Daniel Erickson, ProcessPro
FST Soapbox

Recall Risk Reduction: An ERP’s Role

By Daniel Erickson
No Comments
Daniel Erickson, ProcessPro

Consumer safety is of paramount importance and product recalls are a necessary means to this end. Product recalls are a serious, complex, and costly issue affecting the food and beverage industry in the United States. The FDA estimates that there are around 48 million cases of foodborne illness each year—causing one in six Americans to get sick from contaminated food. In addition to affecting public health, recalls have a dramatic effect on manufacturers by creating economic problems, damaging a company’s reputation, and imposing potential legal penalties and liabilities. In the search for a business management solution to better prepare themselves for and reduce the risk of recalls in their operations, many food manufacturers have discovered that technology, specifically ERP software, is key to lowering the risk of food and beverage product recalls.

An industry-specific ERP solution is a centralized business system with key industry features providing a system of record-keeping, with the tools to support the preparation and reduction of recall risks. While a manufacturer is ultimately responsible for a product recall, an ERP solution is essential in supporting and championing overall recall readiness and reduction. With the streamlined and automated inventory, manufacturing, and quality control processes managed within the software, critical steps and data that assist in recall mitigation are documented—including supplier verification records, audit logs, receipt records, quality testing, lot tracking, and shipment logs. The key to prevention of a product recall is preparation, which can be handled efficiently through an ERP’s functionality specifically in the following areas.

Supplier Management

An ERP facilitates best practices for supplier management and risk assessment within the solution to assure the acquisition of quality raw materials from trusted vendors. Its role is to maintain an approved supplier list for each product ingredient, documenting detailed supplier information, quality control test results, and risk level to ensure in-house and customer-specific standards are met. For approved or activated suppliers, information regarding materials that can be purchased through the vendor, applicable certifications, quality control results, and other pertinent supplier information is stored within the centralized data system of the ERP. A risk assessment for each vendor is also documented to ensure that any potential inherent risk(s) from vendor-issued recalls and to finished goods are limited.

In addition to activated suppliers, an ERP solution also assigns and manages qualified alternates to provide vetted selections should a primary supplier’s materials become unavailable. This positions a company well in the supply chain, as the investigative work has already been conducted on other suppliers, limiting the need and risk associated with onboarding an unknown supplier in a moment of crisis. Vendors are recorded within the system and ranked in order of preference and/or risk level so that they can be identified and put into use quickly if a supplier becomes unavailable—providing the preparation and leverage that companies need to mitigate the risk to safety in the supply chain. In a product recall situation, when a supplier notifies a customer of a contaminated ingredient, the supplier management feature within the ERP solution provides for a qualified replacement vendor that can fulfill the needed raw material quickly and efficiently.

Inventory Control

An ERP system offers end-to-end traceability, maintaining a comprehensive record that tracks raw ingredients, work-in-progress, and final products throughout the supply chain using barcode scanning to link product and lot information to batch tickets, QC testing results, shipping documents, and labels. This full forward and backward lot traceability is necessary to provide a documented audit trail imperative to locating raw materials or finished goods quickly within the initial 24-hour time period of a product recall. With full manufacturing, inventory, and reporting integrations, the ERP supports sound manufacturing practices that assist with recall preparedness – maintaining current Good Manufacturing Practices (cGMP), FDA reporting, GFSI compliance, and other industry-specific regulations to provide a documented audit trail with the ability to adapt as compliance requirements change.

Managing protocols to ensure the quality of inbound and outbound materials is essential in minimizing recall risk across the entire supply chain—from raw materials to the delivered final product. With an industry-specific ERP solution, formulas, recipes and instructions are maintained, scaled and verified to ensure consistency of products within the manufacturing process. This instills preventative measures throughout the production cycle in the form of process steps and quality control test specifications to bolster safety and quality. Quality features such as quarantine status and other status capabilities permit the isolating, removing and disposing of raw ingredients and finished goods that fail to meet quality control standards—triggering an alert to notify the purchasing department to investigate the issue. Having the ability to remove ingredients and finished goods from inventory or production prevents contaminated items from reaching store shelves and consumers, which reduces overall recall risk.

Inventory control practices are an important part of the functionality within an ERP solution that help to reduce overall recall risk. This includes managing and reporting of shelf life and expiration dates to maintain precise and lean control of inventory and reduce variances. Automated inventory transactions with the use of an ERP’s warehouse management solution (WMS) follow industry best practices and improve efficiency to ensure the accuracy of shipments, transfers, and material returns. This real-time visibility allows for the maintenance of FIFO inventory practices necessary to reduce the risk of spoilage.

One of the leading causes of contamination for food and beverage manufacturers that results in a recall event is a lack of allergen control throughout the supply chain and production process. An ERP system helps to track, manage and record the handling, storage and batch steps of raw materials from farm-to-fork. This includes stringent sanitary practices, lot tracking, raw material segregation and process controls to avoid allergen contamination or cross-contamination. Accurate product labeling is also a significant factor in reducing risk and an automated system that generates nutritional and product package labels plays a key role in a company’s recall prevention. To meet the needs of consumers and regulators, an ERP solution automates label creation to include accurate ingredient and allergen statements, nutrient analysis, expiration dates, lot and batch numbers, and regulatory specifications. The labeling history documented in the software allows products to be identified and located quickly in the event of a recall.

Reporting

Utilizing the recall functionality in the ERP solution allows companies to plan and test their recall process in advance. Performing mock recalls permits regular measurement and improvement of procedures to ensure rapid, accurate, and thorough responses by all company stakeholders in the event of a recall. A successful simulated exercise identifies 100% of recalled ingredients/products and notifies appropriate entities in a timely manner. Evaluation and documentation of mock recall exercises help expose inefficiencies, process gaps and procedural adjustments, which are designed to improve recall readiness and minimize consumer exposure to potentially dangerous contaminants.

As proof or documentation of adherence to specific processes, reporting is essential to demonstrate that these processes have been completed—without it, an integral component is missing. Across the supply chain and throughout the manufacturing process, documentation and reporting accentuate steps that have been taken to prepare and reduce recall risk. Risk-based assessments in supplier management, lot traceability reports, and mock recall reporting all provide a starting point of analysis to allow for adjustments to be made across the business. In a recall situation, the system is able to create lot tracking reports that encompass raw ingredients through shipped finished goods. These reports can be produced in minutes, rather than the hours it takes if data is stored within separate software programs.

Due to the amount of time and money that food and beverage companies invest in getting their products to market, it is imperative that preventative measures are taken in order to avoid a product recall. Forward-thinking manufacturers can help prepare for and reduce recall risks by utilizing several important features in ERP software—including supplier management, inventory control, and reporting. Using the tools at their disposal, a company can mitigate liabilities and protect their brand to turn a potential crisis into a future filled with opportunities.

Trish Wester
FST Soapbox

FDA Announces Inspections Will Resume…Sort Of

By Trish Wester
No Comments
Trish Wester

FDA Commissioner Stephen Hahn, M.D. recently announced that food safety inspections will resume in July, but inspectors will be given leeway to accommodate the coronavirus pandemic. Inspections will be prearranged by appointments. The agency suspended routine inspections in late March as a result of the pandemic response, which closed down much of the country.

USDA/FSIS has continued to provide inspection services for eggs, meat and poultry throughout the COVID-19 outbreak, with a significant number of establishments involved in outbreak clusters and periodic shutdowns.

The “White House Guidelines for Opening Up America Again” calls for the FDA to send out investigators for on-site inspections by the week of July 20, using the COVID-19 Advisory Rating system, which utilizes state and national data about infection rates to determine the regions where enforcement can resume.

In a July 10 FDA statement Hahn noted, “resuming prioritized domestic inspections will depend on the data about the virus’ trajectory in a given state and locality, and the rules and guidelines that are put in place by state and local governments.”

One of the most significant modifications for domestic inspections in the announcement is that they will be pre-announced to FDA-regulated businesses. “This will help assure the safety of the investigator and the firm’s employees, providing the safest possible environment to accomplish our regulatory activities, while also ensuring the appropriate staff is on-site to assist FDA staff with inspection activities,” Hahn said. Previously, most inspections were unannounced.

It’s not entirely clear how FDA will use the White House guidelines to determine where they can schedule inspections. There is mention of a prioritization mechanism that will identify high-risk operations, but that has traditionally been part of FDA’s approach to inspections.

The CDC published phased guidelines for states to follow in reopening, which are referred to in the announcement. The guidelines document outlines the gating criteria for states, but published versions do not mention inspection requirements. Many states began reopening without meeting all of the gateway criteria for Phase 1, and continued to accelerate reopening activities in a way that makes it unclear which phase criteria they may have actually met when compared to the phase under which they claim to be operating.

Further complicating the safety issue is the recent rising number of COVID-19 cases that is causing some states to pause or rollback reopening activities. Since publishing the announcement, several states have emerged as new COVID-19 hot spots, including Texas, Arizona and Florida; In addition, Florida has surpassed New York in total cases. California, another food producing state heavily affected by the pandemic, is seeing a significant increase in cases and is considering issuing new shelter-in-place orders. It was recently reported that CDC has identified 21 states as “Red Zones”, with at least 11 states on the verge of surging cases.

In other words, with the virus on the rise, there may not be a significant number of inspections actually performed, regardless of whether or not inspections have technically resumed, simply because there just isn’t a safe way to send inspectors out.

The FDA has also published the “New Era of Smarter Food Safety Blueprint”, which includes ways the agency could use technology to support compliance activities. There may be an opportunity for the FDA to implement new tools such as remote verification in lieu of onsite inspections, but that remains to be seen. Among such tools, remote audit pilots were recently completed and those results will be available for public presentation at the end of August.

In the short term, should FDA determine you are an inspection candidate, you will contacted in advance to schedule a day and time.

Susanne Kuehne, Decernis
Food Fraud Quick Bites

Catching Cosmopolitan Criminals

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Food fraud
Find records of fraud such as those discussed in this column and more in the Food Fraud Database.
Image credit: Susanne Kuehne.

The ninth OPSON operation, a cooperation between Europol and Interpol, included 83 countries around the world. OPSON IX targeted organized crime groups involved in food and beverage fraud. The substandard and fraudulent products potentially pose significant risk for consumers. Animal feed and alcoholic beverages made the top of the list of seized products, followed by grains, coffee and tea, and condiments. The officials also ran special campaigns to uncover fraudulent dairy products, olive oil and horsemeat.

Resource

  1. Europol. (July 22, 2020). “320 Tonnes of Potentially Dangerous Dairy Products Taken off the Market in Operation OPSON IX Targeting Food Fraud”. Press Release.
Shub Degupta, Mesh Intelligence
FST Soapbox

Driven by COVID-19 Disruptions to Find a Better, Data-Driven Way to Manage Food Supply Chain Risk

By Shub Degupta
No Comments
Shub Degupta, Mesh Intelligence

The COVID-19 pandemic emphatically laid bare the supply chain and supplier vulnerabilities that we face in our increasingly global food supply chains. Last month my company, Mesh Intelligence, convened a group of 14 leading supply chain, risk, sourcing and food safety executives drawn from some of the largest and most innovative food companies around the globe and in all aspects of the supply chain—from manufacturing, importing, distribution, logistics and retail. They volunteered their time to explore new solutions to better manage risk in their global food supply chains and are working together to develop and guide a lasting solution to address the challenges they faced across the past few months and manage supply chain in a more uncertain environment.

Zeroing In on the Need for Practical Solutions to Address Critical Issues

The group discussed how the tools and processes they currently use to manage supply chains are inadequate in identifying the scale, scope and intensity of new issues that arose during the pandemic and, more importantly, how these solutions need to be augmented in the future. To zero in on practical solutions, this group focused on the most critical challenges to address; understanding the best practices to tackle these issues; and guiding the development of data driven, practical and scalable solutions to predict risk.

Key insights from the group discussion include:

  1. The need for early, actionable warning on risk. Food organizations are seeking actionable, early warning signals about upcoming supply chain issues. Risk alerts, if they do exist, currently tend to be disaggregated and dispersed within an organization and executives struggle to understand the full picture.
  2. The need to communicate risk across the organization and the supply chain. Executives are seeking ways to communicate forecasted risk in fact-based and data-driven ways across key stakeholders within and outside the organization. There was clear interest in ways to engage suppliers and parties up and down the supply chain.
  3. Focusing on the most important risks and scenario planning a workable approach. Organizations are seeking ways to future proof their supply chains and increase resilience. By ensuring that their strategies are tested to withstand likely scenarios and situations, organizations improve their ability to work under increased uncertainty.
  4. The ability to continuously monitor and vet suppliers, even in a remote setting. Organizations are looking to get ahead of supplier issues and are seeking ways to work with suppliers to continuously monitor, vet and manage issues as they arise. This requires increased transparency and greater communication across parties in the supply chain.

Participants of the group are also getting early access to the solution and data to support them in their food safety and supply chain risk management efforts. The group will continue to meet on over the next few months to continue to guide the development of a food supply chain risk management solution. We look forward to keeping you updated. If you have insights on this issue, we encourage you to reach out. If you are interested in learning more about us or joining the group, please contact us at nicole@meshintel.com

Susanne Kuehne, Decernis
Food Fraud Quick Bites

Olive Oil, Again And Again

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Olive Oil
Find records of fraud such as those discussed in this column and more in the Food Fraud Database.
Image credit: Susanne Kuehne.

Fraudulent olive oil made its way into the retail market in Brazil. More than 1300 bottles of product labeled extra virgin olive oil were seized, the oil was analyzed and found to be fraudulent. An investigation about the source of the adulteration and whether the fraud happened at the producer or in retail is still ongoing.

Resource

  1. Samara, O. and Ferreira, C. (June 2, 2020) “Equipe da Decon apreende mais de 1.300 frascos de azeite adulterados na Grande Vitória”. Polícia Civil do Espírito Santo (PCES).
Are Traasdahl, Crisp
FST Soapbox

How a History of Slow Technology Adoption Across Food Supply Chains Nearly Broke Us

By Are Traasdahl
1 Comment
Are Traasdahl, Crisp

The COVID-19 crisis has exacerbated existing disconnects between food supply and demand. While some may be noticing these issues on a broader scale for the first time, the reality is that there have been challenges in our food supply chains for decades. A lack of accurate data and information sharing is the core of the problem and had greater impact due to the pandemic. Outdated technologies are preventing advancements and efficiencies, resulting in the paradox of mounting food insecurity and food waste.

To bridge this disconnect, the food industry needs to implement innovative AI and machine learning technologies to prevent shortages, overages and waste as COVID-19 subsides. Solutions that enable data sharing and collaboration are essential to build more resilient food supply chains for the future.

Data-sharing technologies that can help alleviate these problems have been under development for decades, but food supply chains have been slow to innovate compared to other industries. By reviewing the top four data-sharing technologies used in food industry and the year they were introduced to food supply chains, it’s evident that the pace of technology innovation and adoption needs to accelerate to advance the industry.

A History of Technology Adoption in the Food Industry

The Barcode – 19741
We’re all familiar with the barcode—that assemblage of lines translated into numbers and letters conveying information about a product. When a cashier scans a barcode, the correct price pops up on the POS, and the sale data is recorded for inventory management. Barcodes are inexpensive and easy to implement. However, they only provide basic information, such as a product’s name, type, and price. Also, while you can glean information from a barcode, you can’t change it or add information to it. In addition, barcodes only group products by category—as opposed to radio-frequency identification (RFID), which provides a different code for every single item.

EDI First Multi-Industry Standards – 19812
Electronic data interchange (EDI) is just what it sounds like—the concept of sharing information electronically instead of on paper. Since EDI standardizes documents and the way they’re transferred, communication between business partners along the supply chain is easier, more efficient, and human error is reduced. To share information via EDI, however, software is required. This software can be challenging for businesses to implement and requires IT expertise to handle updates and maintenance.

RFID in the Food Supply Chain – 20033
RFID and RFID tags are encoded with information that can be transmitted to a reader device via radio waves, allowing businesses to identify and track products and assets. The reader device translates the radio waves into usable data, which then lands in a database for tracking and analysis.

RFID tags hold a lot more data than barcodes—and data is accessible in remote locations and easily shared along the supply chain to boost transparency and trust. Unlike barcode scanners, which need a direct line of sight to a code, RFID readers can read multiple tags at once from any direction. Businesses can use RFID to track products from producer to supplier to retailer in real time.

In 2003, Walmart rolled out a pilot program requiring 100 of its suppliers to use RFID technology by 2005.3 However, the retail giant wasn’t able to scale up the program. While prices have dropped from 35–40 cents during Walmart’s pilot to just 5 cents each as of 2018, RFID tags are still more expensive than barcodes.4 They can also be harder to implement and configure. Since active tags have such a long reach, businesses also need to ensure that scammers can’t intercept sensitive data.

Blockchain – 20175
A blockchain is a digital ledger of blocks (records) used to record data across multiple transactions. Changes are recorded in real-time, making the history unfalsifiable and transparent. Along the food supply chain, users can tag food, materials, compliance certificates and more with a set of information that’s recorded on the blockchain. Partners can easily follow the item through the physical supply chain, and new information is recorded in real-time.

Blockchain is more secure and transparent, less vulnerable to fraud, and more scalable than technologies like RFID. When paired with embedded sensors and RFID tags, the tech offers easier record-keeping and better provenance tracking, so it can address and help solve traceability problems. Blockchain boosts trust by reducing food falsification and decreasing delays in the supply chain.6

On the negative side, the cost of transaction processing with blockchain is high. Not to mention, the technology is confusing to many, which hinders adoption. Finally, while more transparency is good news, there’s such a thing as too much transparency; there needs to be a balance, so competitors don’t have too much access to sensitive data.

Cloud-Based Demand Forecasting – 2019 to present7
Cloud-based demand forecasting uses machine learning and AI to predict demand for various products at different points in the food supply chain. This technology leverages other technologies on this list to enhance communication across supply chain partners and improve the accuracy of demand forecasting, resulting in less waste and more profit for the food industry. It enables huge volumes of data to be used to predict demand, including past buying patterns, market changes, weather, events and holidays, social media input and more to create a more accurate picture of demand.

The alternative to cloud-based demand forecasting that is still in use today involves Excel or manual spreadsheets and lots of number crunching, which are time-intensive and prone to human error. This manual approach is not a sustainable process, but AI, machine learning and automation can step in to resolve these issues.

Obtaining real-time insights from a centralized, accurate and accessible data source enables food suppliers, brokers, distributors, brands and retailers to share information and be nimble, improving their ability to adjust supply in response to factors influencing demand.8 This, in turn, reduces cost, time and food waste, since brands can accurately predict how much to produce down to the individual SKU level, where to send it and even what factors might impact it along the way.

Speeding Up Adoption

As illustrated in Figure 1, the pace of technology change in the food industry has been slow compared to other industries, such as music and telecommunications. But we now have the tools, the data and the brainpower to create more resilient food supply chains.

Technology adoption, food industry
Figure 1. The pace of technology change in the food industry has been slow compared to other industries. Figure courtesy of Crisp.

Given the inherent connectivity of partners in the food supply chain, we now need to work together to connect information systems in ways that give us the insights needed to deliver exactly the rights foods to the right places, at the right time. This will not only improve consumer satisfaction but will also protect revenue and margins up and down food supply chains and reduce global waste.

References

  1. Weightman, G. (2015). The History of the Bar Code. Smithsonian Magazine.
  2. Locken, S. (2012). History of EDI Technology. EDI Alliance.
  3. Markoff, R, Seifert, R. (2019). RFID: Yesterday’s blockchain. International Institute for Management Development.
  4. Wollenhaupt, G. (2018). What’s next for RFID? Supply Chain Dive.
  5. Tran, S. (2019). IBM Food Trust: Cutting Through the Complexity of the World’s Food Supply with Blockchain. Blockchain News.
  6. Galvez, J, Mejuto, J.C., Simal-Gandara, J. (2018). Future Challenge on the use of blockchain for food traceability analysis. Science Direct.
  7. (2019). Crisp launches with $14.2 million to cut food waste using big data. Venture Beat.
  8. Dixie, G. (2005). The Impact of Supply and Demand. Marketing Extension Guide.
Alex Kinne, Thermo Fisher Scientific
In the Food Lab

Ensuring Food Safety in Meat Processing Through Foreign Object Detection

By Alex Kinne
No Comments
Alex Kinne, Thermo Fisher Scientific

The USDA estimates that foodborne illnesses cost more than $15.6 billion each year. However, biological contamination isn’t the only risk to the safety and quality of food. Food safety can also be compromised by foreign objects at virtually any stage in the production process, from contaminants in raw materials to metal shavings from the wear of equipment on the line, and even from human error. While the risk of foreign object contamination may seem easy to avoid, in 2019 alone the USDA reported 34 food recalls, impacting 17 million pounds of food due to ‘extraneous material’ which can include metal, plastic and even glass.

When FSMA went into effect, the focus shifted to preventing food safety problems, necessitating that food processors implement preventive controls to shift the focus from recovery and quarantine to proactive risk mitigation. Food producers developed Hazard Analysis and Critical Control Point (HACCP) plans focused on identifying potential areas of risk and placement of appropriate inspection equipment at these key locations within the processing line.

Metal detection is the most common detection technology used to find ferrous, non-ferrous, and stainless steel foreign objects in food. In order to increase levels of food safety and better protect brand reputation, food processors need detection technologies that can find increasingly smaller metal foreign objects. Leading retailers are echoing that need and more often stipulate specific detection performance in their codes of practice, which processors must meet in order to sell them product.

As food processors face increased consumer demand and continued price-per-unit pressures, they must meet the challenges of greater throughput demands while concurrently driving out waste to ensure maximum operational efficiencies.

Challenges Inherent in Meat Metal Detection

While some food products are easier to inspect, such as dry, inert products like pasta or grains, metal foreign object detection in meat is particularly challenging. This is due to the high moisture and salt content common in ready-to-eat, frozen and processed, often spicy, meat products that have high “product effect.” Bloody whole muscle cuts can also create high product effect.

The conductive properties of meat can mimic a foreign object and cause metal detectors to incorrectly signal the presence of a physical contaminant even when it is nonexistent. Food metal detectors must be intelligent enough to ignore these signals and recognize them as product effect to avoid false rejection. Otherwise, they can signal metal when it is not present, thus rejecting good product and thereby increasing costs through scrap or re-work.

Equipping for Success

When evaluating metal detection technologies, food processors should request a product test, which allows the processor to see how various options perform for their application. The gold standard is for the food processor to send in samples of their product and provide information about the processing environment so that the companies under consideration can as closely as possible simulate the manufacturing environment. These tests are typically provided at no charge, but care should be taken upfront to fully understand the comprehensiveness of the testing methodologies and reporting.

Among the options to explore are new technologies such as multiscan metal detection, which enables meat processors to achieve a new level of food safety and quality. This technology utilizes five user-adjustable frequencies at once, essentially doing the work of five metal detectors back-to-back in the production line and yielding the highest probability of detecting metal foreign objects in food. When running, multiscan technology allows inspectors to view all the selected frequencies in real time and pull up a report of the last 20 rejects to see what caused them, allowing them to quickly make appropriate adjustments to the production line.

Such innovations are designed for ease of use and to meet even the most rigorous retailer codes of practice. Brands, their retail and wholesale customers, and consumers all benefit from carefully considered, application-specific, food safety inspection.

Ensuring Safety

The food processing industry is necessarily highly regulated. Implementing the right food safety program needs to be a top priority to ensure consumer safety and brand protection. Innovative new approaches address these safety concerns for regulatory requirements and at the same time are designed to support increased productivity and operational efficiency.

Susanne Kuehne, Decernis
Food Fraud Quick Bites

Le Bordeaux, C’est Si Beau!

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Food fraud, Bordeaux, wine
Find records of fraud such as those discussed in this column and more in the Food Fraud Database.
Image credit: Susanne Kuehne

This kind of lead must weigh heavily on the minds of food and beverage fraudsters. The quantity of lead isotopes and elemental lead can be used to determine the geographic origin and vintage of a wine and therefore determine whether the wine is from a specific location. The isotopic profiles of genuine Bordeaux wines were compared to suspicious bottling. The fake wines were clearly identified to be from different locations and vintages than claimed on the labels.

Resources

  1. Taylor, P. (September 16, 2019). “Lab technique spots fake Bordeaux wines”. Securing Industry.
  2. Epova, E. (January 15, 2020). “Potential of lead elemental and isotopic signatures for authenticity and geographical origin of Bordeaux wines”. Food Chemistry.

 

Chris Keith, FlexXray
FST Soapbox

COVID-19: We’re In This Together

By Chris Keith
No Comments
Chris Keith, FlexXray

It’s no secret that the COVID-19 pandemic had a major impact on industries and individuals around the world. According to the World Health Organization, as of June 21, 2020, there have been 8,708,008 reported cases of COVID-19 globally, including 461,715 deaths. In a recent article by Forbes, healthcare contributor William Haseltine stated that we are gathering personal stories and statistics right now around COVID-19 survivors who have suffered permanent injuries from the virus. Many experts believe that COVID-19 is also an economic downturn trigger. Author and financial planner Liz Frazier says that even as recessions are a normal part of the U.S. economic cycle, lasting about five and a half years on average, the possibility of a recession starting due to the outbreak would be unprecedented.1 The COVID-19 pandemic is a natural disaster that rocked the world and is a reminder of how connected people are in a global economy.

As quarantine regulations and temporary closures happened across the United States, businesses had to mobilize quickly, pivoting their strategies, distribution efforts, products and beyond to accommodate the new safety measures and external pressures. The food and beverage industry was no different. Although food manufacturers were deemed essential in the United States by Cybersecurity & Infrastructure Security Agency (CISA), manufacturers had to adapt to a new normal during the shutdown.2 Some of the biggest changes that occurred in the food manufacturing industry include fluctuating customers, prices, product and ingredient availability, packaging, distribution, and food quality and safety.

Shifting Demand, Customers and Food Pricing

Sharp changes in food prices and product availability shocked supply and demand and impacted the entire food supply chain across the United States. According to the USDA, there were record levels of demand for food at grocery stores, and, on the supply side, there has been a reduced supply of meat products over the period of quarantine as meatpacking plants faced temporary closures, decreased slaughter pace, and slower production due to COVID-19 regulations.3 Poultry prices took a sharp dip and have been rebounding, hot dog prices are at an all-time high due to increased demand, and beef prices have been climbing due to scarce supply and limited fresh production. Food pricing fluctuation is one of the largest food industry impacts felt directly by the general public and the on-premise sector. Restaurants and bars were crushed by the skyrocketing ingredient prices and mandatory temporary closures due to COVID-19.

As restaurants, school cafeterias and hotels were temporarily shut down due to quarantine restrictions, the food manufacturing industry’s most prominent customers practically disappeared. Before COVID-19, the USDA reported that in 2018, restaurants provided approximately 50% of meals consumed on a daily basis, up from 41% in 1984.4 When COVID-19 hit, consumer trends showed a monumental shift to eating at home. During the height of the pandemic, more people ordered take out from fast-casual dining places and ate from home. A recently published study reveals survey findings that suggest American’s food habits are shifting, as 54% of respondents confirmed they are cooking more, and 46% of respondents, baking more.5 As customers and demand changed, products and packaging had to follow suit.

Scores of manufacturing facilities had to rapidly respond with different products to meet changing consumer demand, despite already being in mid-production for products for restaurant kitchens, cafeterias, and the like. Most of these large-scale and wholesale products would never make it to their original, intended destinations. Manufacturers swiftly adapted their production, creating retail-ready goods from product made or intended for restaurant or fast food supply. These food production facilities had to creatively find ways to change product packaging sizes, salvaging good product with take-home cartons and containers. Some processors pre-sliced deli meat for grocery stores around the country, as markets were unable to slice the meat in-store, dealing with restrictions on the number of people who could work at any given time. The food manufacturing industry showed great ingenuity, repurposing food and getting creative in order to keep the country fed and bridge the gap in convenience shopping that consumers have grown used to.

New Distribution Pressures

There were also disruptions in the food industry’s distribution channel, and the logistics of distribution were adversely affected. Facilities faced increased pressure to have tighter production turnarounds from new consumer behavior and out-of-stock situations as many markets dealt with temporary panic shopping at the beginning of the crisis. Food manufacturing facilities have always faced tight deadlines when dealing with fresh and refrigerated product. However, COVID-19 introduced new critical, immediate needs to the food supply, and, more than ever before, facilities were pressed for time to deliver. Some facilities didn’t have enough dock loading time, and certain cold storage facilities could not meet the raised demands for dock times, making it harder to get product through the distribution channel to consumers. Shipping and logistics came at a premium. Drivers and logistics companies were at capacity with their service offerings, and unable to mobilize to meet the needs of every manufacturing company.

On top of the pressures from consumer demand, manufacturing facilities had to procure PPE (personal protective equipment) in mass for all employees and adjust employee schedules to meet new national and state-wide quarantine restrictions that strained the system. The PPE requirements are part of the distribution logistics, as plants are unable to distribute safe product without adhering to the system’s regulations. Senior Vice President of Regulatory and Environmental Affairs for the National Milk Producers Federation, Clay Detlefsen, said in an article for Food Shot Global that the whole food industry’s system has been turned on its head, as manufacturers are concerned that if they start running out of PPE and sanitation supplies, they would ultimately be forced into shutting down their food processing plants.6

Regulating Food Quality and Safety

Perhaps one of the biggest concerns surrounding the food supply chain during the height of COVID-19 for both producers and consumers was food safety. While safety and quality are always a high priority in the food industry, rising concern around the transmission of COVID-19 became a new and unprecedented challenge for food quality experts. In February the FDA declared that COVID-19 is unlikely to pass through food or food packaging, but that didn’t stop public concern.7 It was critical for food manufacturers and producers to ease public fear, keep the food supply stable and eliminate foreign material contamination that would adversely affect consumers and brand reputation. A mass recall due to foreign material contamination would have dire consequences for the strained food supply chain during this historic crisis. At the same time, the pandemic limited quality and food safety teams, as key teams had to work remotely, shift schedules had to drastically change to meet new safety regulations, production lines cut in half, and quality and safety teams had to make rushed decisions when it came to reworking product.

Some plants that faced potential foreign material contamination risked sending their product into distribution without a thorough rework, up against tight deadlines. And some plants adopted a multifaceted strategy and did something they’ve never done before: Reworked product on hold for potential foreign material contamination themselves. Many of these companies reworked product with their extra available lines, to keep as many of their workers as possible, despite the fact that food production employees are untrained in finding and extracting foreign contaminants. Inline detection machines are also typically limited to metal detection, often incapable of consistently catching many other types of contaminants such as glass, stones, plastic, bone, rubber, gasket material, container defects, product clumps, wood and other possible missing components. Food safety is of the utmost importance when a crisis hits as the food supply chain is crucial to our success as a nation and as an interconnected world. Facing new pressures on all sides, the food industry did not neglect food safety and quality, even while adopting new strategies. There was never a doubt that the industry would overcome the new challenges.

Looking Forward

The food industry has rapidly switched business strategies, swiftly turned around new products, found new ways to align product traceability and work remotely while still meeting industry standards and production expectations. Manufacturing facilities repackaged and repurposed food to keep the country fed, maintained job security for many employees and procured PPE in mass. The food industry is also full of manufacturers and plants that accomplished things they’ve never done before. There are shining examples of heroism in the food and beverage space as a growing list of food businesses, restaurants and delivery services have donated to healthcare workers on the front lines. Many large companies donated millions of dollars and pounds of food to feed their teams, their communities and the less fortunate.8 In the midst of a large obstacle, we have reached new heights and discovered new capabilities.

The challenges aren’t over. The food industry is still facing the effects of COVID-19 shutdowns on businesses even during this period of re-opening in different parts of the country. A lot of places and companies have been hit hard, some even closing their doors for good. Forbes reported at the onset of the pandemic that Smithfield Foods shut down one of its pork processing plants after hundreds of the plant’s 3,700 employees tested positive for coronavirus.8 Tyson Foods also shut down several meat processing plants under threat of the virus.8 Smithfield and Tyson were not the only ones. Food Dive has a compiled tracking system for coronavirus closures in food and beverage manufacturing facilities, recording reduced production, temporary closures, and permanent shutdowns across the industry. We expect some of the COVID-19 challenges to alleviate over time and hope that business will slowly return to normal and previously closed facilities will be able to re-open. However, we strongly hope some changes to the industry will remain: Creativity, ingenuity, resilience, adaptability, and a strong commitment to customers and partners. The bottom line is we’re in this together––together, we’re resilient.

References

  1. Frazier, L. (April 21, 2020). “How COVID-19 Is Leading The US Into A New Type Of Recession, And What It Means For Our Future.” Forbes.
  2. Krebs, C. (May 19, 2020). “Advisory Memorandum on Identification of Essential Critical Infrastructure Workers During COVID-19 Response.” Homeland Security Digital Library.
  3.  Johansson, R. (May 28, 2020) “Another Look at Availability and Prices of Food Amid the COVID-19 Pandemic.” USDA.
  4. Stewart, H. (September 2011). “Food Away From Home.” The Oxford Handbook of the Economics of Food Consumption and Policy. 646–666. Oxford University Press. doi: 10.1093/oxfordhb/9780199569441.013.0027
  5. The Shelby Report. (April 17, 2020). “New Study Reveals Covid-19 Impact On Americans’ Food Habits.”
  6. Caldwell, J. (April 16, 2020). “How Covid-19 is impacting various points in the US food & ag supply chain”. AgFunderNews.
  7. Hahn, M.D., S. (March 27, 2020). Coronavirus (COVID-19) Supply Chain Update. FDA.
  8. Biscotti, L. (April 17, 2020). “Food And Beverage Companies Evolve, Innovate And Contribute Amid COVID-19 Crisis.” Forbes.