Tag Archives: analysis

Counting Food Laboratories

By Robin Stombler
1 Comment

What We Think We Know

Food laboratories in the United States may voluntarily choose to become accredited to an international standard known as ISO/IEC 17025:2005. This standard outlines the general requirements for the competence of testing laboratories.

More recently, the FDA issued a final rule on the Accreditation of Third-Party Certification Bodies to Conduct Food Safety Audits and to Issue Certifications (Third-Party rule). Effective January 26, 2016, this final rule states that “for a regulatory audit, (when) sampling and analysis is conducted, the accredited third-party certification body must use a laboratory accredited in accordance with ISO/IEC 17025:2005 or another laboratory accreditation standard that provides at least a similar level of assurance in the validity and reliability of sampling methodologies, analytical methodologies, and analytical results.”  In short, for a segment of food laboratories, accreditation has become a necessary credential. At present, it remains a voluntary activity for most food laboratories.

There are accreditation bodies that accredit food laboratories to the ISO/IEC 17025 standard. The major accreditation bodies report on their individual websites which U.S. food laboratories are accredited under their watch.

To find the number of accredited laboratories, a quick search of the websites of four major food laboratory accreditation bodies, A2LA (American Association for Laboratory Accreditation), AIHA-LAP (American Industrial Hygiene Association – Laboratory Accreditation Programs, LLC), ANAB (American National Standards Institute-American Society for Quality), and PJLA (Perry Johnson Laboratory Accreditation) was performed on February 24, 2016. It yielded some debatable results. Here are some of the reasons for the skepticism:

  • The numbers are self-posted to individual websites. The frequency with which these websites are reviewed or updated is unknown.
  • Sites list both domestic and international laboratories. While foreign addresses were excluded from the count, those laboratories could perform testing for U.S. entities.
  • It can be difficult to separate the names of laboratories performing testing on human food versus animal feed.
  • There are several ways to duplicate or even exclude numbers. As examples, laboratories may be accredited within a food testing program, but may also be accredited under “biological” and/or “chemical” schemes—or vice versa.
  • In some cases, it is difficult to discern from the listings which laboratories are accredited for food testing versus environmental or pharmaceutical testing.

With all these caveats, the four major laboratory accreditation bodies accredit approximately 300 food laboratories. A2LA captures the lion’s share of this overall number with approximately 200 laboratories.

Let’s move to another source of numbers. A Food Safety News article about food testing and accreditation published in October 2013 states:

But, when it comes to testing our food, experts estimate that less than five percent of the food testing laboratories in the U.S. are accredited according to international standards…

Some believe that FDA will begin requiring accreditation for at least some significant segment of the food testing industry, of which the U.S. has roughly 25,000 laboratories. Whether that’s restricted to third-party labs – numbering roughly 5,000 – or will also include all food manufacturers’ internal labs is yet to be seen.

Using the writer’s sources, simple arithmetic finds 25,000 laboratories multiplied by the estimated 5% accreditation equals roughly 1,250 accredited laboratories in the United States. This, of course, falls far short of the 300 accredited laboratories noted by the major accreditation bodies. This is not to question either the writer’s sources or the websites of the accreditation bodies, but it does highlight an inconsistency in how we account for the laboratories testing our food.

To go a step further, Auburn Health Strategies produced in 2015, a survey of food laboratory directors, technical supervisors and quality assurance managers on the state of food testing. The survey, commissioned by Microbiologics, asked a series of questions, including: “Are the laboratories you use accredited?”  The respondents replied that, for their on-site laboratories, 42% were accredited and 58% were not. For their outside, contract laboratories, 90% of respondents stated that these laboratories were accredited and five percent did not know.

A second question asked: “Some laboratories are accredited to an internationally-recognized standard known as ISO 17025. Is this important to you?”  Approximately 77% of respondents answered affirmatively. Equally telling, 15% said they did not know or were unsure.

ISO 17025

What we do know is that there is not a definitive accounting of food laboratories—accredited or not. This lack of accounting can present very real problems. For example, we do not have a centralized way of determining if a particular laboratory has deficiencies in testing practices or if its accreditation has been revoked. Without knowing where and by whom testing is conducted, we are at a disadvantage in developing nationwide systems for tracking foodborne disease outbreaks and notifying laboratory professionals of emerging pathogens. We most certainly do not know if all food laboratories are following recognized testing methods and standards that affect the food we all consume.

What We Need Now

FSMA includes a provision calling for the establishment of a public registry of accreditation bodies recognized by the Secretary of Health and Human Services. The registry would also contain the laboratories accredited by such recognized organizations. The name and contact information for these laboratories and accreditation bodies would be incorporated into the registry. Rules for the registry have not yet been promulgated by the FDA, but should be. This is a small step toward greater accountability.

Steven Guterman, InstantLabs
In the Food Lab

Save Seafood with Digital Tracking

By Steven Guterman, Sarah McMullin, Steve Phelan
No Comments
Steven Guterman, InstantLabs

The combination of improved digital tracking along the food supply chain, as well as fast, accurate DNA testing will provide modern, state-of-the-art tools essential to guarantee accurate labeling for the ever-increasing quantities of foods and ingredients shipped globally.

The sheer scale of the international food supply chain creates opportunities for unscrupulous parties to substitute cheaper products with false labels. We know fraud is obviously a part of the problem. Some suppliers and distributors engage in economically motivated substitution. That is certain.

It’s equally true, however, that some seafood misidentification is inadvertent. In fact, some species identification challenges are inevitable, particularly at the end of the chain after processing. We believe most providers want to act in an ethical manner.

Virtually all seafood fraud involves the falsification or manipulation of documents created to guarantee that the label on the outside of the box matches the seafood on the inside. Unfortunately, the documents are too often vague, misleading or deliberately fraudulent.

Oceana, an international non-profit focused solely on protecting oceans and ocean resources, has published extensively on seafood fraud and continues to educate the public and government through science-based campaigns.

Seafood fraud is not just an economic issue. If the product source is unknown, it is possible to introduce harmful contamination into the food supply. By deploying two actions simultaneously, we can help address this problem and reduce mistakes and mishandling:

  • Improved digital tracking technologies deployed along the supply chain
  • Faster, DNA-based in-house testing to generate results in hours

Strategic collaborations can help industry respond to broad challenges such as seafood fraud. We partner with the University of Guelph to develop DNA-based tests for quick and accurate species identification. The accuracy and portability produced by this partnership allow companies to deploy tests conveniently at many points in the supply chain and get accurate species identification results in hours.

Our new collaboration with SAP, the largest global enterprise digital partner in the world, will help ensure that test results can be integrated with a company’s supply chain data for instant visibility and action throughout the enterprise. In fact, SAP provides enterprise-level software to customers who distribute 78% of the world’s food and accordingly its supply chain validation features have earned global acceptance.

The food fraud and safety digital tracking innovations being developed by SAP will be critical in attacking fraud. Linking paper documents with definitive test results at all points in the supply chain is no longer a realistic solution. Paper trails in use today do not go far enough. Product volume has rendered paper unworkable. Frustrated retailers voice concerns that their customers believe they are doing more testing and validation than they can actually undertake.

We must generate more reliable data and make it available everywhere in seconds in order to protect and strengthen the global seafood supply chain.

Catfish will become the first seafood species to be covered by United States regulations as a result of recent Congressional legislation. This change will immediately challenge the capability of supply chain accuracy. Catfish are but one species among thousands.

Increasingly, researchers and academics in the food industry recognize fast and reliable in-house and on-site testing as the most effective method to resolve the challenges of seafood authentication.

DNA-based analyses have proven repeatedly to be the most effective process to ensure accurate species identification across all food products. Unfortunately, verifying a species using DNA sequencing techniques typically takes one to two weeks to go from sample to result. With many products, and especially with seafood, speed on the production line is essential. In many cases, waiting two weeks for results is just not an acceptable solution.

Furthermore, “dipstick” or lateral-flow tests may work on unprocessed food at the species level, however, DNA testing provides the only accurate test method to differentiate species and sub-species in both raw and processed foods.

Polymerase chain reaction (PCR), which analyzes the sample DNA, can provide accurate results in two to three hours, which in turn enhances the confidence of producers, wholesalers and retailers in the products they sell and minimizes their risk of recalls and brand damage.

New technology eliminates multi-day delays for test results that slow down the process unnecessarily. Traditional testing options require sending samples to commercial laboratories that usually require weeks to return results. These delays can be expensive and cumbersome. Worse, they may prevent fast, accurate testing to monitor problems before they reach a retail environment, where brand and reputational risk are higher.

Rapid DNA-based testing conducted in-house and supported by sophisticated digital tracking technologies will improve seafood identification with the seafood supply chain. This technological combination will improve our global food chain and allow us to do business with safety and confidence in the accuracy and reliability of seafood shipments.

David Fried, Food Labs
In the Food Lab

Food Labs: Authentic and Safe Food is Key

By David Fried
No Comments
David Fried, Food Labs

The recent Foods Lab Conference (co-located with Pittcon) was an intersection of compliance, technology and best possible practices. One of the goals of this international symposium was to have laboratories and the food industry recognize one another as part of an effort for a more intentional and collaborative system in the industry, especially in terms of policies and practices.

As a Food Science student from Tallahassee, Florida I ended up at this incredible conference after seeing a blurb for it on LinkedIn and was able to attend as an intern. The two main objectives of my role were to assist with various tasks to help ensure the event transitioned smoothly, as well as further my knowledge base of the enormous realm of food safety. The following are some themes that I heard throughout the two days.

Having the analysis and validation performed or overseen with preventative types of controls from a qualified individual should ideally occur before the food safety plan is implemented. This appears to be desired by the consensus and was a common thread during the conference. If there is a change in a process control, it can have a serious impact on the legitimacy of the documentation if the change is not taken into account. The ISO implementations are food safety management systems and hazard analysis identification, which is the international benchmark for compliance standards.

Analytical scientific instrumentation is absolutely necessary for guaranteeing data and reproducibility on a consistent basis. The scope and complexity of modern technology should be considered when used for repeated trials in which the narrowest margins of results are being demanded by consumers and industry. Microbiologists confirm their peace of mind is reliant on the ability for reproducible experimental trials. In a laboratory, the presence of variables and species must be handled in an extremely controlled manner. All too frequently undesirable organisms appear in foods, and this is often the result of poor food handling practices, fraudulent practices or summed up, lazy shortcuts for the most unthinkable reasons. An effort to decrease these microbes is being made through transparency in supply chains to trace the journey of the food from seed to the table.

Food production is being shaped as a result of FSMA, which is a milestone in food safety. A few features of this legislation are to offer assistance for the food technology sector and address questions about policy and safe handling practices. It has and will continue to influence the process of laboratory accreditation, validation and compliance in order to provide thorough transparency for the development of more modern food systems. There were many fascinating perspectives shared about validation and accreditation for both laboratories and facilities. Many large companies have their laboratories in-house, because it is easier from a production perspective if the product is going to market, to test it repeatedly in order to have less delay in the market launch. There have been times in which carcinogenic fillers or fake foods were portrayed. Examples would be the horse meat and melamine scandals. An additional perspective would be the possibility in protecting the own interests of the company by not disclosing true ingredients, practices, or actual comprehensive food safety evaluation. All are truly unacceptable with regards to mega food base distribution companies. Small- to medium-sized businesses typically source laboratory evaluations to third-party assessors to perform product validation because it’s simply too expensive to implement on their own because of labor, technology and space constraints. Claims of 100% pure olive oil are not true the majority of the time. A sunflower oil and chlorophyll solution can be made to mimic the coloration of pure extra virgin olive oil. So it is commonplace for this sort of solution to be created and combined with pure olive oil at a ratio of 2:1, as a conservative figure. True wording and claims are becoming a thing of the past, because it is way too simple for big food business to engage in such unthinkable practices to maximize their own profits.

A key thread running throughout the conference was the importance of necessitating the collaborative efforts needed to achieve a comprehensive dialogue set in place as a universal type of database. This database would serve as the foundation to ensure safe food practices throughout worldwide food production companies, accredited laboratories, governments, and consumers.

The Food Labs Conference was truly one of fantastic speakers, interesting participants, and fascinating conversation. The advanced topics were explored by professionals who share a deep passion for this vital industry sector. Food Laboratories and the conference, respectively, will become even more revolutionary in terms of future technology, the influence garnered by key publics, and future experts.

Prevent Contamination from Defects in Metal Can Food Packaging

By Wayne D. Niemeyer
1 Comment

Millions of aluminum and tin-plated steel cans enter the marketplace every day, yet despite the extensive efforts of manufacturing plant quality control systems, a small percentage of the cans may have defects that can result in loss of the can integrity and subsequent contamination of the food products. Quality control operations within manufacturing plants typically have limited analytical chemistry capabilities and must rely on the manufacturer’s laboratory or independent laboratories to help identify and characterize the defects and troubleshoot the operations to eliminate the root cause of the defects. This article will present some of the current technology utilized for evaluating metal can defects.

Metal cans made from aluminum for beer and beverage products have been in use for about 50 years, whereas tin-plated steel cans for food products, have been in use for more than 100 years. Throughout that time, many improvements have been made to the design of the cans, the materials used for the cans (metal and internal/external protective organic coatings), the manufacturing equipment, chemical process monitoring, and quality control methods/instrumentation. The can manufacturing plants and their material suppliers are responsible for product integrity prior to distribution of the cans to food and beverage manufacturing operations throughout the world. Incoming quality control and internal quality control are also quite extensive at those manufacturing locations. Many of the can defects that would result in potential consumer issues are quickly eliminated from the consumer pipeline as a result of the rigorous quality control procedures. Occasionally, defective cans find their way into the marketplace, resulting in consumer complaints that must be addressed by the manufacturers.

The cause of the defects must be determined quickly, even if it means shutting down production lines while waiting for answers and corrective actions. Anything that results in a major product recall will have a high priority for the manufacturers to determine the root cause and take corrective actions. Major manufacturers have extensive analytical laboratories with a vast array of instrumentation and technical expertise for troubleshooting the defects. Smaller manufacturers usually have to rely on a network of independent laboratories to assist with their troubleshooting analyses.

Instrumentation and Methodology

Most major can manufacturing plants produce several hundred thousand to several million cans per day, and any can defects detected during quality control inspections will obviously have major implications. Most aluminum and tin-plated steel cans have an organic protective coating applied on the interior surface. One of the major quality control tests is to determine the amount of metal exposure inside the cans. This is done through the use of Enamel Rater instrumentation in which a sampling of cans are filled with an electrolyte. An electrode is immersed into the liquid and external contact is made with the can’s bottom or side wall. When a voltage is applied to the system, the current generated is directly proportional to the amount of exposed metal; a very small amount of exposed metal is acceptable. By reversing the polarity of the system, exposed metal regions produce gas bubbles as a result of the electrochemical reactions. This allows the inspector to identify the location of the exposed metal.  When too much metal exposure is encountered, the troubleshooting process begins immediately.

Crater defect, stereomicroscope
Figure 1. Stereomicroscope image of a crater defect with an iron oxide (rust) particle in the center. (Click to enlarge)

Visual examination of additional cans from the production line is done, followed by examination with a low-power microscope, typically a stereo microscope, in order to characterize metal exposure defects. Typical defects are craters and/or fisheyes, which are seen as circular dewetting (also known as pullback) of the coating from a solid contaminant on the metal (see Figure 1) or an incompatible liquid, such as machine oil mist (fisheye). Additionally, broken blisters in the coating, known as solvent pops, can occur in the curing oven for the coating, resulting in exposed metal. The metal exposure produces two main problems for the filled food product: Metal migration into the product and corrosion of the metal, which eventually results in perforation and product leakage. Manufacturing plants typically do not have the necessary analytical instrumentation available to identify the contaminants and must send selected samples to the laboratory for the analysis.

Another critical test that is conducted in the can manufacturing plants looks for adhesion characteristics of the internal coatings and external coatings (inks and over varnish). A typical adhesion test involves cutting open the sidewalls and immersing the cans into hot water for a period of time. Upon removal from the water, the cans are dried and a tool is used to scribe the coatings. A tape is applied over the scribe marks and rapidly pulled off. If any coating comes up with the tape, the troubleshooting process must begin. Often, over-cure and under-cure conditions can result in coating adhesion failure. The failure can also be caused by a contaminant on the surface of the metal. Loss of internal coating adhesion can result in flakes of the coating contaminating the product and also metal exposure issues. Adhesion failure analysis is typically conducted in the analytical laboratories.

Analytical laboratories are well equipped with a vast array of instrumentation used to identify and characterize various can defects, including:

  • Optical microscopes, both stereomicroscopes and compound microscopes, are used with a variety of lighting conditions and filters to observe/photograph the defects and in some cases perform microchemical tests to help characterize contaminants. They are also used to examine metal fractures and polished cross sections of metals looking for defects in the metal that may have caused the fractures.
  • Scanning electron microscope (SEM) equipped with the accessory for energy dispersive X-ray spectrometry (EDS) are used, in conjunction with the optical microscopes, to observe/photograph the defects in the SEM and then obtain the elemental composition of the defect material with the EDS system. This method is typically used for characterizing inorganic materials. Imaging can be done at much higher magnifications compared to the optical microscopes, which is particularly useful for analysis of fractures.
  • Infrared spectroscopy, commonly referred to as Fourier Transform Infrared (FTIR) spectroscopy, is used mainly to identify organic materials, such as, oils, inks, varnishes, cleaning chemical surfactants that are commonly found in the can manufacturing operations. Solvent extractions from adhesion failure metal surfaces and the mating back side of the coating are often done to look for very thin films of organic contamination.
  • Differential scanning calorimetry (DSC) instrumentation is often used to determine the degree of cure for protective coatings on cans exhibiting adhesion failure issues.

Other more specialized instrumentation that is more likely available in independent analytical laboratories includes:

  • X-ray photoelectron spectroscopy (XPS), also known as electron spectroscopy for chemical analysis (ESCA), is used to analyze the outermost molecular layers of materials. The technique is particularly useful for detecting minute quantities of contaminants, typically thin films involved in adhesion failures. Depth profiles can also be done on the metal to determine thickness of oxidation or the presence/absence of surface enhancement chemical treatments. High-resolution binding energy measurements on various elements can provide some chemical compound information as part of the characterization.
  • Secondary ion mass spectrometry (SIMS) is also an outer molecular layer type of analysis method. Depth profiling also be accomplished with this instrumentation, but one of the major advantages is the ability to detect boron and lithium which are found in some greases and other materials in the manufacturing facility. To help identify organic films that may have resulted in the adhesion failures, it is often crucial to know if boron or lithium is present, which helps identify a potential source.
  • X-ray diffraction (XRD) instrumentation is used to identify crystalline compounds, mainly inorganic materials but can also be used for certain organic materials. Inorganic materials, isolated from coating craters, are often identified with a combination of SEM/EDS and XRD analyses.

Three case studies are presented to show how analytical lab instruments can be used to identify and characterize metal can defects.Metal can defects can take on numerous forms, some of which have been discussed in this article. Extensive quality control activities in can manufacturing plants often prevent defective cans from entering the marketplace. Characterizing the cause of the defects often requires major troubleshooting activities within the production plants, supplemented by the analytical laboratories with a vast array of instrumentation and personnel expertise. Due to the huge quantities of metal cans produced each day, it is inevitable that some defective cans will make it to the marketplace, resulting in consumer complaints. High priorities must be assigned to consumer complaints to not only identify and characterize the defects, but also to determine how widespread the defective cans are within the marketplace. In this way, decisions can be made regarding product recalls.

DuPont BAX System, Salmonella detection

PCR Assay for Salmonella Detection Gets AOAC-RI Certified

By Food Safety Tech Staff
No Comments
DuPont BAX System, Salmonella detection
DuPont BAX System, Salmonella detection
DuPont BAX System X5 PCR Assay for Salmonella detection

Today DuPont announced that the AOAC Research Institute (AOAC-RI) approved a method extension of Performance Tested Method #100201 to include the company’s BAX System X5 PCR Assay for Salmonella detection. Introduced this past July, the PCR assay provides next-day results for most sample types following a standard enrichment protocol and approximately 3.5 hours of automated processing. The lightweight system is smaller and designed to provide more flexibility in testing.

“Many customers rely on AOAC-RI and other third-party certifications as evidence that a pathogen detection method meets a well-defined set of accuracy and sensitivity requirements,” says Morgan Wallace, DuPont Nutrition & Health senior microbiologist and validations leader for diagnostics, in a company release. “Adopting a test method that has received these certifications allows them to use the method right away, minimizing a laboratory’s requirements for expensive, time-consuming in-house validation procedures before they can begin product testing.”

The validation covers a range of food types, including meat, poultry, dairy, fruits, vegetables, bakery products, pet food and environmental samples.

Jacob Bowland, Heateflex
In the Food Lab

FSMA to Increase Role for Food Microbiology Testing Laboratories

By Jacob Bowland
No Comments
Jacob Bowland, Heateflex

As a result of the finalization of FSMA regulations on September 10, 2015, increasing requirements for procedures, documentation and testing will soon be impacting the food industry. The major effects on the food microbiology testing market will come in the form of an increase in the volume of samples that must be processed in accordance with the new FSMA rules, along with an improved emphasis on accurate and complete record keeping. The goals of FSMA are to create a new safety standard across the entire food chain. Increasing food pathogen testing will minimize possible recalls and the probability that dangerous food outbreaks occur.

Food manufacturers’ testing labs and third-party accredited testing labs can meet the demand for increased testing and improved record keeping in one of two ways: Via facility expansion or via implementing new technologies into the laboratory. While facility expansion might be an ideal long-term solution, it will not address the immediate surge in lab demand brought on by the new FSMA requirements, as it takes time to build new laboratories and hire employees. Implementing new technologies in the lab, then, makes the most sense, and where automation can be introduced into traditionally-manual processes, higher throughput may be realized using existing personnel and facilities.  Automation further removes human error and improves the quality of the test being performed. The challenge for lab managers will be to objectively look at the current production bottlenecks in their testing operations and determine where technology may be introduced to increase throughput.

In addition to mandating additional testing, the FSMA regulations will require improved lab record keeping, as well as a new accreditation process that FDA will implement. The food testing industry faces the same dilemma that the healthcare industry faced some years ago in migrating from manual files to electronic health records.  Lab notebooks have a real purpose in the lab, but their purpose should be more as a backup system to information that is gathered and stored electronically. While Laboratory Information Management Systems (LIMS) have been around for many years, their full potential in pathogen testing has yet to be realized. A properly designed LIMS provides an electronic database that not only aids in the accreditation process, but also allows samples to be traced throughout the testing facility.  This allows positive test results to be screened from false positives or false negatives, and points to which equipment or procedures in the testing process need to be improved upon.  LIMS technology for recording digital information can also trace user, operation time and performance specifications more accurately than lab notebook-based processes.

In summary, many changes are coming to the food industry as a result of increased regulations, presenting exciting opportunities to develop new products and technologies to alleviate the pain points within testing labs.  The industry of food pathogen testing must change alongside the regulatory atmosphere in order to be competitive in a post-FSMA era.

Laboratory Information Management System

How LIMS Facilitates ISO 17025 Certification in Food Testing Labs

By Dr. Christine Paszko
No Comments
Laboratory Information Management System

In order to ensure that a food testing laboratory maintains a quality management system that effectively manages all aspects of laboratory operations that affect quality, there are numerous records, reports and data that must be recorded, documented and managed.

Gathering, organizing and controlling all the data that is generated, managed and stored by food testing laboratories can be challenging to say the least. As the ISO Standards and regulatory requirements for food testing laboratories evolve, so does the need for improved quality data management systems. Historical systems that were very efficient and effective 10 years ago, may no longer meet the demanding requirements for ISO 17025 certification. One way to meet the challenge is to turn to automated solutions that eliminate many of the mundane tasks that utilize valuable resources.

There are many reasons for laboratories to seek this certification, including to enhance reputation, gain a competitive advantage, reduce operational costs, and meet regulatory compliance goals. A major advantage for food testing laboratories to obtain ISO 17025 Certification is that is tells prospective clients that the laboratory has a strong commitment to quality, and they hold the certification to prove it. This certification not only boosts a laboratory’s reputation, but it also demonstrates an organization’s commitment to quality, operational efficiency and management practices. Proof of ISO 17025 Certification eliminates the need for independent supplier audits, because the quality, capability and expertise of the laboratory have been verified by external auditors. Many ISO Certified laboratories will only buy products (raw materials, supplies and software) and services from other ISO-certified firms so that they do not need to do additional work in qualifying the vendor or the products.

There are many areas in which a LIMS supports and promotes ISO 17025 compliance. Laboratories are required to manage and maintain SOPs (standard operating procedures) that accurately reflect all phases of current laboratory activities such as assessing data integrity, taking corrective actions, handling customer complaints, managing all test methods, and managing all documents pertaining to quality. In addition, all contact with clients and their testing instructions should be recorded and kept with the job/project documentation for access by the staff performing the tests/calibrations. With a computerized LIMS, laboratory staff can scan in all paper forms that arrive with the samples (special instructions, chain of custody (CoC), or any other documentation). This can be linked to the work order and is easy assessable by anyone who has  the appropriate permissions. The LIMS provides extensive options for tracking and maintaining all correspondence, the ability to attach electronic files, scanned documents, create locked PDFs of final reports, COAs (Certificate of Analysis), and CoCs.

Sample Handling and Acceptance

Laboratories are required to have a procedure that defines all processes that a sample is subjected to while in the possession of the laboratory. Some of these procedures will relate to sample preservation, holding time requirements, and the type of container in which the sample is collected or stored. Other information that must be tracked includes sample identification and receipt procedures, along with acceptance or rejection criteria at log-in. Sample log-in begins and defines the entire analysis and disposal process, therefore it is important that all sample storage, tracking and shipping receipts as well as sample transmittal forms (CoC) are stored, managed and maintained throughout the sample’s analysis to final disposal. To summarize, the laboratory should have written procedures around the following related to sample preservation:

  • Preservation
  • Sample identification
  • Sample acceptance conditions
  • Holding timesShipping informationStorage
  • Results and Reporting
  • Disposal

The LIMS must allow capture and tracking of data throughout the sample’s active lifetime. In addition, laboratories are also required to document, manage and maintain essential information associated with the analytical analysis, such as incubator and refrigerator temperature charts, and instrument run files/logs. Also important is capturing data from any log books, which would include the unique sample identifier, and the date and time of the analysis, along with if the holding time is 72 hours or less or when time critical steps are included in the analysis, such as sample preparations, extractions, or incubations. Capturing the temperature data can be automated such that the data can be directly imported into the LIMS. If there is an issue with the temperature falling outside of a range, an email can automatically be spawned or a message sent to a cell phone to alert the responsible party. Automation saves time and money, and can prevent many potential problems via the LIMS ability to import and act on real-time data.

If any instrumentation is used in the analysis, the following information must also be recorded in the instrument identification (to ensure that it is in calibration, and all maintenance and calibration records are current), operating conditions/parameters, analysis type, any calculations, and analyst identification. In addition to analyst identification, laboratories must also keep track of analyst training as it relates to their laboratory functions. For example, if an analyst has not been trained on a particular method or if their certification has expired, the LIMS will not allow them to enter any result into the LIMS for the method(s) that they have not been trained/certified to perform. The LIMS can also send automated alerts when the training is about to expire. Figure 1 shows a screen in the LIMS that manages training completed, scheduled, tests scores, and expiration dates of the training, along with the ability to attach any training certificates, exams, or any other relevant documentation. Laboratory managers can also leverage the LIMS to pull reports that compare analyst work quality via an audit report. If they determine that one analyst has a significant amount of samples that require auditing, they can then investigate if there is a possible training issue. Having immediate access to data allows managers to more rapidly identify and mitigate potential problems.

Laboratory Information Management System
LIMS manages a variety of aspects in training, including when it has been completed, scheduled, tests scores, and expiration dates. (Click to enlarge)

Another major area that a LIMS can provide significant benefit is around data integrity. There are four main elements of data integrity:

  1. Documentation in the quality management system that defines the data integrity procedure, which is approved (signed/dated) by senior management.
  2. Data integrity training for the entire laboratory. Ensures that the database is secure and locked and operates under referential integrity.
  3. Detailed, regular monitoring of data integrity. Includes reviewing the audit trail reports and analyzing logs for any suspicious behavior on the system.
  4. Signed data integrity documentation for all laboratory employees indicating that they have read and understand the processes and procedures that have been defined.

The LIMS will enhance the ability to track and manage data integrity training (along with all training). The LIMS will provide a definition of the training, the date, time, and topic (description); instructor(s); timeframe in which the training is relevant, reminders on when it needs to be repeated; along with  certifications, quiz scores, copies of quizzes, and more. With many tasks, the LIMS can provide managers with automated reports that are sent out at regular time intervals, schedule training for specific staff, provide them with automatic notification, schedule data integrity audits, and to facilitate FDA’s CFR 21 part 11 compliance (electronic signatures). The LIMS can also be configured to automatically have reports signed and delivered via fax or email, or to a web server. The LIMS manages permissions and privileges to all staff members that require access to specific data and have the ability to access that data, along with providing a secure document control mechanism.

Laboratories are also required to maintain SOPs that accurately reflect all phases of current laboratory operations such as assessing data integrity test methods, corrective actions and handling customer complaints. Most commercial LIMS provide the ability to link SOPs to the analytical methods such that analysts can pull down the SOP as they are doing the procedure to help ensure that no steps are omitted. Having the SOPs online ensures that everyone is using the same version of the locked SOPs, which are readily available and secure.

Administrative Records, Demonstration of Capability

Laboratories are required to manage and maintain the following information on an analyst working in the laboratory: Personal qualifications and experience and training records (degree certificates, CV’s), along with records of demonstration of capability for each analyst and a list of names (along with initials and signatures) for all staff that hold the responsibility to sign or initial any laboratory record. Most commercial LIMS will easily and securely track and manage all the required personnel records. Individuals responsible for signing off on laboratory records can be configured in the LIMS to not only document the assignment of responsibility but also to enforce it.

Reference Standards and Materials

Because the references and standards that laboratories use in their analytical measurements affect the correctness of the result, laboratories must have a system and procedures to manage and track the calibration of their reference standards. Documentation that calibration standards were calibrated by a body that can prove traceability must be provided. Although most standards are purchased from companies that specialize in the creation of reference standards, there are some standards that laboratories create internally that can also be traced and tracked in the LIMS. Most commercial LIMS will also allow for the creation, receipt, tracking, and management of all supplies in an inventory module, such that they document the reference material identification, lot numbers, expiration date, supplier, and vendor, and link the standard to all tests to which it was linked.

The ISO 17025 Standard identifies the high technical competence and management system requirements that guarantee your test results and calibrations are consistently accurate. The LIMS securely manages and maintains all the data that supports the Quality Management System.

Key advantages of food testing laboratories that have achieved ISO 17025 Certification with a computerized LIMS that securely and accurately stores all the pertinent data and information:

  • Proof of ISO 17025 Certification eliminates the need for supplier audits, because the quality, capability and expertise of the laboratory have been demonstrated by the certification.
  • Knowledge that there has been an evaluation of the staff, methods, instrumentation and equipment, calibration records and reporting to ensure test results are valid.
  • Verification of operational efficiency by external auditors that have validated the quality, capability and expertise of the laboratory.
  • Defines robust quality controls for the selection and authentication of methods, analyzing statistics, controlling and securing data.
  • Clearly defines each employee’s roles, responsibilities and accountability.
  • Confidence that the regulatory and safety requirements are effectively managed and met in a cost efficient-manner.
Mobile FSQA apps

Are Mobile Apps a Game Changer for Food Safety Professionals?

By Maria Fontanazza
No Comments
Mobile FSQA apps

Many food safety and quality assurance (FSQA) professionals are constantly on the go in the workplace. They can be found on the floor of a manufacturing facility, off-site conducting supplier audits, or out in the field performing pre-harvest inspections, just to name a few locations during their busy day. “To benefit from food safety automation, these folks need more than the capability of logging into a system through a desktop,” says Levin. “They need a true mobile app that provides automation support out in the field,” says Barbara Levin, senior vice president of marketing and customer community at SafetyChain.

While other industries have been quick to adopt mobile platforms, the food safety industry has been much slower. Adoption is, however, gaining traction. In a recent conversation with Food Safety Tech, Levin talks about the value of FSQA mobile apps in today’s environment, where access to real-time, actionable data is crucial for the food industry.

Food Safety Tech: What common challenges faced by FSQA teams do mobile apps specifically address?

Barbara Levin: Mobile apps allow collection of FSQA at the point of origin, along with immediate access to the information for analysis, CAPA and reporting:

  1. Getting timely feedback on non-compliances for CAPA. When FSQA data is inspected at the end of the shift on paper, finding non-conformances often means rework. The instances in which this happens are too numerous to count. With mobile apps, you receive timely feedback. Information in the system is immediately analyzed to specs, so you’re catching non-compliances at the earliest point possible.
  2. Consistency in following your FSQA programs. This could be your USDA HACCP plan, FSMA HARPC plan, GFSI program, customer quality attributes and other components of your FSQA programs. Program components change all the time (i.e., Specifications, processes, rules in HACCP, GFSI code, forms, workflow, etc). Are FSQA managers confident that everyone is following the most up-to-date program? Is everyone following the workflow and doing everything in the right order? Are they completing tasks accurately? Using the right forms? Unfortunately companies find out that steps are missed or outdated forms were used during an audit; or when missed steps result in expensive rework or in the worst case, a customer rejection, withdrawal or a recall.

    Mobile apps will always have the most up-to-date forms, processes, specs and more. They act as a coach, leading the FSQA team member through the proper steps. When you enter incorrect or incomplete information on paper, it may not be detected until the end of the day or shift. A mobile app will issue an alert if incorrect information is entered; and it won’t let you submit a form if all fields aren’t complete. Because all of the updates are made in the system and pushed out to the app, if the specification changes while an FSQA team member is on the plant floor, when he or she logs in, the latest spec will always be there. You’re ensured that only the up-to-date program is being followed and that only the most up-to-date forms are being used.

  3. A lack of information for continuous improvement trending. If you have multiple facilities and products (resulting in mountains of FSQA paper), it’s a huge, manual task to make all of the data useful and relevant. With mobile apps, all FSQA data is entered “once and done,” making it accessible and actionable for immediate FSQA result tracking, daily KPI reporting and continuous improvement.
  4. Audit readiness. Mobile apps take audit readiness to a different level. With FSMA and GFSI, the saying is, if it’s not documented, you didn’t do it. By collecting FSQA data at the point of origin, all data is time and data stamped and uploaded to your permanent FSQA record. There’s no redundant data entry, mistakes are avoided, and there’s greater record efficacy that helps companies be audit ready, on demand.
Mobile FSQA apps
Mobile forms capture safety and quality data at the point of origin; data is actionable and then uploaded into a central repository for reporting and audit readiness. Image courtesy of SafetyChain Software. (Click to enlarge)

FST: What is the biggest benefit that FSQA mobile apps offer? 

Levin: The first benefit is real-time feedback. If you think about how things were done in the past, using an example of a pre-harvest inspection, you’re out there with a clipboard, making observations and recording non-compliances. Then you have to go back and enter the information into a spreadsheet, or turn it into a PDF, and send it to the food safety manager, who may or may not be sitting at his or her desk. Waiting to get a response equals time lost. And in the food industry, time equals money.

When you’re entering information into a mobile app, it analyzes that information in real-time and according to specifications. When there are non-compliances, alerts are pushed to the FSQA manager – wherever [he or she is located]. The manager can then generate a CAPA, which can then be completed, documented on the mobile device and electronically signed off by the manager. The process is expedited, and expensive rework is avoided.  

The second benefit involves data efficiencies. When data is collected on a mobile device, it’s entered only once and is then immediately available for multiple uses, such as a customer’s certificate of analysis, attachment to GFSI code for audit, or to be produced upon demand for a regulatory inspector. With a manual system, there’s a tremendous amount of redundant data entry. We hear this all the time from food safety folks— that they feel like they’re managing paper instead of food safety programs. When data is entered into a mobile app, it’s accessible immediately to FSQA, operations, vendor purchasing, management – any stakeholder who has a need.

“The Power of FSQA Automation Via Mobile Applications” Download the whitepaperFST: What approach should be taken to encourage the investment in and implementation of an on-the-go FSQA mobile platform?

Levin: I would love to think that in an ideal world, the creation of operational efficiencies that enable a higher level of confidence that you are sending out safer food is enough. Food companies are businesses, and they have obligations to consumers, which they take very seriously. But they also have obligations to their shareholders. When we talk to folks who really want this, it’s very easy to create a business case to senior management based on ROI. When you can close the gap by hours and days in the food industry, that time equals money. Avoiding rework also saves money.  And there’s ROI in faster sales throughput and increased shelf life by reducing hold and release times. We’ve heard from our customers that the solutions have paid for themselves and started to create ROI within three to six months.

Granulated sugar with dark foreign particles

Food Investigations: Microanalytical Methods Find Foreign Matter in Granular Food Products

By Mary Stellmack
No Comments
Granulated sugar with dark foreign particles

The upcoming implementation of FSMA will likely result in increased scrutiny of contaminants in food products. If the foreign matter can be identified, steps can be taken to eliminate the source of contamination and avoid future losses of product. Small foreign particles are sometimes observed in drums of bulk granular or powdered raw materials. While these foreign particles may be seen as dark specks in the product, they are often too small for standard QA/QC methods of analysis. Microanalytical techniques, however, can be used to isolate and identify the specks. This article describes a case study of dark particles in a granulated sugar sample.

Microscope Exam

Ideally, when conducting contaminant analysis, all sample manipulations take place in a cleanroom to eliminate the chance for contamination by extraneous environmental debris. This is especially important when working with small contaminant particles, which may consist of environmental debris such as metal particles, fibers and other types of dirt. If the unknown particles are identified as common environmental debris, the analyst must be certain that he or she did not introduce any debris while handling the unknown sample.

Granulated sugar with dark foreign particles
Figure 1. Granulated sugar with dark foreign particles, 13X (Click to enlarge)

The first step in the identification process involves examination of the sample under a stereomicroscope. Figure 1 is a photomicrograph of dark brown particles, less than 1 mm in size, in the sugar sample. Particles of this size must be isolated from the bulk product prior to analysis in order to correctly identify them.

Since all of the dark particles are visually similar, only a few representative particles need to be isolated. The contaminants can be isolated by removing a small glob of tacky adhesive (50 µm or smaller) from a piece of tape with the pointed tip of a fine tungsten needle. The adhesive-coated needle tip is gently touched to the surface of one of the dark particles, causing the particle to adhere to the needle, and the particle is transferred to a glass slide or other substrate for further examination.

Isolated dark foreign particles
Figure 2. Isolated dark foreign particles, 63X. (Click to enlarge)

Figure 2 is a photomicrograph of three dark particles, isolated from the sugar granulation. The dark brown particles have a smooth, shiny appearance with conchoidal (shell-shaped) fracture surfaces, and are visually consistent with glass. However, when probed with the tungsten needle, the particles are found to be brittle and fragile, and this texture is not consistent with glass. Therefore, chemical analysis is needed to identify the brown particles.

Micro-FTIR Analysis to Identify Organic Components

Most organic compounds (and some inorganic materials) can be identified by Fourier transform infrared (FTIR) spectroscopy. For the analysis of small particles, a microscope is coupled with a standard FTIR system; this method of analysis is known as micro-FTIR analysis. The micro-FTIR system passes a beam of infrared radiation through the sample and records the different frequencies at which the sample absorbs the light, producing a unique infrared spectrum, which is a chemical fingerprint of the material. By comparing the spectrum of the sample with spectra of known compounds from a reference library through an automated computer search, the sample can often be identified.

In order for the FTIR analysis to work, the sample must be transparent, or thin enough to transmit light. In the case of the particles from this case study, this is achieved by applying pressure to a ~50 µm portion of the sample until it forms a thin transparent film. This film is placed on a salt crystal for micro-FTIR analysis.

An FTIR spectrum of crystalline sugar is shown in Figure 3, and a spectrum of a brown particle is shown in Figure 4. The spectrum of the brown particle has some similarities to sugar, but there are fewer peaks, and the remaining peaks are rounded, consistent with a loss of crystallinity. The loss of crystallinity, coupled with the brown color of the particles, suggests charred sugar.

FTIR spectrum of granulated sugar
Figure 3. FTIR spectrum of granulated sugar. (Click to enlarge)

Figure 4. FTIR spectrum of a dark foreign particle, microanalysis
Figure 4. FTIR spectrum of a dark foreign particle. (Click to enlarge)

SEM/EDS to Identify Inorganic Compounds

The FTIR method does not provide complete information about the presence or absence of inorganic materials in the contaminant. To complete the analysis of the brown particles, scanning electron microscopy (SEM) combined with an energy dispersive X-ray spectrometer (EDS) detector is needed. Using the SEM/EDS method, two types of information are obtained: SEM provides images of the sample, and the EDS identifies the elements that are present.

SEM/EDS analysis of a dark foreign particle
Figure 5. SEM/EDS analysis of a dark foreign particle

A brown particle was mounted on a beryllium stub with a small amount of adhesive, and submitted for SEM/EDS analysis. Figure 5 includes an SEM image of the particle, and a table of EDS data. The SEM image provides some information about the composition of the particle. This image was acquired using backscattered electron mode, in which heavier elements appear lighter in color. The image displays light colored specks scattered across the surface of the particle, indicating that more than one type of material is present. The light-colored circle on the SEM image shows the area that was included in the EDS analysis (the entire particle was analyzed). Looking at the column in the table for weight percent (Wt%), the particle consists primarily of carbon and oxygen, with small amounts of chlorine and iron. Carbon and oxygen are chemical constituents of sugar, but chlorine and iron are not.

SEM/EDS analysis of specks on a dark foreign particle
Figure 6. SEM/EDS analysis of specks on a dark foreign particle

The EDS system can also be used to focus on individual small areas on the particle. Figure 6 includes EDS data from five specific light-colored specks on the surface of the brown particle. The specks contain major amounts of iron with small amounts of chlorine, and sometimes chromium and silicon, plus contributions from carbon and oxygen from the surrounding sugar matrix. The composition of the specks indicates steel corrosion, likely from low alloy steel. The presence of chlorine suggests that a chlorinated substance was the initiator for the corrosion process.

In some cases, steel corrosion can be the sole cause of brown or dark discoloration of small particles. In the case of this brown particle, the SEM image shows that the iron-rich particles are not evenly distributed throughout the particle, but are only scattered on the surface. Charring is the most likely cause of the overall brown color of the particle.

Conclusion

When examined under the microscope, the dark particles in the sugar sample had the visual appearance of glass. However, chemical microanalysis of the particles revealed that they were not glass at all, highlighting the importance of microanalytical methods in determining the identity of the foreign matter. The brown particles were ultimately identified as charred sugar particles with scattered specks of steel corrosion (likely from low alloy steel) on the surface. This information can be used to narrow down the search for possible sources of the brown particles in the bulk sugar sample. As part of a root cause investigation, samples of dark particles from various locations in the manufacturing and packaging processes can be studied by the same techniques to look for a match.

More information about FTIR analysis is available in the webinar, Preparation of Polymer Samples for Microspectroscopy

Sample6 executives, Tim Curran, Jim Godsey and Mike Koeris

Food Safety Testing Must Live Up to Higher Expectations

By Maria Fontanazza
1 Comment
Sample6 executives, Tim Curran, Jim Godsey and Mike Koeris

From sanitation and processing to testing and analysis to transportation and imports, government requirements of companies in the food industry are changing. Many companies are already prepared for the transformation that FSMA will bring. Within food testing and analysis, expectations will be higher than ever. Companies should be able to more accurately and rapidly identify contamination in order to take immediate action. What are some of the biggest concerns in testing and analysis? What changes can we expect? In a roundtable discussion with Sample6 executives, Michael Koeris, Ph.D., founder and vice president of operations, Tim Curran, CEO, and Jim Godsey, vice president of research & development, share their perspective on the hurdles that industry is facing and how innovative technology plays an important role in the future of food safety.

Key trends:

  • Focus in testing shifts from not just testing and recording data, but also analyzing and communicating results. Having data analysis and reporting skills will be a critical function for the next generation of food safety professionals.
  • Be proactive, not reactive. If you’re finding problems at the finished product level, it’s too late.
  • The need for stronger partnerships between industry and government, especially relating to providing industry with the tools to effectively gather and analyze data in a timely manner.

Food Safety Tech: What are the current industry challenges, especially related to advances in pathogen detection technology?

Tim Curran, CEO of Sample6, pathogen detection
Tim Curran, CEO of Sample6

Tim Curran: When I look at food companies and food safety managers, [their jobs] have become harder to do well, instead of easier. The environment in which they’re working is more challenging, and the pressures are increasing. There’s more regulatory scrutiny, whether we talk about FSMA or the regulatory environment [in general], and there are more testing and inspection [expectations].

Second, the nature of the foods that we need make for the U.S. population (and I think it is a trend around the world): Ready-to-eat products. We’re producing products that are more convenient for families where they won’t necessarily have a cook step down the road. The kinds of foods in demand have a higher risk profile.

Third is the globalization of food supplies. Raw materials are coming in from all different directions, and there is an increasing number of shipping points. That creates more pressure, and from a food safety perspective, that is a bad thing.

“It is okay to find positives for Listeria or Salmonella in the appropriate zones that are far away from food contact surfaces. It is inconceivable to have a plant that has no actual bacterial organisms living there.” -Michael KoerisFinally, there’s social media. There’s a lot of scrutiny from the public. Information around any kind of fear or recall is rapidly disseminated.

These factors add up to higher pressure, a higher bar, and a harder job to accomplish—and the tools and methods available to keep the plant safe and food safe are not keeping pace.

Although I think food plants want to test more at the point of contamination, it’s just not possible. Unless they have a sophisticated lab, most food companies ship out samples because enrichment is required. As a result, they’re getting feedback on the safety of their plant and food in two, three, or four days, depending on where they fall as a priority to that outside lab.

Jim Godsey: With FSMA, testing is decentralizing from the larger lab, which is typically staffed with experienced personnel, to the facility where those personnel don’t exist. Having a test with a workflow that can be easily accommodated by someone with a high school education is absolutely critical for the field.

Michael Koeris, Ph.D., founder and vice president of operations, Sample6, pathogen detection
Michael Koeris, Ph.D., founder and vice president of operations

Michael Koeris: Visibility of data is generally extremely poor, because many people touch individual data points or pockets of data. The hand-off between the different groups is usually shaky, and the timeliness of delivering data to the operators has been a huge issue. This has been an opportunity for us: Our control offering is an operating system for environmental control. It’s an open system, so it accepts both our data and other people’s data, enabling visibility across an entire corporate infrastructure. Plant managers and other [users] of these systems can generate timely reports so they can see what is happening on a daily basis.

FST: In considering professional development, what skills are necessary to ensure that employees will be well equipped to address the issues discussed here?

Godsey: The role of the food safety manager becomes a much more critical and challenging role. To support that, they need better tools; they need to know with a high degree of confidence that their facility has been tested, that the testing was done at the proper times and intervals, and that the data has been analyzed in a timely manner. It’s not just assay/analysis [or] reporting results anymore; it’s the holistic review of those results and translating that [information] into whether or not the plant is safe at that point in time.

Koeris: The persona of the food safety manager is changing. They need to see themselves as the brand protection manager. If you have food safety issues, your brand is at risk. We need to empower the food safety manager at the local level to act, remediate and change processes.

Jim Godsey, vice president of research & development, Sample6, pathogen detection
Jim Godsey, vice president of research & development

There also has to be fundamental change in the industry in how results are viewed. Not all tests are created equal. It is okay to find positives for Listeria or Salmonella in the appropriate zones that are far away from food contact surfaces. It is inconceivable to have a plant that has no actual bacterial organisms living there. This is not a pharmaceutical production facility. Setting the wrong goals at the corporate level of zero positives disincentivizes operators to not look hard enough. You have to actually understand the plant and then make sure that you’re safe with regards to your control plan.

FST: How do you expect the final FSMA rules and implementation process will impact industry?

Koeris: Most of the larger food players are already doing what FSMA mandates or will mandate. The medium and smaller processors will have to adapt and change. They have to implement better standards and more standards, more surveillance, and implement more rigorous processes. The [key] is to help them do this on a tight budget.

FSMA has increased awareness of food safety across the supply chain. It is still focused on the processors, but we know it doesn’t stop there; it doesn’t stop at the distributor or the retailer. Food safety has to be throughout that supply chain.

Having an understanding and awareness of all of the challenges that exist downstream—that will [lead to] the real innovation and increase in foods safety.