Tag Archives: workflow

Dollar

Quantifying the ROI of Environmental Monitoring Program Automation

By Joseph Heinzelmann
No Comments
Dollar

The COVID-19 pandemic heightened the urgency for food brands to adopt technology solutions that support remote management of environmental monitoring programs (EMPs) as they strive to provide safe products to customers. While digital transformation has progressed within the food safety industry, food and beverage manufacturers often have lower profitability as compared to other manufacturing industries, such as pharmaceutical and high-tech equipment, which can lead to smaller IT spend.1 Many companies still rely on manual processes for environmental monitoring and reporting, which are prone to error, fail to provide organizations with visibility into all of their facilities and limit the ability to quickly take corrective actions.

Despite growing recognition of the value of automating testing, diagnostics, corrective actions and analytic workflows to prevent contamination issues in food production environments, barriers to adoption persist. One key obstacle is the recurring mindset that food safety is a necessary compliance cost. Instead, we need to recognize that EMP workflow automation can create real business value. While the downside of food safety issues is easy to quantify, organizations still struggle to understand the upside, such as positive contributions to productivity and a stronger bottom-line achieved by automating certain food safety processes.

To understand how organizations are using workflow automation and analytics to drive quantifiable business ROI, a two-year study that included interviews and anonymized data collection with food safety, operations, and executive leadership at 34 food organizations was conducted.

The respondents represent more than 120 facilities using advanced EMP workflow automation and analytics. Based on the interviews and the shared experience of food organization leaders, two key examples emerged that demonstrate the ROI of EMP automation.

Improved Production Performance

According to those interviewed, one of the primary benefits of EMP automation (and driver of ROI) is minimizing production disruptions. A temporary conveyor shutdown, unplanned cleaning, or extensive investigatory testing can add up to an astounding 500 hours annually at a multi-facility organization, and cost on average $20,000 to $30,000 per hour.2 So, it’s obvious that eliminating costly disruptions and downtime has a direct impact on ROI from this perspective.

But organizations with systems where information collected through the EMP is highly accessible have another advantage. They are able to take corrective actions to reduce production impacts very quickly. In some cases, even before a disruption happens.
By automatically feeding EMP data into an analytics program, organizations can rapidly detect the root cause of issues and implement corrective actions BEFORE issues cause production delays or shutdowns.

In one example, over the course of several months, a large dairy company with manual EMP processes automated its food safety workflows, improved efficiencies, reduced pathogen positives and improved its bottom line. At the start of the study, the company increased systematic pathogen testing schedules to identify where issues existed and understand the effectiveness of current sanitation efforts. With improved access to data on testing, test types and correlated sanitation procedures, the company was able to implement a revamped remediation program with more effective corrective action steps.

Ultimately, the automated workflows and analytics led to reduced positive results and more efficient EMP operations for the company as compared to the “crisis-mode” approach of the past. The associated costs of waste, rework, delayed production starts, and downtime caused by food safety issues were significantly reduced as illustrated in Figure 1.

EMP automation
Figure 1: Reduction of food safety testing costs through EMP automation. Customer Study 2016-2018. All figures courtesy of Corvium, Inc.

Quantifying the ROI of Production Performance Improvements

The financial impact of reducing production downtime by just 90 minutes per week can be dramatic when looked at by cumulative results over multiple weeks. In fact, eliminating just a few delayed starts or unplanned re-cleaning can have significant financial gains.

Figure 2 shows the business impact of gaining 90 minutes of production up-time per week by automating food safety operations. For the purposes of this analysis, the “sample organization” depicted operates two facilities where there are assumptions that down-time equates to a cost value of $30,000 per hour, and that both plants experience an average of 90 minutes of downtime per week that can be re-gained.

Production Performance Improvement ROI Calculation
Figure 2: Sample Production Performance Improvement ROI Calculation.

Reduced Food Waste

The second key insight uncovered in the two-year study was the impact that automating the EMP process had on waste. An estimated 30–40% of all food produced in the United States is wasted, and preventable food safety and quality issues account for a substantial portion of this waste.3

A key challenge shared by study participants was detecting food safety issues early enough to avoid wasting an entire production run. Clearly, the later in a processing or manufacturing run that issues are discovered, the greater the potential waste. To limit this, organizations needed near real-time visibility into relevant food safety and EMP data.

By automating EMP workflows, they solved this issue and created value. By tracking and analyzing data in near real time, production teams were able to keep up with ever-moving production schedules. They could define rules to trigger the system to automatically analyze diagnostic results data and alert stakeholders to outliers. Impacted food product could be quickly identified and quarantined when needed before an entire production run was wasted.

Companies included in the study realized substantial benefits from the increased efficiencies in their testing program. According to a food safety quality assurance manager at a large U.S. protein manufacturer, “Our environmental monitoring program has reached new heights in terms of accuracy, communication, visibility and efficiency. Manual, time-intensive tasks have been automated and optimized, such as the ability to search individual sample or submittal IDs, locate them quickly and make any necessary changes.”

Quantifying the ROI of Food Waste Reductions

Figure 3 shows how measuring the business impact of gaining back just 10% of scrapped food per week. For the purposes of this analysis, the “sample organization” depicted operates two facilities where there are 500 lbs. of finished product scrapped each week, and the value per pound of finished product is valued at a cost of $1 per pound.

Sample Waste Reduction ROI Calculation
Figure 3. Sample Waste Reduction ROI Calculation.

Conclusion

Automating EMP workflows decreases the time required to receive and analyze critical EMP data, helping food manufacturers achieve significant improvements in production performance, waste reduction and overall testing efficiency. By using these same ROI calculations, food brands can better illustrate how improved food safety processes can build value, and help leaders see food safety as a brand imperative rather than a cost center. As food organizations progress through each stage of digital transformation, studies like this can show real-world examples of business challenges and how other organizations uncovered value in adoption of new technologies and tools.

References

  1. CSIMarket, Inc. (2021). Total Market Profitability.
  2. Senkbeil, T. (2014). Built to Last: Maintaining Reliability and Uptime of Critical Connected Systems in Industrial Settings. Anixter.
  3. USDA. Food Waste FAQs.
LIMS, Laboratory information management system, food safety

How Advanced LIMS Brings Control, Consistency and Compliance to Food Safety

By Ed Ingalls
No Comments
LIMS, Laboratory information management system, food safety

Recent food scandals around the world have generated strong public concerns about the safety of the foods being consumed. Severe threats to food safety exist at all stages of the supply chain in the form of physical, chemical and biological contaminants. The current pandemic has escalated the public’s concern about cross contamination between people and food products and packaging. To eliminate food risks, manufacturers need robust technologies that allow for reliable monitoring of key contaminants, while also facilitating compliance with the ISO 17025 standard to prove the technical competence of food testing laboratories.

Without effective data and process management, manufacturers risk erroneous information, compromised product quality and regulatory noncompliance. In this article, we discuss how implementing a LIMS platform enables food manufacturers to meet regulatory requirements and ensure consumer confidence in their products.

Safeguarding Food Quality to Meet Industry Standards

Food testing laboratories are continually updated about foodborne illnesses making headlines. In addition to bacterial contamination in perishable foods and ingredient adulteration for economic gains, chemical contamination is also on the rise due to increased pesticide use. Whether it is Salmonella-contaminated peanut butter or undeclared horsemeat inside beef, each food-related scandal is a strong reminder of the importance of safeguarding food quality.

Food safety requires both preventive activities as well as food quality testing against set quality standards. Establishing standardized systems that address both food safety and quality makes it easier for manufacturers to comply with regulatory requirements, ultimately ensuring the food is safe for public consumption.

In response to food safety concerns, governing bodies have strengthened regulations. Food manufacturers are now required to ensure bacteria, drug residues and contaminant levels fall within published acceptable limits. In 2017, the ISO 17025 standard was updated to provide a risk-based approach, with an increased focus on information technology, such as the use of software systems and maintaining electronic records.

The FDA issued a notice that by February 2022, food testing, in certain circumstances, must be conducted in compliance with the ISO 17025 standard. This means that laboratories performing food safety testing will need to implement processes and systems to achieve and maintain compliance with the standard, confirming the competence, impartiality and consistent operation of the laboratory.

To meet the ISO 17025 standard, food testing laboratories will need a powerful LIMS platform that integrates into existing workflows and is built to drive and demonstrate compliance.

From Hazard Analysis to Record-Keeping: A Data-Led Approach

Incorporating LIMS into the entire workflow at a food manufacturing facility enables the standardization of processes across its laboratories. Laboratories can seamlessly integrate analytical and quality control workflows. Modern LIMS platforms provide out-of-the-box compliance options to set up food safety and quality control requirements as a preconfigured workflow.

The requirements set by the ISO 17025 standard build upon the critical points for food safety outlined in the Hazard Analysis and Critical Control Points (HACCP) methodology. HACCP, a risk-based safety management procedure, requires food manufacturers to identify, evaluate and address all risks associated with food safety.

LIMS, laboratory information management system
LIMS can be used to visualize control points for HACCP analysis according to set limits. Graphic courtesy of Thermo Fisher Scientific.

The systematic HACCP approach involves seven core principles to control food safety hazards. Each of the following seven principles can be directly addressed using LIMS:

  • Principle 1. Conduct a hazard analysis: Using current and previous data, food safety risks are thoroughly assessed.
  • Principle 2. Determine the critical control points (CCPs): Each CCP can be entered into LIMS with contamination grades assigned.
  • Principle 3. Establish critical limits: Based on each CCP specification, analytical critical limits can be set in LIMS.
  • Principle 4. Establish monitoring procedures: By defining sampling schedules in LIMS and setting other parameters, such as frequency and data visualization, procedures can be closely monitored.
  • Principle 5. Establish corrective actions: LIMS identifies and reports incidents to drive corrective action. It also enables traceability of contamination and maintains audit trails to review the process.
  • Principle 6. Establish verification procedures: LIMS verifies procedures and preventive measures at the defined CCPs.
  • Principle 7. Establish record-keeping and documentation procedures: All data, processes, instrument reports and user details remain secured in LIMS. This information can never be lost or misplaced.

As food manufacturers enforce the safety standards set by HACCP, the process can generate thousands of data points per day. The collected data is only as useful as the system that manages it. Having LIMS manage the laboratory data automates the flow of quality data and simplifies product release.

How LIMS Enable Clear Compliance and Optimal Control

Modern LIMS platforms are built to comply with ISO 17025. Preconfigured processes include instrument and equipment calibration and maintenance management, traceability, record-keeping, validation and reporting, and enable laboratories to achieve compliance, standardize workflows and streamline data management.

The workflow-based functionality in LIMS allows researchers to map laboratory processes, automate decisions and actions based on set criteria, and reduce user intervention. LIMS validate protocols and maintain traceable data records with a clear audit history to remain compliant. Data workflows in LIMS preserve data integrity and provide records, according to the ALCOA+ principles. This framework ensures the data is Attributable, Legible, Contemporaneous, Original and Accurate (ALCOA) as well as complete, consistent and enduring. While the FDA created ALCOA+ for pharmaceutical drug manufacturers, these same principles can be applied to food manufacturers.

Environmental monitoring and quality control (QC) samples can be managed using LIMS and associated with the final product. To plan environmental monitoring, CCPs can be set up in the LIMS for specific locations, such as plants, rooms and laboratories, and the related samples can then be added to the test schedule. Each sample entering the LIMS is associated with the CCP test limits defined in the specification.

Near real-time data visualization and reporting tools can simplify hazard analysis. Managers can display information in different formats to monitor critical points in a process, flag unexpected or out-of-trend numbers, and immediately take corrective action to mitigate the error, meeting the requirements of Principles 4 and 5 of HACCP. LIMS dashboards can be optimized by product and facility to provide visibility into the complete process.

Rules that control sampling procedures are preconfigured in the LIMS along with specific testing rules based on the supplier. If a process is trending out of control, the system will notify laboratory personnel before the product fails specification. If required, incidents can be raised in the LIMS software to track the investigation of the issue while key performance indicators are used to track the overall laboratory performance.

Tasks that were once performed manually, such as maintaining staff training records or equipment calibration schedules, can now be managed directly in LIMS. Using LIMS, analysts can manage instrument maintenance down to its individual component parts. System alerts also ensure timely recalibration and regular servicing to maintain compliance without system downtime or unplanned interruptions. The system can prevent users from executing tests without the proper training records or if the instrument is due for calibration or maintenance work. Operators can approve and sign documents electronically, maintaining a permanent record, according to Principle 7 of HACCP.

LIMS allow seamless collaboration between teams spread across different locations. For instance, users from any facility or even internationally can securely use system dashboards and generate reports. When final testing is complete, Certificates of Analysis (CoAs) can be autogenerated with final results and showing that the product met specifications. All activities in the system are tracked and stored in the audit trail.

With features designed to address the HACCP principles and meet the ISO 17025 compliance requirements, modern LIMS enable manufacturers to optimize workflows and maintain traceability from individual batches of raw materials all the way through to the finished product.

Conclusion

To maintain the highest food quality and safeguard consumer health, laboratories need reliable data management systems. By complying with the ISO 17025 standard before the upcoming mandate by the FDA, food testing laboratories can ensure data integrity and effective process management. LIMS platforms provide laboratories with integrated workflows, automated procedures and electronic record-keeping, making the whole process more efficient and productive.

With even the slightest oversight, food manufacturers not only risk product recalls and lost revenue, but also losing the consumers’ trust. By upholding data integrity, LIMS play an important role in ensuring food safety and quality.

Michelle Lombardo Smith, The Wenger Group
FST Soapbox

Top of the Pecking Order: How We Transformed Our Processes

By Michelle Lombardo Smith
No Comments
Michelle Lombardo Smith, The Wenger Group

A 75-year-old feed manufacturer making more than 2,000 feed formulas is bound to have a lot of business complexities. Add to that several years of rapid growth combined with outdated, manual processes. Several years ago, this was the situation we faced at our family-owned feed manufacturer and egg/poultry provider in the mid-Atlantic region.

We needed a way to simplify and streamline key processes, such as activities involved with safety and compliance. After evaluating several enterprise content management systems in 2015, we eventually selected Laserfiche to digitize records, implement electronic forms and automate manual workflows. While we completed an initial Laserfiche software install in 2016, we were still tasked with the process of building out solutions the company wanted to use in house, and we therefore continue to work closely with the company today.

Meeting Regulations With Data Sheets

Our initial project focused on digitizing our collection of safety data sheets, standardized documents that contain occupational safety and health data. Prior to implementing this software, we relied on paper manuals across different locations. Managing the creation of new data sheets and ensuring old ones were removed became quite the task. This project couldn’t have come at a better time, as the Occupational Health and Safety Administration (OSHA) had recently mandated changes to the data sheets.

By digitizing data sheets and storing them in a central repository, the documents were made more accessible and searchable for mill managers, and compliant to the new mandated standard. Additionally, data sheets were easily retrieved for any first responders seeking to understand what chemicals were in a facility in the event of a fire. It now takes just minutes to search for and retrieve documents, helping the organization stay in compliance with state reporting. Having the ability to create and add new sheets immediately is a tremendous benefits as well. These new capabilities allow us to help keep employees safer than ever before.

Shortened Delivery Processes

The next process that needed to be targeted was deliveries. Delivery tickets at the feed mills were billed based on production weight in the company’s enterprise resource planning software, and delivery weight was entered manually when the physical tickets were returned to the office, which could sometimes be days after the product was shipped. When the shipped weight showed a different amount than the production weight, the finance team had to issue the customer a credit leading to more inefficiency and a wrinkle in customer confidence.

Laserfiche allowed the company to develop delivery tickets to be scanned at the mill. Tickets are now available in 24 hours, and the processing time for invoicing has gone from six hours to just three. Warranty costs have decreased while customer confidence has increased.

Mobile App to the Rescue

Finally, with the mobile app the organization was able to decrease the complexity for one of its farming divisions, Dutchland Farms, all while staying in legal compliance. This specific division contracts egg production and pullet growing. The FDA published its Veterinary Feed Directive (VFD) regulations in 2015, a regulation that directly applied to Dutchland’s this team of growers and producer. The directive added to the list of antibiotics that required a veterinarian’s prescription to administer. In addition, flock owners now had to have a flock health plan and an established relationship with a veterinarian. We initially had a manual process to write and store the plans, but that process was digitized and automated with Laserfiche in 2017. Service technicians can now get electronic forms signed at the farm and be immediately transmitted to the company’s consulting veterinary practician, who lives out of the country. As a result, we were able to significantly reduce the time from farm signature to vet approval/signature of the Flock Health Plans, and saved on a huge amount of paper copies and mail costs.

What’s next? These days, we’re searching for a new ERP system, a multi-year journey that will include scanning capabilities and an expanded role for Laserfiche. Meanwhile, all the products developed are still a work in progress even as the software expands to teams like quality assurance and human resources.