various defined combinations of dispersive SPE analysis are used to accommodate different matrices (pigmented, high-fat or high-protein, for example) before samples are diluted prior to analysis. Doing so allows us to optimize sample preparation for particular groups of botanical matrices and target specific matrix mitigation without needing to change the entire workflow.

In addition to the aforementioned analytical hurdles, some lesser-defined commodities lack maximum residue limits, complicating the interpretation of results and specification of acceptable criteria. To mitigate these difficulties, we opted to streamline our data processing and reporting by implementing integrated chromatography data system software for both LC-MS/MS and GC-MS/MS. This enables on-the-spot evaluation of QC criteria and rapid assessment of component presence (or absence) in data review and facilitates swifter and easier cGMP compliance.

Keeping Supplements Safe

Our chosen analytical approach has created robust, sensitive processes for optimized multi-residue analysis of dietary supplement samples in a regulated QC environment.

With uptake of supplements fast increasing, guaranteeing product safety is more important than ever. Improved pesticide screening, and quality control of food ingredients, holds great value for both individual organizations and the industry as a whole, while—crucially—enabling consumers to rest assured about the safety of the products available to them.

Susanne Kuehne, Decernis
Food Fraud Quick Bites

Sergeant Pepper On Duty

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Pepper, food fraud
Find records of fraud such as those discussed in this column and more in the Food Fraud Database, owned and operated by Decernis, a Food Safety Tech advertiser. Image credit: Susanne Kuehne

A Northern Ireland-based analytical lab added white pepper to its portfolio of food authenticity tests based on spectroscopy with chemometric analysis. White pepper, the ripe berries of the piper nigrum plant, is undergoing an additional production step, fetches a higher price than black pepper and therefore is a target for fraudsters. Often, bulking substances like skins, flour, husks and spent materials are used, but in some cases of pepper fraud, the substances used were hazardous to human health.

Resource

  1. Taylor, P. (August 24, 2021). “With white pepper fraud on the up, Bia unveils authenticity test”. Securing Industry.
Susanne Kuehne, Decernis
Food Fraud Quick Bites

If Fish Could Talk

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Seafood fraud
Find records of fraud such as those discussed in this column and more in the Food Fraud Database, owned and operated by Decernis, a Food Safety Tech advertiser. Image credit: Susanne Kuehne.

Seafood fraud is still on an almost unchanged high level in Canada. Based on a 2021 investigation by Oceana Canada, 46% of 94 DNA tested seafood samples were not what the label claimed them to be. The Oceana report describes seafood traceability in Canada, the 2021 seafood fraud investigation and results, what consumers can do, and suggestions for the federal government on how to mitigate seafood fraud. These recommendations include setting up a traceability system, labeling standards, improving testing standards and better documentation in the supply chain.

Resource

  1. Oceana. (August 2021). “Seafood Fraud in Canada: 2021 Testing Results Report”.
Susanne Kuehne, Decernis
Food Fraud Quick Bites

A Tea Party For Fakes

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Fake tea
Find records of fraud such as those discussed in this column and more in the Food Fraud Database, owned and operated by Decernis, a Food Safety Tech advertiser. Image credit: Susanne Kuehne.

Tea is becoming a more and more popular target for fraudsters due to growing demand, complex supply chains, supply issues due to crop failure, sustainability problems, and underdeveloped analytical methods. Professor Chris Elliott (Director of the Institute for Global Food Security, Queen’s University Belfast) and his team are developing an analytical method based on chemical fingerprinting to determine fraud. Tea fraud can show as mislabeling of the geographical origins or type of a tea, or the addition of sometimes hazardous bulking agents like pigments or gypsum.

Resource

  1. Elliott, C. (August 10, 2021) “The challenges and necessity of tea authenticity”. New Food Magazine.