Eleuthero root and root extract are used for herbal over-the-counter medicinal supplements with anti-inflammatory, anti-stress, energy boosting and antioxidant properties. Eleuthero (Eleutherococcus senticosus), also known as Siberian Ginseng, can be adulterated by adding Eleuthero aerial parts, the use of alternate species of Eleutherococcus or by declaring Periploea sepium (Chinese Silk) as Eleuthero. Variances in nomenclature in different parts of the world contribute to adulteration and mislabeling. The use of correct Latin names and comparison to authentic botanical material, as well as analytical methods to authenticate Eleuthero, for example, DNA barcoding and spectrometric methods, help to avoid that fraudulent Eleuthero products show up in medicinal supplements.
Bison and other game meats have become increasingly popular over the course of the past years, and these products have enjoyed an increase in pricing as a result. Bison, deer and beef meats have very similar appearances; in addition, bison and domestic cattle can cross-breed and therefore the meat cannot be distinguished by DNA barcoding alone. To ensure that bison meat was not mixed with other red meat species, a specific polymerase chain reaction method (PCR-SFLP) was used in a recently published study. Out of 45 commercial bison meat samples, three samples showed other meat species, which were not identified on the label.
By Casey Schlenker, Jenna Brooks, Kent Oostra, Ryan McLaughlin No Comments
This article discusses a non-targeted method for whole sample next generation DNA sequencing (NGS) that does not rely on DNA barcoding. DNA barcoding requires amplification of a specific gene region, which introduces bias. Our non-targeted method removes this bias by eliminating the amplification step. The applications of this method are broad and we have begun optimizing workflows for numerous materials, both processed and unprocessed. Some of the materials we have been able to successfully identify at the species level are fish tissue, fish meal, unrefined fish oil, unrefined plant-based oils (nuts, seeds, and fruits), specific components of cooked and processed products such as cookies and powders, and processed meats. Non-targeted NGS is also a very powerful tool to comprehensively identify constituents of microbial communities in probiotics and fermented products like kombucha. Additionally, this non-targeted technique is applicable to detection and identification of microbial contamination at various levels of manufacturing including equipment surfaces, processing water and assaying intermediate processing steps. In this communication we briefly review a current issue in the botanicals industry, discuss the methods that have been used in the past to tackle that problem, and present preliminary results from a pilot study we performed to determine the utility of non-targeted NGS in high-throughput identification of botanical raw materials.
The value of the global herbal dietary supplement (botanical) market was estimated to be greater than $90 billion in 2016, with a projected compound annual growth rate of 5-6%. Currently, regulators and manufacturers in this rapidly expanding market seek to confirm the veracity of label claims, investigate fraud, identify adulterants and ensure product quality.1 These products are often dried and ground, making visual identification difficult, time consuming and sometimes impossible.2 It is critical to this market that botanical identification be high-throughput, accurate and cost effective. Historically, various chromatography techniques have been used to meet this need, but those techniques rely on identification of molecules that can vary significantly due to storage conditions, which has led to the use of DNA barcoding as an analytical technique. However, DNA barcoding is not without significant challenges.1
For quite some time, scientists have had the ability to identify biological samples by sequencing their DNA.3 Currently DNA sequencing-based identification methods rely heavily on a technique called DNA barcoding, which functions analogously to the barcodes found on products in a grocery store. DNA barcoding amplifies a distinct small gene region that serves as a unique identifier and “scans” it by DNA sequencing.4 The advantages of this amplification are high sensitivity and simplification of data analysis. However, this amplification is not completely reliable and in practice can create biases and false positives.5 There is also the possibility that the amplification may fail, causing false negatives.6 When using DNA barcoding to identify botanical raw materials, numerous labs have observed notably high levels of apparent contamination.7 While it is certainly likely that some or even many botanical raw material samples contain contamination, it is also possible that the amplification-based method of DNA barcoding is itself contributing to the levels of contamination that are being observed.
We have partnered with Practical Informatics and Pacific Northwest Genomics to develop comprehensive whole sample DNA screening methods that don’t rely on amplification. To achieve this we are utilizing a non-targeted metagenomics workflow. Non-targeted metagenomic analysis is a powerful tool for examining the entire genetic content of a sample, instead of just one particular gene region (if a gene is a word or phrase, then a genome is the entire book, and the metagenome is the library). Unlike DNA barcoding, which requires PCR amplification, non-targeted metagenomic analysis requires no prior knowledge of a sample’s source and does not introduce the biases that plague PCR initiated methods. All of the DNA extracted from a sample is analyzed without targeting any particular gene region, relying instead on complex data analysis to identify the constituents (Figure 1). This is accomplished with the use of advanced molecular biology techniques and sophisticated computational methods, combined with a highly-curated database of species-identifying DNA sequences. Our research and development team has completed several experiments demonstrating the utility of a non-targeted DNA sequencing method.
Our research endeavors to solve the issues of DNA sequence analysis that originate with the PCR step by simply eliminating amplification from our process entirely. PCR amplification as a prelude to DNA sequencing traces to traditional technologies that were lower throughput and required large amounts of material. Current generation high-throughput DNA sequencing technologies do not require large amounts of starting material, and therefore amplification can be avoided. Many DNA barcoding methods require universal primers, which, during PCR, can amplify some products but not others, leading to false negatives. A solution to that issue is to use specific primers, however this is also inherently problematic as a certain foreknowledge of the sample identity is required. What is the advantage to our non-targeted sequencing method? There is no need to direct the analysis to any particular identification before sequencing, decreasing the introduction of bias and false negatives. As an added bonus, we don’t need to know what the sample is prior to analysis—we can tell you what it is rather than you telling us.
With more regulatory and consumer scrutiny being placed on the authenticity of food products, companies must use technologies that can verify products and ingredients, and detect contaminants. NSF International recently acquired AuthenTechnologies, a testing laboratory that provides DNA-species identification services to improve authenticity, safety and quality of natural products. Using shorter segments and validated reference materials, AuthenTechnologies employs a DNA sequencing method that can identify “almost any” species and detect contaminants that cannot be distinguished morphologically or chemically. The method also screens for allergens, GMOs, fillers and filth.
“As the food supply chain becomes more complex and regulations continue to evolve and become more rigorous, this technology is becoming essential to achieving regulatory compliance and brand protection while preventing issues associated with fraud, mislabeling and adulteration,” said Lori Bestervelt, Ph.D, international executive vice president and chief technology officer at NSF, in a company release. AuthenTechnologies’ co-founder Danica Harbaugh Reynauld, Ph.D., adds, “We’ve developed a more highly specific DNA methodology capable of identifying a single organism to a complex blend of unlimited ingredients.” Reynauld, who will join NSF as global director of scientific innovation, will lead the NSF AuthenTechnologies center of excellence with NSF’s global network of labs.
In comparison to DNA barcoding, next-generation DNA sequencing is highly specific and can identify species in highly processed materials and complex mixtures. DNA barcoding is unable to differentiate between closely related species and is less suitable in detecting extracts as well.
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookies
Strictly Necessary Cookies should be enabled at all times so that we can save your preferences for these cookie settings.
We use tracking pixels that set your arrival time at our website, this is used as part of our anti-spam and security measures. Disabling this tracking pixel would disable some of our security measures, and is therefore considered necessary for the safe operation of the website. This tracking pixel is cleared from your system when you delete files in your history.
We also use cookies to store your preferences regarding the setting of 3rd Party Cookies.
If you visit and/or use the FST Training Calendar, cookies are used to store your search terms, and keep track of which records you have seen already. Without these cookies, the Training Calendar would not work.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.
Cookie Policy
A browser cookie is a small piece of data that is stored on your device to help websites and mobile apps remember things about you. Other technologies, including Web storage and identifiers associated with your device, may be used for similar purposes. In this policy, we say “cookies” to discuss all of these technologies.
Our Privacy Policy explains how we collect and use information from and about you when you use This website and certain other Innovative Publishing Co LLC services. This policy explains more about how we use cookies and your related choices.
How We Use Cookies
Data generated from cookies and other behavioral tracking technology is not made available to any outside parties, and is only used in the aggregate to make editorial decisions for the websites. Most browsers are initially set up to accept cookies, but you can reset your browser to refuse all cookies or to indicate when a cookie is being sent by visiting this Cookies Policy page. If your cookies are disabled in the browser, neither the tracking cookie nor the preference cookie is set, and you are in effect opted-out.
In other cases, our advertisers request to use third-party tracking to verify our ad delivery, or to remarket their products and/or services to you on other websites. You may opt-out of these tracking pixels by adjusting the Do Not Track settings in your browser, or by visiting the Network Advertising Initiative Opt Out page.
You have control over whether, how, and when cookies and other tracking technologies are installed on your devices. Although each browser is different, most browsers enable their users to access and edit their cookie preferences in their browser settings. The rejection or disabling of some cookies may impact certain features of the site or to cause some of the website’s services not to function properly.
Individuals may opt-out of 3rd Party Cookies used on IPC websites by adjusting your cookie preferences through this Cookie Preferences tool, or by setting web browser settings to refuse cookies and similar tracking mechanisms. Please note that web browsers operate using different identifiers. As such, you must adjust your settings in each web browser and for each computer or device on which you would like to opt-out on. Further, if you simply delete your cookies, you will need to remove cookies from your device after every visit to the websites. You may download a browser plugin that will help you maintain your opt-out choices by visiting www.aboutads.info/pmc. You may block cookies entirely by disabling cookie use in your browser or by setting your browser to ask for your permission before setting a cookie. Blocking cookies entirely may cause some websites to work incorrectly or less effectively.
The use of online tracking mechanisms by third parties is subject to those third parties’ own privacy policies, and not this Policy. If you prefer to prevent third parties from setting and accessing cookies on your computer, you may set your browser to block all cookies. Additionally, you may remove yourself from the targeted advertising of companies within the Network Advertising Initiative by opting out here, or of companies participating in the Digital Advertising Alliance program by opting out here.