Tag Archives: documentation

Tom Gosselin, DNV GL
FST Soapbox

Time to Get More Value From Social Audits

By Tom Gosselin
No Comments
Tom Gosselin, DNV GL

If global supply chains were considered complex before COVID-19, it’s hard to imagine what we’d call them now. Is there a single business operating exactly as it did before the pandemic?

All the more surprising, when survival would seem to be the top priority, pre-pandemic risk factors are not only alive and well, but they also actually outweigh coronavirus as strategic business concerns. In fact, COVID-19 didn’t even make the top five risk factors in the World Economic Forum’s 2020 Risk Report.

In its analysis of the WEF report, consulting firm Ernst and Young stated the following:

“While the risk of a pandemic was noted as important in the report, and something for which we are unprepared globally, it was not identified as one of the top five risks in terms of likelihood or impact in the 2020 survey. High-impact and highly probable risks, such as climate change, biodiversity loss and water crises, are just as present now as they were before the pandemic started . . .”

In our experience, some pre-pandemic business trends have actually gone from “warm and fuzzy” to red hot in spite of, or perhaps even due to, the COVID chaos. One prime example is in the case of social audits.

Social audits have been increasingly used over the past decade to evaluate corporate social responsibility and, indeed, the ethical conduct of entire supply chains. We’ve worked extensively with some of the biggest names in consumer electronics to conduct hundreds of social audits among component suppliers of all sizes. These assessments are mandatory, not by law, but by business policy. The vast scope reflects the importance—and business value—of operational factors that go beyond pure economics, whether it’s related to labor practices, health and safety, or environment.

A growing number of organizations strongly believe that social responsibility and profits are not mutually exclusive; they are in fact enablers of one another—but only if you commit to mining the full value of these programs. Think of it like data mining. Within any large body of information, you can almost always find hidden value. If you know how to look and have the proper tools. In the case of social auditing, the tools are the insights and methods employed by the auditing teams.

This is such a vital concept that we have designed its social auditing process to exceed even what the Responsible Business Alliance requires in its code of conduct. As a baseline, like every other auditor, we first look for nonconformities, which are the most serious issues requiring immediate attention. We also report “observations”, a second level of findings that speaks to things that are suboptimal but are not out of compliance, per se. That’s where it usually stops. This is the mentality of fault finding. And it has defined social auditing for a long time.

We can, and do, break that mold. Taking another critical step to ask, “what’s going right?”, provides an extra level of inquiry that probes for opportunities embedded in the fabric of the way things work. It could be an unrecognized best practice, something that people have been doing but nobody took the time, or had the awareness, to document and share. Often times, it’s something frontline workers have done as a response to an unexpected development, like a pandemic that makes you work from home.

In one service-based organization, we found that the sudden shift to working from home led to an unwelcomed rise in cases of domestic violence. We discovered this during audits of pay rates and working hours. The company was able to develop an innovative response, establishing a framework of verbal signals that workers now use to communicate stress or threat. In another instance, while auditing a large industrial company for workplace safety, we found that employees were using a shortcut to avoid a required safety measure. By probing and asking questions in a non-accusatory way, those same workers recommended a very simple workaround to the workaround—thereby restoring the safety measure without adding complexity to the task.

The key to all of this is mindset. Not just ours (the auditors), but the client organization’s as well. You must be willing to broaden the very idea of “compliance.” Sometimes, things that are out of spec are that way for a reason. Rather than lump every outlier as a flaw, you should look beneath the surface and see if there’s a good reason for it. That doesn’t automatically mean nonconformities are suddenly something else. But if you are only looking for problems, that’s all you’re going to find.

Kari Hensien, RizePoint
FST Soapbox

How to Enhance Your Food Safety Culture, Now More Important than Ever

By Kari Hensien
No Comments
Kari Hensien, RizePoint

I don’t have to tell you that COVID-19 is a crisis, and the consequences have been immediate and difficult. But as I speak to clients and look beyond the immediacy of the problems the food industry is facing, I am seeing positive insights that can help us now and in the future.

Food safety culture hasn’t always been clearly defined, nor has it been a “must” in many food safety systems. But the reality is that food safety culture—and the buy-in that needs to happen in your entire organization—is a direct and important element for staying up to date with new rules and being consistent and compliant at every location.

What Does Food Safety Culture Mean Now?

The definition I have liked most is “food safety culture is what you’re doing when no one is watching.” But with the coronavirus pandemic, everyone is always watching, so the definition must expand.
Customers are carefully watching every employee at every location to gain a feeling of safety and trust at restaurants and eateries. And if employees aren’t up to speed or don’t have buy-in to your food safety culture, or even food safety in general, a single incident can turn away customers for good.

As an example, I recently visited a favorite taco joint. After the cashier rang me up, he put hand sanitizer on his gloves and proceeded to put handfuls of chips into my takeaway bag with those same “sanitized” gloves. I will not be going back.

So, food safety culture is still about what you do when no one is watching and when everyone is watching, making participation from every member of your organization critical.

What Can You Do Now to Enhance Food Safety Culture?

Practices that enhance food safety culture should initiate a shift in perspective before you implement more tangible activities. These shifts will be more challenging because they require your entire organization to be on board.

Perspective Shifts for Food Safety Culture

One or more paradigm shifts may be necessary to make enhancing your food safety culture successful. Sometimes initiatives like food safety culture can feel more like another addition to your to-do list rather than an asset that ultimately makes the job of a quality manager easier. So, consider these suggested shifts as you move forward.

  1. Food safety culture is part of your food safety system and your corporate social responsibility plans. With any crisis, not just the current pandemic, the values and expectations you instill in your employees can give you an immovable base, even if the surface is in constant fluctuation. And whether you’re dealing with an outbreak or a pandemic, showing you put customers and location employees first demonstrates good corporate citizenship.
  2. Location employees can be your biggest asset or your biggest liability. Employees perform better when they know the purpose behind what they’re doing rather than following rules that may seem arbitrary if they don’t have a clear understanding of why.
  3.  Punitive systems encourage hiding problems; supportive systems encourage collaboration and trust. If employees feel safe reporting issues or problems at their location, the more likely they’ll catch small issues before they become huge liabilities.
  4. Food safety culture can be a huge asset. In other words, instead of looking at food safety culture as another chore in your already crowded list, see it as an asset that improves food safety and creates better work environments, which inherently decreases risk and protects your brand.

In-Practice Shifts for Food Safety Culture

The paradigm shifts suggested above help build a support perspective for a strong food safety culture. The following shifts I suggest can help you implement tangible actions that benefit every level of your organization.

  1. Take great care of location employees. These employees are in direct contact with customers the most, and they are truly your first line of defense. Which means they can be an incredible asset or the weakest link.
  2. Consider audit and checklist software over laminated or paper checklists. The right software or app can instantly push new policies or standards to every location and employee at the same time, so everyone is always on the same page. Choose software or other tools that 1) makes it easy for all employees to get the information they need; 2) helps them quickly build behaviors that serve your quality and safety programs; and 3) empowers them to confidently share issues that need to be corrected so you get a true view of the health of any location.
  3. Consider quality management system software. With a platform (there are many that include audit and checklist tools), you can collect data points more quickly and from more sources to create a single source of truth and deepen insights. Software can directly support food safety culture, helping you:
    • Find new insights and continually improve your processes
    • Systematically rollout new policies and procedures
    • Drive adoption of new policies and “build muscle memory” so employees build good habits
    • Validate that your policies and practices are followed in every location
    • Identify locations or policies that need increased focus while you reward areas of successful performance.
  4. Look at your organization from a 30,000-foot perspective. This is not so easy to do if you are using manual processes such as paper, file cabinets or even spreadsheets. With those tools, you can see data points, but it takes a lot of work to build a big-picture view. Again, this is where software is invaluable. Many quality management system software options include built-in analytics and reporting, which means much of the work is done for you, saving you valuable time.

I hope your main takeaway from this article is that surviving a crisis requires a strong food safety culture. It helps unify employees across your organization, so everyone knows what’s expected of them and how their work affects the big picture. I see strong evidence that enhancing your food safety culture is more than the “next thing on your to-do list.” It’s a tool that you can put to work to decrease risk, increase compliance, and find small issues before they become huge problems.

Summer of 2020: Hot Topics Include FDA Inspections, Records Retention, and New Technology Era

By Food Safety Tech Staff
No Comments

10

Is Food-Grade always Food-Safe?

9

Important Restaurant Food Storage Safety Tips You Need to Know

8

How a History of Slow Technology Adoption Across Food Supply Chains Nearly Broke Us

7

FDA Unveils Blueprint for New Era of Smarter Food Safety

6

FDA, CDC Investigating Multistate Cyclospora Outbreak Involving Bagged Salads

5

COVID-19 Leads Food Companies and Meat Processors to Explore AI and Robotics, Emphasize Sanitation, and Work from Home

4

FDA Announces Inspections Will Resume…Sort Of

3

Sustainability Strategies for the Food Industry

2

Top Three Visibility Challenges in Today’s Food Supply Chain

1

The COVID-19 Record Retention Conundrum

Manuel Orozco, AIB International
FST Soapbox

Detecting Foreign Material Will Protect Your Customers and Brand

By Manuel Orozco
No Comments
Manuel Orozco, AIB International

During the production process, physical hazards can contaminate food products, making them unfit for human consumption. According to the USDA’s Food Safety and Inspection Service (FSIS), the leading cause of food recalls is foreign material contamination. This includes 20 of the top 50, and three of the top five, largest food recalls issued in 2019.

As methods for detecting foreign materials in food have improved over time, you might think that associated recalls should be declining. To the contrary, USDA FSIS and FDA recalls due to foreign material seem to be increasing. During the entire calendar year of 2018, 28 of the 382 food recalls (7.3%) in the USDA’s recall case archive were for foreign material contamination. Through 2019, this figure increased to approximately 50 of the 337 food recalls (14.8%). Each of these recalls may have had a significant negative impact on those brands and their customers, which makes foreign material detection a crucial component of any food safety system.

The FDA notes, “hard or sharp foreign materials found in food may cause traumatic injury, including laceration and perforation of tissues of the mouth, tongue, throat, stomach and intestine, as well as damage to the teeth and gums”. Metal, plastic and glass are by far the most common types of foreign materials. There are many ways foreign materials can be introduced into a product, including raw materials, employee error, maintenance and cleaning procedures, and equipment malfunction or breakage during the manufacturing and packaging processes.

The increasing use of automation and machinery to perform tasks that were once done by hand are likely driving increases in foreign matter contamination. In addition, improved manufacturer capabilities to detect particles in food could be triggering these recalls, as most of the recalls have been voluntary by the manufacturer.

To prevent foreign material recalls, it is key to first prevent foreign materials in food production facilities. A proper food safety/ HACCP plan should be introduced to prevent these contaminants from ending up in the finished food product through prevention, detection and investigation.
Food manufacturers also have a variety of options when it comes to the detection of foreign objects from entering food on production lines. In addition to metal detectors, x-ray systems, optical sorting and camera-based systems, novel methods such as infrared multi-wavelength imaging and nuclear magnetic resonance are in development to resolve the problem of detection of similar foreign materials in a complex background. Such systems are commonly identified as CCPs (Critical Control Points)/preventive controls within our food safety plans.

But what factors should you focus on when deciding between different inspection systems? Product type, flow characteristics, particle size, density and blended components are important factors in foreign material detection. Typically, food manufacturers use metal and/or x-ray inspection for foreign material detection in food production as their CCP/preventive control. While both technologies are commonly used, there are reasons why x-ray inspection is becoming more popular. Foreign objects can vary in size and material, so a detection method like an x-ray that is based on density often provides the best performance.

Regardless of which detection system you choose, keep in mind that FSMA gives FDA the power to scientifically evaluate food safety programs and preventive controls implemented in a food production facility, so validation and verification are crucial elements of any detection system.

It is also important to remember that a key element of any validation system is the equipment validation process. This process ensures that your equipment operates properly and is appropriate for its intended use. This process consists of three steps: Installation qualification, operational qualification and performance qualification.

Installation qualification is the first step of the equipment validation process, designed to ensure that the instrument is properly installed, in a suitable environment free from interference. This process takes into consideration the necessary electrical requirements such as voltage and frequency ratings, as well as other factors related with the environment, such as temperature and humidity. These requirements are generally established by the manufacturer and can be found within the installation manual.

The second step is operational qualification. This ensures that the equipment will operate according to its technical specification. In order to achieve this, the general functions of the equipment must be tested within the specified range limits. Therefore, this step focuses on the overall functionality of the instrument.

The third and last step is the performance qualification, which is focused on providing documented evidence through specific tests that the instrument will performs according to the routine specifications. These requirements could be established by internal and industry standards.

Following these three steps will allow you to provide documented evidence that the equipment will perform adequately within the work environment and for the intended process. After completion of the equipment validation process, monitoring and verification procedures must be established to guarantee the correct operation of the instrument, as well procedures to address deviations and recordkeeping. This will help you effectively control the hazards identified within our operation.

There can be massive consequences if products contaminated with foreign material are purchased and consumed by the public. That’s why the development and implementation of a strong food safety/ HACCP plan, coupled with the selection and validation of your detection equipment, are so important. These steps are each key elements in protecting your customers and your brand.

Shawna Wagner, DNV GL
FST Soapbox

Pandemics and Your Business Continuity Plan

By Shawna Wagner
2 Comments
Shawna Wagner, DNV GL

Who would have even thought to put the topic of a pandemic in your business continuity plan? I know, I sure never thought of it, even as a senior auditor. I think that most of us are familiar with the typical subjects of tornados, floods, power outages and disgruntled employees, to name a few. We now need to focus on adding a pandemic to the to-do list of your plan, as this global issue has become a reality since early 2020.

It is quite likely that your plant has been affected by COVID-19 in some way, therefore your site has put into place actions to mitigate the risks posed by the pandemic. What may not be likely, is that any of these actions have been documented. I have currently seen plants evolve actions based on the severity of the pandemic in their locations. Travel restrictions, reduced work force, changing employee personal protective equipment, additional employee monitoring, and remote work environments are some of the examples directly affecting sites that I have witnessed during the first half of this year. As plants learn and experience more issues, they tend to adapt to how they are mitigating the risks in their facilities.

Capturing what actions went smoothly and what has gone astray will aid in strengthening your business continuity plan. Pandemics as well as other extraordinary events are handled by a multi-step approach that needs organization and good communication. That is why it is imperative to build and document actions, then verify how those steps are to be used. Involving key personnel–not just the quality manager–at the site is a best practice in getting a full grasp on what needs to happen during an emergency. In several instances, I have witnessed that key personnel are not informed about where a site’s business continuity plan is located; or the plan was updated right before an audit and after goes back on the shelf for the next 12 months, collecting dust. Employees should be trained on the contents of the plan, their responsibilities (if they are part of the business continuity team), current contacts, updates, and ways to initiate proper channels, if or when a time comes to do so. Hopefully, it never does, but it sure does not hurt to be prepared.

The business continuity plan is not a “one-size-fits-all” approach for plants. An important consideration, when defining what actions to take, if your area has been plagued by a pandemic includes determining what risks are brought by employees, visitors (i.e., contractors), location, and type of product being produced. Plant A making a high-risk open product may implement additional hand washing and sanitation, whereas Plant B making a low-risk closed product may implement additional health screening (i.e., temperature checks) for employees. You should ensure that it makes sense, and it is beneficial for your site and your interested parties, such as customers, consumers and stakeholders.

Your business continuity plan should be built to be a great resource to you in the time of need. And in return, you will have to put some elbow grease into shaping the document in a way that fits the ever-changing food environment. Keeping your plant current will assist your business to quickly respond to a negative event. In consequence, not having a plan that works for your site, or any at all, could lead to closed doors.

LIMS, Laboratory information management system, food safety

How Advanced LIMS Brings Control, Consistency and Compliance to Food Safety

By Ed Ingalls
No Comments
LIMS, Laboratory information management system, food safety

Recent food scandals around the world have generated strong public concerns about the safety of the foods being consumed. Severe threats to food safety exist at all stages of the supply chain in the form of physical, chemical and biological contaminants. The current pandemic has escalated the public’s concern about cross contamination between people and food products and packaging. To eliminate food risks, manufacturers need robust technologies that allow for reliable monitoring of key contaminants, while also facilitating compliance with the ISO 17025 standard to prove the technical competence of food testing laboratories.

Without effective data and process management, manufacturers risk erroneous information, compromised product quality and regulatory noncompliance. In this article, we discuss how implementing a LIMS platform enables food manufacturers to meet regulatory requirements and ensure consumer confidence in their products.

Safeguarding Food Quality to Meet Industry Standards

Food testing laboratories are continually updated about foodborne illnesses making headlines. In addition to bacterial contamination in perishable foods and ingredient adulteration for economic gains, chemical contamination is also on the rise due to increased pesticide use. Whether it is Salmonella-contaminated peanut butter or undeclared horsemeat inside beef, each food-related scandal is a strong reminder of the importance of safeguarding food quality.

Food safety requires both preventive activities as well as food quality testing against set quality standards. Establishing standardized systems that address both food safety and quality makes it easier for manufacturers to comply with regulatory requirements, ultimately ensuring the food is safe for public consumption.

In response to food safety concerns, governing bodies have strengthened regulations. Food manufacturers are now required to ensure bacteria, drug residues and contaminant levels fall within published acceptable limits. In 2017, the ISO 17025 standard was updated to provide a risk-based approach, with an increased focus on information technology, such as the use of software systems and maintaining electronic records.

The FDA issued a notice that by February 2022, food testing, in certain circumstances, must be conducted in compliance with the ISO 17025 standard. This means that laboratories performing food safety testing will need to implement processes and systems to achieve and maintain compliance with the standard, confirming the competence, impartiality and consistent operation of the laboratory.

To meet the ISO 17025 standard, food testing laboratories will need a powerful LIMS platform that integrates into existing workflows and is built to drive and demonstrate compliance.

From Hazard Analysis to Record-Keeping: A Data-Led Approach

Incorporating LIMS into the entire workflow at a food manufacturing facility enables the standardization of processes across its laboratories. Laboratories can seamlessly integrate analytical and quality control workflows. Modern LIMS platforms provide out-of-the-box compliance options to set up food safety and quality control requirements as a preconfigured workflow.

The requirements set by the ISO 17025 standard build upon the critical points for food safety outlined in the Hazard Analysis and Critical Control Points (HACCP) methodology. HACCP, a risk-based safety management procedure, requires food manufacturers to identify, evaluate and address all risks associated with food safety.

LIMS, laboratory information management system
LIMS can be used to visualize control points for HACCP analysis according to set limits. Graphic courtesy of Thermo Fisher Scientific.

The systematic HACCP approach involves seven core principles to control food safety hazards. Each of the following seven principles can be directly addressed using LIMS:

  • Principle 1. Conduct a hazard analysis: Using current and previous data, food safety risks are thoroughly assessed.
  • Principle 2. Determine the critical control points (CCPs): Each CCP can be entered into LIMS with contamination grades assigned.
  • Principle 3. Establish critical limits: Based on each CCP specification, analytical critical limits can be set in LIMS.
  • Principle 4. Establish monitoring procedures: By defining sampling schedules in LIMS and setting other parameters, such as frequency and data visualization, procedures can be closely monitored.
  • Principle 5. Establish corrective actions: LIMS identifies and reports incidents to drive corrective action. It also enables traceability of contamination and maintains audit trails to review the process.
  • Principle 6. Establish verification procedures: LIMS verifies procedures and preventive measures at the defined CCPs.
  • Principle 7. Establish record-keeping and documentation procedures: All data, processes, instrument reports and user details remain secured in LIMS. This information can never be lost or misplaced.

As food manufacturers enforce the safety standards set by HACCP, the process can generate thousands of data points per day. The collected data is only as useful as the system that manages it. Having LIMS manage the laboratory data automates the flow of quality data and simplifies product release.

How LIMS Enable Clear Compliance and Optimal Control

Modern LIMS platforms are built to comply with ISO 17025. Preconfigured processes include instrument and equipment calibration and maintenance management, traceability, record-keeping, validation and reporting, and enable laboratories to achieve compliance, standardize workflows and streamline data management.

The workflow-based functionality in LIMS allows researchers to map laboratory processes, automate decisions and actions based on set criteria, and reduce user intervention. LIMS validate protocols and maintain traceable data records with a clear audit history to remain compliant. Data workflows in LIMS preserve data integrity and provide records, according to the ALCOA+ principles. This framework ensures the data is Attributable, Legible, Contemporaneous, Original and Accurate (ALCOA) as well as complete, consistent and enduring. While the FDA created ALCOA+ for pharmaceutical drug manufacturers, these same principles can be applied to food manufacturers.

Environmental monitoring and quality control (QC) samples can be managed using LIMS and associated with the final product. To plan environmental monitoring, CCPs can be set up in the LIMS for specific locations, such as plants, rooms and laboratories, and the related samples can then be added to the test schedule. Each sample entering the LIMS is associated with the CCP test limits defined in the specification.

Near real-time data visualization and reporting tools can simplify hazard analysis. Managers can display information in different formats to monitor critical points in a process, flag unexpected or out-of-trend numbers, and immediately take corrective action to mitigate the error, meeting the requirements of Principles 4 and 5 of HACCP. LIMS dashboards can be optimized by product and facility to provide visibility into the complete process.

Rules that control sampling procedures are preconfigured in the LIMS along with specific testing rules based on the supplier. If a process is trending out of control, the system will notify laboratory personnel before the product fails specification. If required, incidents can be raised in the LIMS software to track the investigation of the issue while key performance indicators are used to track the overall laboratory performance.

Tasks that were once performed manually, such as maintaining staff training records or equipment calibration schedules, can now be managed directly in LIMS. Using LIMS, analysts can manage instrument maintenance down to its individual component parts. System alerts also ensure timely recalibration and regular servicing to maintain compliance without system downtime or unplanned interruptions. The system can prevent users from executing tests without the proper training records or if the instrument is due for calibration or maintenance work. Operators can approve and sign documents electronically, maintaining a permanent record, according to Principle 7 of HACCP.

LIMS allow seamless collaboration between teams spread across different locations. For instance, users from any facility or even internationally can securely use system dashboards and generate reports. When final testing is complete, Certificates of Analysis (CoAs) can be autogenerated with final results and showing that the product met specifications. All activities in the system are tracked and stored in the audit trail.

With features designed to address the HACCP principles and meet the ISO 17025 compliance requirements, modern LIMS enable manufacturers to optimize workflows and maintain traceability from individual batches of raw materials all the way through to the finished product.

Conclusion

To maintain the highest food quality and safeguard consumer health, laboratories need reliable data management systems. By complying with the ISO 17025 standard before the upcoming mandate by the FDA, food testing laboratories can ensure data integrity and effective process management. LIMS platforms provide laboratories with integrated workflows, automated procedures and electronic record-keeping, making the whole process more efficient and productive.

With even the slightest oversight, food manufacturers not only risk product recalls and lost revenue, but also losing the consumers’ trust. By upholding data integrity, LIMS play an important role in ensuring food safety and quality.

Daniel Erickson, ProcessPro
FST Soapbox

Recall Risk Reduction: An ERP’s Role

By Daniel Erickson
No Comments
Daniel Erickson, ProcessPro

Consumer safety is of paramount importance and product recalls are a necessary means to this end. Product recalls are a serious, complex, and costly issue affecting the food and beverage industry in the United States. The FDA estimates that there are around 48 million cases of foodborne illness each year—causing one in six Americans to get sick from contaminated food. In addition to affecting public health, recalls have a dramatic effect on manufacturers by creating economic problems, damaging a company’s reputation, and imposing potential legal penalties and liabilities. In the search for a business management solution to better prepare themselves for and reduce the risk of recalls in their operations, many food manufacturers have discovered that technology, specifically ERP software, is key to lowering the risk of food and beverage product recalls.

An industry-specific ERP solution is a centralized business system with key industry features providing a system of record-keeping, with the tools to support the preparation and reduction of recall risks. While a manufacturer is ultimately responsible for a product recall, an ERP solution is essential in supporting and championing overall recall readiness and reduction. With the streamlined and automated inventory, manufacturing, and quality control processes managed within the software, critical steps and data that assist in recall mitigation are documented—including supplier verification records, audit logs, receipt records, quality testing, lot tracking, and shipment logs. The key to prevention of a product recall is preparation, which can be handled efficiently through an ERP’s functionality specifically in the following areas.

Supplier Management

An ERP facilitates best practices for supplier management and risk assessment within the solution to assure the acquisition of quality raw materials from trusted vendors. Its role is to maintain an approved supplier list for each product ingredient, documenting detailed supplier information, quality control test results, and risk level to ensure in-house and customer-specific standards are met. For approved or activated suppliers, information regarding materials that can be purchased through the vendor, applicable certifications, quality control results, and other pertinent supplier information is stored within the centralized data system of the ERP. A risk assessment for each vendor is also documented to ensure that any potential inherent risk(s) from vendor-issued recalls and to finished goods are limited.

In addition to activated suppliers, an ERP solution also assigns and manages qualified alternates to provide vetted selections should a primary supplier’s materials become unavailable. This positions a company well in the supply chain, as the investigative work has already been conducted on other suppliers, limiting the need and risk associated with onboarding an unknown supplier in a moment of crisis. Vendors are recorded within the system and ranked in order of preference and/or risk level so that they can be identified and put into use quickly if a supplier becomes unavailable—providing the preparation and leverage that companies need to mitigate the risk to safety in the supply chain. In a product recall situation, when a supplier notifies a customer of a contaminated ingredient, the supplier management feature within the ERP solution provides for a qualified replacement vendor that can fulfill the needed raw material quickly and efficiently.

Inventory Control

An ERP system offers end-to-end traceability, maintaining a comprehensive record that tracks raw ingredients, work-in-progress, and final products throughout the supply chain using barcode scanning to link product and lot information to batch tickets, QC testing results, shipping documents, and labels. This full forward and backward lot traceability is necessary to provide a documented audit trail imperative to locating raw materials or finished goods quickly within the initial 24-hour time period of a product recall. With full manufacturing, inventory, and reporting integrations, the ERP supports sound manufacturing practices that assist with recall preparedness – maintaining current Good Manufacturing Practices (cGMP), FDA reporting, GFSI compliance, and other industry-specific regulations to provide a documented audit trail with the ability to adapt as compliance requirements change.

Managing protocols to ensure the quality of inbound and outbound materials is essential in minimizing recall risk across the entire supply chain—from raw materials to the delivered final product. With an industry-specific ERP solution, formulas, recipes and instructions are maintained, scaled and verified to ensure consistency of products within the manufacturing process. This instills preventative measures throughout the production cycle in the form of process steps and quality control test specifications to bolster safety and quality. Quality features such as quarantine status and other status capabilities permit the isolating, removing and disposing of raw ingredients and finished goods that fail to meet quality control standards—triggering an alert to notify the purchasing department to investigate the issue. Having the ability to remove ingredients and finished goods from inventory or production prevents contaminated items from reaching store shelves and consumers, which reduces overall recall risk.

Inventory control practices are an important part of the functionality within an ERP solution that help to reduce overall recall risk. This includes managing and reporting of shelf life and expiration dates to maintain precise and lean control of inventory and reduce variances. Automated inventory transactions with the use of an ERP’s warehouse management solution (WMS) follow industry best practices and improve efficiency to ensure the accuracy of shipments, transfers, and material returns. This real-time visibility allows for the maintenance of FIFO inventory practices necessary to reduce the risk of spoilage.

One of the leading causes of contamination for food and beverage manufacturers that results in a recall event is a lack of allergen control throughout the supply chain and production process. An ERP system helps to track, manage and record the handling, storage and batch steps of raw materials from farm-to-fork. This includes stringent sanitary practices, lot tracking, raw material segregation and process controls to avoid allergen contamination or cross-contamination. Accurate product labeling is also a significant factor in reducing risk and an automated system that generates nutritional and product package labels plays a key role in a company’s recall prevention. To meet the needs of consumers and regulators, an ERP solution automates label creation to include accurate ingredient and allergen statements, nutrient analysis, expiration dates, lot and batch numbers, and regulatory specifications. The labeling history documented in the software allows products to be identified and located quickly in the event of a recall.

Reporting

Utilizing the recall functionality in the ERP solution allows companies to plan and test their recall process in advance. Performing mock recalls permits regular measurement and improvement of procedures to ensure rapid, accurate, and thorough responses by all company stakeholders in the event of a recall. A successful simulated exercise identifies 100% of recalled ingredients/products and notifies appropriate entities in a timely manner. Evaluation and documentation of mock recall exercises help expose inefficiencies, process gaps and procedural adjustments, which are designed to improve recall readiness and minimize consumer exposure to potentially dangerous contaminants.

As proof or documentation of adherence to specific processes, reporting is essential to demonstrate that these processes have been completed—without it, an integral component is missing. Across the supply chain and throughout the manufacturing process, documentation and reporting accentuate steps that have been taken to prepare and reduce recall risk. Risk-based assessments in supplier management, lot traceability reports, and mock recall reporting all provide a starting point of analysis to allow for adjustments to be made across the business. In a recall situation, the system is able to create lot tracking reports that encompass raw ingredients through shipped finished goods. These reports can be produced in minutes, rather than the hours it takes if data is stored within separate software programs.

Due to the amount of time and money that food and beverage companies invest in getting their products to market, it is imperative that preventative measures are taken in order to avoid a product recall. Forward-thinking manufacturers can help prepare for and reduce recall risks by utilizing several important features in ERP software—including supplier management, inventory control, and reporting. Using the tools at their disposal, a company can mitigate liabilities and protect their brand to turn a potential crisis into a future filled with opportunities.

Are Traasdahl, Crisp
FST Soapbox

How a History of Slow Technology Adoption Across Food Supply Chains Nearly Broke Us

By Are Traasdahl
1 Comment
Are Traasdahl, Crisp

The COVID-19 crisis has exacerbated existing disconnects between food supply and demand. While some may be noticing these issues on a broader scale for the first time, the reality is that there have been challenges in our food supply chains for decades. A lack of accurate data and information sharing is the core of the problem and had greater impact due to the pandemic. Outdated technologies are preventing advancements and efficiencies, resulting in the paradox of mounting food insecurity and food waste.

To bridge this disconnect, the food industry needs to implement innovative AI and machine learning technologies to prevent shortages, overages and waste as COVID-19 subsides. Solutions that enable data sharing and collaboration are essential to build more resilient food supply chains for the future.

Data-sharing technologies that can help alleviate these problems have been under development for decades, but food supply chains have been slow to innovate compared to other industries. By reviewing the top four data-sharing technologies used in food industry and the year they were introduced to food supply chains, it’s evident that the pace of technology innovation and adoption needs to accelerate to advance the industry.

A History of Technology Adoption in the Food Industry

The Barcode – 19741
We’re all familiar with the barcode—that assemblage of lines translated into numbers and letters conveying information about a product. When a cashier scans a barcode, the correct price pops up on the POS, and the sale data is recorded for inventory management. Barcodes are inexpensive and easy to implement. However, they only provide basic information, such as a product’s name, type, and price. Also, while you can glean information from a barcode, you can’t change it or add information to it. In addition, barcodes only group products by category—as opposed to radio-frequency identification (RFID), which provides a different code for every single item.

EDI First Multi-Industry Standards – 19812
Electronic data interchange (EDI) is just what it sounds like—the concept of sharing information electronically instead of on paper. Since EDI standardizes documents and the way they’re transferred, communication between business partners along the supply chain is easier, more efficient, and human error is reduced. To share information via EDI, however, software is required. This software can be challenging for businesses to implement and requires IT expertise to handle updates and maintenance.

RFID in the Food Supply Chain – 20033
RFID and RFID tags are encoded with information that can be transmitted to a reader device via radio waves, allowing businesses to identify and track products and assets. The reader device translates the radio waves into usable data, which then lands in a database for tracking and analysis.

RFID tags hold a lot more data than barcodes—and data is accessible in remote locations and easily shared along the supply chain to boost transparency and trust. Unlike barcode scanners, which need a direct line of sight to a code, RFID readers can read multiple tags at once from any direction. Businesses can use RFID to track products from producer to supplier to retailer in real time.

In 2003, Walmart rolled out a pilot program requiring 100 of its suppliers to use RFID technology by 2005.3 However, the retail giant wasn’t able to scale up the program. While prices have dropped from 35–40 cents during Walmart’s pilot to just 5 cents each as of 2018, RFID tags are still more expensive than barcodes.4 They can also be harder to implement and configure. Since active tags have such a long reach, businesses also need to ensure that scammers can’t intercept sensitive data.

Blockchain – 20175
A blockchain is a digital ledger of blocks (records) used to record data across multiple transactions. Changes are recorded in real-time, making the history unfalsifiable and transparent. Along the food supply chain, users can tag food, materials, compliance certificates and more with a set of information that’s recorded on the blockchain. Partners can easily follow the item through the physical supply chain, and new information is recorded in real-time.

Blockchain is more secure and transparent, less vulnerable to fraud, and more scalable than technologies like RFID. When paired with embedded sensors and RFID tags, the tech offers easier record-keeping and better provenance tracking, so it can address and help solve traceability problems. Blockchain boosts trust by reducing food falsification and decreasing delays in the supply chain.6

On the negative side, the cost of transaction processing with blockchain is high. Not to mention, the technology is confusing to many, which hinders adoption. Finally, while more transparency is good news, there’s such a thing as too much transparency; there needs to be a balance, so competitors don’t have too much access to sensitive data.

Cloud-Based Demand Forecasting – 2019 to present7
Cloud-based demand forecasting uses machine learning and AI to predict demand for various products at different points in the food supply chain. This technology leverages other technologies on this list to enhance communication across supply chain partners and improve the accuracy of demand forecasting, resulting in less waste and more profit for the food industry. It enables huge volumes of data to be used to predict demand, including past buying patterns, market changes, weather, events and holidays, social media input and more to create a more accurate picture of demand.

The alternative to cloud-based demand forecasting that is still in use today involves Excel or manual spreadsheets and lots of number crunching, which are time-intensive and prone to human error. This manual approach is not a sustainable process, but AI, machine learning and automation can step in to resolve these issues.

Obtaining real-time insights from a centralized, accurate and accessible data source enables food suppliers, brokers, distributors, brands and retailers to share information and be nimble, improving their ability to adjust supply in response to factors influencing demand.8 This, in turn, reduces cost, time and food waste, since brands can accurately predict how much to produce down to the individual SKU level, where to send it and even what factors might impact it along the way.

Speeding Up Adoption

As illustrated in Figure 1, the pace of technology change in the food industry has been slow compared to other industries, such as music and telecommunications. But we now have the tools, the data and the brainpower to create more resilient food supply chains.

Technology adoption, food industry
Figure 1. The pace of technology change in the food industry has been slow compared to other industries. Figure courtesy of Crisp.

Given the inherent connectivity of partners in the food supply chain, we now need to work together to connect information systems in ways that give us the insights needed to deliver exactly the rights foods to the right places, at the right time. This will not only improve consumer satisfaction but will also protect revenue and margins up and down food supply chains and reduce global waste.

References

  1. Weightman, G. (2015). The History of the Bar Code. Smithsonian Magazine.
  2. Locken, S. (2012). History of EDI Technology. EDI Alliance.
  3. Markoff, R, Seifert, R. (2019). RFID: Yesterday’s blockchain. International Institute for Management Development.
  4. Wollenhaupt, G. (2018). What’s next for RFID? Supply Chain Dive.
  5. Tran, S. (2019). IBM Food Trust: Cutting Through the Complexity of the World’s Food Supply with Blockchain. Blockchain News.
  6. Galvez, J, Mejuto, J.C., Simal-Gandara, J. (2018). Future Challenge on the use of blockchain for food traceability analysis. Science Direct.
  7. (2019). Crisp launches with $14.2 million to cut food waste using big data. Venture Beat.
  8. Dixie, G. (2005). The Impact of Supply and Demand. Marketing Extension Guide.
Jason Chester, InfinityQS
FST Soapbox

Digital Revolution: Empowering the Remote Workforce and Resilience Post-COVID-19

By Jason Chester
No Comments
Jason Chester, InfinityQS

Around the world, countries are beginning to take tentative steps toward a return to normalcy following months of stay-at-home mandates and other restrictions in light of COVID-19. Slowly, we’re starting to see employees return to their offices, retail stores open their doors, and restaurants welcome back patrons. However, many will find themselves in a world dramatically different from the one they left before quarantine.

Namely, on top of social distancing and disinfection measures to control further spread of the virus, entire industries are re-examining their legacy processes and systems—especially ones that presented operational challenges at the pandemic’s outbreak—the food manufacturing industry included.

In truth, food manufacturers have gone to great lengths to maintain productivity and output to meet demand throughout the pandemic. But they have done so in the face of unprecedented circumstances, with many plants operating with limited workforces and key employees like quality professionals and plant managers shifted to remote work. Lacking connectivity between those on the plant floor and at home due to long-held manual processes, a growing number of manufacturers must now take a hard look at their quality and safety programs and embrace digital tools.

A Wake-Up Call for Digital Transformation

Most technological investments in food manufacturing over the past several decades have centered on electro-mechanical automation designed to scale up the physical production process. Fewer investments, however, have been made on the equally important data-driven, decision-making process necessary for ensuring optimal performance, food quality and safety.

Even in the most heavily automated plants, it’s not uncommon to find manufacturers managing quality through manually updated spreadsheets, which are often only reviewed after the fact, when it’s too late for remedial correction. There are unfortunately also those who still rely on paper checklists, making it practically impossible to take proactive action on collected process data—much less get the information in front of remote quality professionals and managers. Meanwhile, others have gone as far as adopting software solutions for quality data management and process control, but these tend to be on-premises systems that employees can’t access outside of the four walls of the plant.

We have also seen many examples where, due to workforce restrictions and availability, employees from other parts of the manufacturing business (e.g., R&D, IT, and back-office teams) have been brought in to perform plant-floor activities like quality and food safety checks. The goal has been to prevent impediments to production output, just when demand has increased substantially. But ensuring that these employees perform the checks on time and in the correct way—with little time for training or coaching—has left many plant leaders in a precarious position.

The challenges seen with these capabilities and enabling geographically dispersed teams to work together through the pandemic have been a wake-up call of sorts for digital transformation. Manufacturers are coming to the realization that they’ll need data accessibility, actionability and adaptability along the road to recovery and in the post-COVID-19 world. And with social distancing and other workplace precautions expected to continue for the foreseeable future, the imperative is all the more urgent.

The Solution Lies in the Cloud

To digitally transform quality and safety programs today, food manufacturers should prioritize investment in the cloud. Notably, cloud-based quality management systems offer a way to standardize and centralize critical process information, as well as tools to empower employees at all levels of the enterprise.

For plant-floor operators struggling to keep up on account of reduced workforce sizes, such solutions can automate routine yet important activities for quality assurance, including data collection, process monitoring and reporting. If a team member needs to cover a different shift or unfamiliar task, role-based dashboards can help them to see required actions, while process workflows can provide guidance to ensure proper steps are taken even with a limited workforce. Further, automated alerts can provide timely notifications of any issues—whether it be a missed data collection or an actual food quality or safety concern present in the data.

Perhaps most importantly during the pandemic and for the post-COVID-19 world, the cloud makes critical quality data instantly and easily accessible from anywhere, at any time. Quality professionals, plant managers, and other decision-makers can continue to monitor and analyze real-time process data, as well as observe performance trends to prevent issues from escalating—all safely from home.

The scalability of cloud-based solutions also streamlines deployment so organizations can rapidly implement and standardize on a single system across multiple lines and sites. In doing so, it becomes possible to run cross-plant analyses to identify opportunities for widescale process improvement and align best practices for optimal quality control at all sites. This ability to understand what’s happening in production—through real-time data—to enact agile, real-world change is a hallmark of successful digital transformation.

An Investment for Whatever the Future Holds

Ultimately, investments in secure cloud-based quality management and the broader digital transformation of manufacturing operations are investments in not only perseverance during the pandemic, but also resilience for the future. Food producers and manufacturers who can readily access and make informed decisions from their data will be the ones best equipped to pivot and adjust operations in times of disruption and uncertainty. And while it’s unclear what the future holds for the world, the food industry, and COVID-19, it’s safe to say we likely won’t see a full return to normalcy but the emergence of a new—and in many ways better—normal, born out of digital solutions and smarter ways of thinking about quality data collection and monitoring.

Melanie Neumann, Neumann Risk Services
FST Soapbox

The COVID-19 Record Retention Conundrum

By Melanie J. Neumann
2 Comments
Melanie Neumann, Neumann Risk Services

During this global pandemic, the U.S. Equal Employment Opportunity Commission (EEOC) green-lighted employers to take temperatures checks of employees and to administer COVID-19 testing for workers prior to returning to work without running afoul of the Americans with Disabilities Act (ADA). This appears straight-forward upon first reading, however, several practical uncertainties about implementation, including confidentiality, discrimination, and how long to retain records remain.

As such, deciding whether to take temperatures and/or require COVID- 19 testing as a return to work strategy is more complicated than it may seem.

Temperature Screening & Testing Considerations

Temperature screening and COVID-19 mandatory testing are both permitted medical examinations during this pandemic but are otherwise prohibited during non-pandemic times. Before adopting, employers should understand the requirements impacting the records these tests generate, including the need to protect confidentiality and to retain records for longer than one may expect.

Temperature Screens
Under normal circumstances, temperature checks are considered a prohibited medical examination under the ADA. During a pandemic, however, the Equal Employment Opportunity Commission (“EEOC”) makes an exception, allowing employers to take temperatures/use temperature checks and exclude employees from the workplace should temperatures exceed public health recommendations. If employers keep records of temperatures, they must retain these records per applicable regulations. This is important because an “employee medical record” would likely result if employers take employees’ temperatures or collect temperature related records. As we will see below, there are regulatory requirements that require how we conduct these screens, and where and for how long we must retain them.

COVID-19 Testing

COVID-19 testing also constitutes a permissible medical exam under ADA during this pandemic, per the EEOC-issued guidance regarding mandatory employee testing.

For medical examinations to be allowed under the ADA, the test must be “job related and consistent with business necessity,” and employers must treat information as a confidential medical exam.

The initial guidance acknowledged that the spread of COVID-19 is a “direct threat,” hence meeting the requirement that a medical exam be “job related and consistent with business necessity” and that temperature screenings were therefore appropriate. For the same reasons, in updated guidance released at the end of April 2020, the EEOC expanded that guidance to clarify that employers may choose to administer COVID-19 testing to employees before they enter the workplace to determine if they have the virus for the same reasons.

When reading the EEOC’s language closely, the permission granted by EEOC appears to be for diagnostic tests, as the guidance states testing is to determine if employees have the virus before allowing employees to return to work. It is unclear whether antibody testing is included in the above analysis because antibody tests do not determine if someone is currently infected.

In addition, there are other considerations employers should assess before adopting a testing protocol. EEOC reminds employers that they must review the accuracy and efficacy of the selected test per FDA and CDC recommendations. Moreover, pragmatic considerations, such as how to maintain social distancing and employee privacy, determining who will perform the testing and at what the frequency, not to mention evaluating whether there is enough test capacity to perform employee-wide testing at a meaningful cadence should be evaluated.

Records Management & Retention

There is another often over-looked question: What do employers do with documented test records? This question applies whether the employer conducts the test, requires tests from employee’s healthcare providers to be off work to self-isolate, or as a return to work requirement.

It was clearly outlined above that temperature records and COVID-19 test records constitute employee medical records. Why is this important? Because there are specific requirements relating to employee medical records, including what appears to be a surprisingly long retention requirement.

Where to retain: An employer should store all medical information related to COVID-19 in existing medical files, separate from the employee’s personnel file, per the ADA, limiting access to this employee confidential information. This includes an employee’s statement that he has COVID-19 or suspects he/she has the disease, or the employer’s notes or other documentation from questioning an employee about symptoms.

How long to retain: That is the 30-year question. The Department of Labor’s Occupational Safety and Health Agency (OSHA) provides retention requirements for employee medical records in certain situations for a period of an employee’s employment plus 30 years.

While COVID-19 test results and temperature screening documentation are deemed medical examinations under the applicable regulations, are the documented results deemed medical records? We turn to applicable EEOC OSHA regulations in section 1910.1020 for answers.

OSHA Requirements

The OSHA general duty clause, section 5(a)(1) requires employers to furnish to each of its employees a workplace free from recognized hazards that are causing or likely to cause death or serious physical harm. COVID-19 appears to rise to this threat level. But is that fact alone dispositive to falling under the applicable OSHA retention requirements?

OSHA regulation section 1910.1020 requires employers to retain employee exposure or employee medical records relating to employee exposure to certain hazards. This section applies to each general industry, maritime and construction employer who makes, maintains, contracts for, or has access to employee exposure or medical records, or analyses thereof, pertaining to employees exposed to toxic substances or harmful physical agents (Emphasis added).

Is SARS-CoV-2, the virus that causes COVID-19, considered a “toxic substance or harmful physical agent?”

Most would quickly assume the answer is ‘yes’. But it may not be as clear as the black and white letter of the law would hope. Let’s review some key definitions in the applicable regulation to help shed more light on this question.

What are Toxic Substances or Harmful Physical Agents?

The record retention requirement pivots on the last phrase of 1910.1020, that is “…pertaining to employees exposed to toxic substances or harmful physical agents.”

Toxic substances or harmful physical agents are defined as follows;

  • 1910.1020(c)(13) “Toxic substance or harmful physical agent” means any chemical substance, biological agent (bacteria, virus, fungus, etc.), or physical stress (noise, heat, cold, vibration, repetitive motion, ionizing and non-ionizing radiation, hypo – or hyperbaric pressure, etc.) which:
    • 1910.1020(c)(13)(i) is listed in the latest printed edition of the National Institute for Occupational Safety and Health (NIOSH) Registry of Toxic Effects of Chemical Substances (RTECS) which is incorporated by reference as specified in Sec. 1910.6; or
    • 1910.1020(c)(13)(ii) has yielded positive evidence of an acute or chronic health hazard in testing conducted by, or known to, the employer; or
    • 1910.1020(c)(13)(iii) is the subject of a material safety data sheet kept by or known to the employer indicating that the material may pose a hazard to human health. (Emphasis added by author).

The use of “or” clarifies that only one of the criteria need to be met. Based on the above, while subsections (c)(13)(i) and (c)(13)(iii) do not appear relevant, subsection (c)(13)(ii) appears to apply as SARS-CoV-2 has shown to result in acute health hazard, resulting in the disease COVID-19. Whether there is a chronic health impact remains to be seen given the novelty of this virus. That said, acute health impact appears sufficient to determine SARS-CoV-2 as a “toxic substance or harmful physical agent” for purposes of this analysis.

This alone doesn’t automatically place an employer in a 30-plus year requirement to retain employee medical records. What constitutes an “employee medical record” and “employee exposure record” for purposes of this regulation must be further understood before determining appropriate retention.

What are Employee Medical Records and Employee Exposure Records?

“Employee medical records” are defined in section 1910.1020(c)(6), and means a record concerning the health status of an employee that is made or maintained by a physician, nurse or other healthcare personnel, or technician, including: Medical and employment questionnaires or histories, the results of medical exams, lab test results, medical opinions/doctor’s recommendations, first aid records, employee medical complaints, and descriptions of treatment or prescriptions.

Section 1910.1020(d)(1)(i) goes on to specifically prescribes a minimum of a 30-plus year retention period as follows: “The medical record for each employee shall be preserved and maintained for at least the duration of employment plus thirty (30) years.”

“Employee exposure records,” are defined in subsection 1910.1020(d)(1)(ii), as: “Each employee exposure record shall be preserved and maintained for at least thirty (30) years,…”. Some exceptions are listed in this subsection for records relating to health insurance claims, first aid records and records relating to employees working less than one year.

What Constitutes Employee Exposure?

One must also look at what “employee exposure” means in light of this regulatory requirement to determine applicability of the 30-plus year retention.

1910.1020(c)(8) defines “exposure” or “exposed” to mean that an employee is subjected to a toxic substance or harmful physical agent in the course of employment through any route of entry (inhalation, ingestion, skin contact or absorption, etc.), and includes past exposure and potential (e.g., accidental or possible) exposure, but does not include situations where the employer can demonstrate that the toxic substance or harmful physical agent is not used, handled, stored, generated, or present in the workplace in any manner different from typical non-occupational situations.

More Questions than Answers

This analysis may leave more questions than answers, as several questions remain after looking closely at the regulatory requirements. For example:

  • How can an employee prove that exposure to SARS-CoV-2 occurred in the course of employment?
  • Does the employee even have to? The regulation clearly states that it is the employer’s burden, in that the “employer demonstrate that a toxic substance or harmful physical agent was not present in the workplace in any manner different from typical, non-occupational situations”.
  • How can an “employer demonstrate” that the harmful physical agent was not present? In other words, how can employers demonstrate that its employees are at any greater exposure by coming to work than they are in their every day lives, like going to the grocery store?
  • How do employers prove absence? Is it even possible given several people are asymptomatic?
  • Does this analysis differ by food industry sectors? What about meat and poultry processors with known high rates of infection in their workplace? Would the analysis differ?

Conclusion

Short of additional guidance issued by Department of Labor’s OSHA, ultimately this will likely be decided by the courts when the first lawsuit on this topic arises, known as decision via case law. What do employers do in the interim while these shades of gray are not yet adjudicated? It is recommended to err on the side of caution. Find ways to adjust your company’s record retention procedures and systems to be able to accurately retain these records for the duration of your employee’s employment plus 30 years.

Resources

  1. OSHA Laws & Regulations. OSH Act of 1970. SEC 5. Duties. Retrieved from https://www.osha.gov/laws-regs/oshact/section5-duties
  2. OSHA Standards. Part 1910, Standard 1910.1020. Retrieved from https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.1020
  3. OSHA. Access to Medical and Exposure Records. (2001). U.S. Department of Labor, OSHA. Retrieved from https://www.osha.gov/Publications/pub3110text.html
  4.  U.S. Equal Employment Opportunity Commission. “What You Should Know About COVID-19 and the ADA, the Rehabilitation Act, and Other EEO Laws”. (Updated May 7, 2020). Retrieved from https://www.eeoc.gov/wysk/what-you-should-know-about-covid-19-and-ada-rehabilitation-act-and-other-eeo-laws. See A. 6 and B.1.