Tag Archives: E. coli

FDA

FDA Publishes Report on Fall 2020 E. Coli Outbreak in Leafy Greens

By Food Safety Tech Staff
No Comments
FDA

Today the FDA released a report on its investigation into the E. coli O157:H7 outbreak involving leafy greens during the Fall 2020. The report also identified three reoccurring trends in the contamination of leafy greens grown in the Central Coast of California related to the outbreak strain, region and issues with activities on adjacent land.

In January, FDA released preliminary findings, which linked cattle feces to the outbreak strain—located uphill from where contaminated leafy greens were grown.

“In the investigation, the FDA recommends that growers of leafy greens in the California Central Coast Growing Region consider this reoccurring E. coli strain a reasonably foreseeable hazard, and specifically of concern in the South Monterey County area of the Salinas Valley,” stated Frank Yiannas, deputy commissioner for food policy and response, in an agency news release. “It is important to note that farms covered by the Food Safety Modernization Act (FSMA) Produce Safety Rule are required to implement science and risk-based preventive measures in the rule, which includes practices that prevent the introduction of known or reasonably foreseeable hazards into or onto produce.”

The 2021 Food Safety Consortium Virtual Conference Series kicks off on May 6 with a keynote address from Frank Yiannas, deputy commissioner of food policy and response at FDA The FDA also recommends that the region’s agricultural community work to determine where the reoccurring strain of the pathogenic E. coli is persisting, along with the probable contamination route(s).

“Although the FDA is keenly focused on taking steps to help mitigate recurring leafy green contamination events, we alone cannot fix this issue. Industry leadership and collaboration among growers, processors, retailers, state partners and the broader agricultural community is critical to reducing foodborne illnesses,” Yiannas stated. “At the FDA, the safety of leafy greens remains a top priority, and we are committed to working with all stakeholders to address this significant public health issue and further protect consumers.”

The Report, “Factors Potentially Contributing to the Contamination of Leafy Greens Implicated in the Fall 2020 Outbreak of E. coli O157:H7”, can be downloaded from FDA’s website.

Deane Falcone, CropOne
FST Soapbox

E. Coli on the Rise: Lettuce Explain

By Deane Falcone, Ph.D.
No Comments
Deane Falcone, CropOne

The CDC estimates that 48 million people in the United States become sick with a foodborne illness each year. Some of the most common of these illnesses include norovirus, Salmonella, and E. coli. Each can result in a range of symptoms, from mild discomfort to serious, life-threatening illnesses. Although the coronavirus pandemic has worked to create a sense of heightened public health awareness, one of these common, yet preventable, foodborne illnesses—E. coli—is still on the rise.

What Is E. coli and How Common Are Infections?

According to the CDC, Escherichia coli (E. coli) are a large and diverse group of bacteria found in the environment, foods, and intestines of people and animals. Most strains of the bacteria are harmless, but certain ones can make you sick, causing diarrhea, urinary tract infections, respiratory illness and pneumonia, or other illnesses.

When it comes to understanding the scale of the problem, upwards of 70,000 Americans are estimated to fall ill because of E. coli each year, thousands of whom require hospitalization. E. coli outbreaks have been occurring with regularity, and the number of cases are increasing instead of slowing down, in frequency. In November 2020 alone, there were three ongoing E.coli outbreaks in the United States, accounting for 56 infections, 23 hospitalizations, and one death. At least one of these outbreaks stemmed from a common target for the bacteria: Romaine lettuce. When it comes to E. coli-contaminated foods, fresh leafy greens such as romaine or spinach are the most common vehicles for E. coli that can pose serious risks to human health.

Leafy Greens: An Ideal Target

Leafy greens are an easy target for E. coli for a number of reasons, the first being their popularity. The public recognition of the health value of consuming greater amounts of fresh leafy greens has correspondingly increased the production area of such produce to meet consumer demand. Crop production over wider areas makes tracking of contamination in the field more difficult and the greater consumption increases chances of eating contaminated leafy greens. This type of produce also grows low to the ground, increasing chances of exposing the edible, leafy portions of the lettuce to contaminated water. Finally, other vegetables are often cooked prior to consumption, killing the bacteria, whereas romaine and other leafy greens are often consumed raw.

Once this type of produce is exposed to contaminants, several characteristics of leaf surfaces make removal of bacteria such as E. coli difficult. Studies have shown that, at the microscopic level, the “roughness” or shape of the leaf surface can influence the degree to which bacteria adheres to leaves. Bacteria have specific protein fibers on their surface that are involved in the attachment of the bacteria to the leaf surface and this has been shown to be dependent on the surface roughness of the leaf. Other factors include the “pores” on leaf surfaces—stomata—through which plants take up carbon dioxide and release oxygen and water vapor. Pathogenic E. coli has been observed to enter such stomatal pores and therefore is often very resistant to removal by washing. Moreover, the density of stomata within leaves can vary between different varieties of lettuce or spinach and so affects the degree of E. coli attachment. Additional factors such as leaf age, damage and amount of contaminating bacteria also affect how effectively bacteria adhere to the leaves, making washing difficult.

Are E. Coli Outbreaks Avoidable?

Unfortunately, E. coli outbreaks will likely remain prevalent because of the challenge of interrogating all irrigation water for large and widespread production fields. Once microbial contaminants are present on fresh leafy produce, their complete removal by washing cannot be guaranteed, and it is very difficult to monitor every plot of crops continuously. However, there is a solution to this problem: Controlled environment agriculture (CEA). CEA is an broad term used for many varieties of indoor plant cultivation and can be defined as a method of cultivating plants in an enclosed environment, using technology to ensure optimal growing conditions.

Because outbreaks caused by E. coli-contaminated produce are most often due to produce coming into contact with contaminated irrigation water, indoor growing provides an ideal solution with zero reliance on irrigation water. It also offers a sealed environment with virtually no risk of contamination from animal excrement or other pathogen sources. Indoor farming also makes additional features possible that enhance safety including the use of purified water and handling done only by staff wearing protective clothing (for the plants) including lab coats, hair nets, and gloves. No ungloved hand ever comes into contact with the produce either during growth or in packaging. These standards are nearly impossible to achieve in a traditional farm setting.

Using hydroponic technology enables farming in a clean and contaminant-free, indoor environment. Applying best hygienic practices with this growing model provides safe and clean growth in a sealed, controlled environment, with virtually no risk of illness-causing pathogens.

At this point, not everyone can access food coming from a clean, indoor facility. At the consumer level the best way to avoid E. coli infection remains simply being diligent when it comes to washing. Even if produce is labeled “triple-washed,” if it was grown outdoors, the consumer should always wash it again. Or better yet, look for indoor, hydroponically-grown produce to further mitigate the risk.

Although these outbreaks will continue, as they do, we suspect more consumers will embrace indoor-grown produce and this emerging form of agriculture as a safer alternative. As consumers increasingly understand the advantages of indoor growing, such as enhanced quality and longer shelf life, the popularity of this growth method will increase. Eventually, a greater quantity of the most commonly-infected produce will come from these controlled environments, gradually producing an overall safer and healthier mass product.

FDA

FDA to Test Yuma-Grown Romaine Lettuce for E. Coli and Salmonella

By Food Safety Tech Staff
No Comments
FDA

Today the FDA announced a new plan to collect samples of romaine lettuce as part of its ongoing surveillance after the spring 2018 multistate outbreak of E. coli O157:H7. The samples, which will be tested for Shiga toxin-producing Escherichia coli (STEC) and Salmonella, will be collected from commercial coolers in Yuma County, Arizona during the current harvest season.

FDA plans to collect and test about 500 samples (each of which will consist of 10 subsamples), beginning in February and continuing through the end of the harvest season. In order to reduce the time between sample collection and reporting results, an independent lab close to the collection sites in Arizona will be testing the samples. FDA expects to receive test results within 24 hours.

“Helping to ensure the safety of leafy greens continues to be a priority of the FDA. This assignment adds to other work underway in collaboration with stakeholders in the Yuma agricultural region to implement actions identified in the Leafy Greens Action Plan, including a multi-year study to assess the environmental factors that impact the presence of foodborne pathogens in this region. Consistent with the action plan, the agency will engage with industry on conducting root cause analyses for any positive samples found during this assignment. Root cause analyses are important in that they seek to identify potential sources and routes of contamination, inform what preventive measures are needed, and help prevent outbreaks of foodborne illness,” FDA stated in a release.

COVID-19 precautions will be taken during the sampling plan. Agency investigators will preannounce visits and wear PPE while conducting the work.

Dole Organic Lettuce

Dole Recalls Limited Amount of Organic Romaine Hearts

By Food Safety Tech Staff
No Comments
Dole Organic Lettuce

Dole Fresh Vegetables, Inc. has issued a voluntary recall of a limited number of cases of organic romaine lettuce hearts over E.coli contamination. The recalled products, Dole Organic Romaine Hearts 3pk, combined English/French packaging (with Harvested-On dates of 10-23-20 and 10-26-20), and Wild Harvest Organic Romaine Hearts (with Harvested-On dates of 10-23-20 and 10-26-20).

The products were harvested and packed nearly four weeks ago, according to the FDA release and were distributed in AZ, HI, IA, IL, IN, KS, MD, MI, MN, MO, MS, MT, NC, ND and VA. No illnesses have been reported.

Marketside Ground Beef

Nearly 43,000 Pounds of Ground Beef Recalled Due to Potential E. Coli Contamination

By Food Safety Tech Staff
No Comments
Marketside Ground Beef

Swedesboro, NJ-based Lakeside Refrigerated Services recalled about 42,922 pounds of ground beef products over concern of potential E. coli O157:H7 contamination. The Class I recall involves raw ground beef products that were produced on June 1.

The issue was uncovered during routine FSIS testing. The products were reportedly distributed to retailers, including Walmart, nationwide. Thus far there are no reports of adverse reactions due to consumption of the affect products.

A full list of the recalled products are available on the USDA’s website.

Frank Meek, Orkin
Bug Bytes

How to Keep Pathogen-Spreading Pests Out of Your Business

By Frank Meek
No Comments
Frank Meek, Orkin

As food processors and retailers work tirelessly to feed the public during the current global health pandemic, pests continue to work overtime to keep their food supply on track. Filth flies, cockroaches and rodents, in particular, pose a threat to the food supply chain, especially with concerns of the transmission of pathogens at an all-time high. The last thing your business needs is an avoidable food safety incident that threatens your reputation and bottom line.

When it comes to food safety, pathogen-spreading pests have no place in your facility and pose a major public health risk. Not only can these filthy pests become a nuisance within your facility, they can also contaminate your products and spread foodborne bacteria such as Salmonella, E. coli and Listeria, which can cause illnesses.

Knowing what attracts these pests to your facility and the dangers they pose is important for effective removal. Let’s dive into the signs of cockroaches, filth flies and rodents, and the specific concerns they can cause.

Frank Meek will share his expertise during a complimentary  webinar on March 4, “Making the Grade: Tips for Passing Food Safety Audits During the Pandemic” Cockroaches

Cockroaches seek four things that food processing facilities provide in abundance—food, shelter, proper temperatures and water. With the ability to squeeze through tiny gaps and cracks, these dirty pests enjoy crawling under equipment, in cabinets and through drains to find their next meal. Cockroaches can be found in and around almost any place within your facility. They’re capable of carrying harmful bacteria that they can spread from one location to another. Look out for droppings, cast skins or egg cases, which might signal a cockroach problem.

Filth Flies

You may think these types of flies have no desire to be inside, but they are in fact happy to go wherever the conditions are right. The most common filth fly is the housefly. These winged pests can carry and spread more than 100 disease-causing pathogens including bacteria, fungi and viruses. These can cause illnesses such as cholera, dysentery and infantile diarrhea. Filth flies in your facility can lead to a major public health issue if your food becomes contaminated.

Rodents

One of the filthiest pests around, rodents can contaminate your food supply, destroy or consume products and cause structural damage to your facility. Like cockroaches, mice and rats can fit through relatively small spaces to find food and water. With sightings on the rise during the COVID-19 pandemic, you’ll want to keep an eye out for rodents near your food products. These mighty chewers pose a public health threat as they can transmit diseases such as hantavirus and lymphocytic choriomeningitis (LCM) via their urine and droppings.

The presence of these vermin in your facility threatens public health. Additionally, an infestation can slow down the supply chain by causing businesses to recall contaminated foods.

A rigorous sanitation routine is one of the most effective ways to proactively manage pests like cockroaches, rodents and filth flies. Regularly sanitizing and disinfecting your facility can help eliminate any pathogens left behind on hard surfaces and remove the attractants for which they search. While cleaning removes dirt and buildup, sanitization and disinfection kill bacteria and pathogens, reducing the risk of a food safety issue.

Including the following tips in your cleaning routine can help keep your products and reputation safe from harm.

  • Clean out drains routinely with an enzymatic cleaning solution that can break down the organic grime.
  • Disinfect high-touch hard surfaces with a proper and low-toxicity disinfectant to kill bacteria and pathogens that can cause food illnesses.
  • Move dumpsters away from your building to reduce flies being attracted to and then gaining easy entry into your facility.
  • Wipe spills as soon as they occur to prevent them from becoming a sticky paradise for flies and cockroaches.
  • Practice good hygiene in your work environment and ensure employees are washing their hands regularly and keeping break rooms free of trash and leftovers.

Implementing exclusion practices such as sealing cracks, gaps and holes in walls with a proper sealant can also help you keep pests out. Budget allowing, consider investing in insect light traps and mechanical traps to help reduce flying insects inside.

Communication with your suppliers and distributors is also important to ensure food safety. If your partners implement similar measures, you’re more likely to protect the public from harmful diseases. Furthermore, customers will continue to trust your business.

While following these tips can help reduce the chances of a pest infestation, it’s not always possible to keep pests and the pathogens they spread out of your food processing facility. Work with a trained pest control specialist to develop a customized prevention program for your business as each type of pest requires specific treatment. They can also help you schedule inspections to identify conditions in and around your facility that may attract flies, cockroaches and rodents, among other pests.

Raj Rajagopal, 3M Food Safety
In the Food Lab

Pathogen Detection Guidance in 2020

By Raj Rajagopal
No Comments
Raj Rajagopal, 3M Food Safety

Food production managers have a critical role in ensuring that the products they make are safe and uncontaminated with dangerous pathogens. Health and wellness are in sharp focus for consumers in every aspect of their lives right now, and food safety is no exception. As food safety becomes a continually greater focus for consumers and regulators, the technologies used to monitor for and detect pathogens in a production plant have become more advanced.

It’s no secret that pathogen testing is performed for numerous reasons: To confirm the adequacy of processing control and to ensure foods and beverages have been properly stored or cooked, to name some. Accomplishing these objectives can be very different, and depending on their situations, processors rely on different tools to provide varying degrees of testing simplicity, speed, cost, efficiency and accuracy. It’s common today to leverage multiple pathogen diagnostics, ranging from traditional culture-based methods to molecular technologies.

And unfortunately, pathogen detection is more than just subjecting finished products to examination. It’s become increasingly clear to the industry that the environment in which food is processed can cross-contaminate products, requiring food manufacturers to be ever-vigilant in cleaning, sanitizing, sampling and testing their sites.

For these reasons and others, it’s important to have an understanding and appreciation for the newer tests and techniques used in the fight against deadly pathogens, and where and how they might be fit for purpose throughout the operation. This article sheds light on the key features of one fast-growing DNA-based technology that detects pathogens and explains how culture methods for index and indicator organisms continue to play crucial roles in executing broad-based pathogen management programs.

LAMP’s Emergence in Molecular Pathogen Detection

Molecular pathogen detection has been a staple technology for food producers since the adoption of polymerase chain reaction (PCR) tests decades ago. However, the USDA FSIS revised its Microbiology Laboratory Guidebook, the official guide to the preferred methods the agency uses when testing samples collected from audits and inspections, last year to include new technologies that utilize loop-mediated isothermal amplification (LAMP) methods for Salmonella and Listeria detection.

LAMP methods differ from traditional PCR-based testing methods in four noteworthy ways.

First, LAMP eliminates the need for thermal cycling. Fundamentally, PCR tests require thermocyclers with the ability to alter the temperature of a sample to facilitate the PCR. The thermocyclers used for real-time PCR tests that allow detection in closed tubes can be expensive and include multiple moving parts that require regular maintenance and calibration. For every food, beverage or environmental surface sample tested, PCR systems will undergo multiple cycles of heating up to 95oC to break open DNA strands and cooling down to 60oC to extend the new DNA chain in every cycle. All of these temperature variations generally require more run time and the enzyme, Taq polymerase, used in PCR can be subjected to interferences from other inhibiting substances that are native to a sample and co-extracted with the DNA.

LAMP amplifies DNA isothermally at a steady and stable temperature range—right around 60oC. The Bst polymerase allows continuous amplification and better tolerates the sample matrix inhibitors known to trip up PCR. The detection schemes used for LAMP detection frees LAMP’s instrumentation from the constraints of numerous moving pieces.

Secondly, it doubles the number of DNA primers. Traditional PCR tests recognize two separate regions of the target genetic material. They rely on two primers to anneal to the subject’s separated DNA strands and copy and amplify that target DNA.

By contrast, LAMP technology uses four to six primers, which can recognize six to eight distinct regions from the sample’s DNA. These primers and polymerase used not only cause the DNA strand to displace, they actually loop the end of the strands together before initiating amplification cycling. This unique looped structure both accelerates the reaction and increases test result sensitivity by allowing for an exponential accumulation of target DNA.

Third of all, it removes steps from the workflow. Before any genetic amplification can happen, technicians must enrich their samples to deliberately grow microorganisms to detectable levels. Technicians using PCR tests have to pre-dispense lysis buffers or reagent mixes and take other careful actions to extract and purify their DNA samples.

Commercialized LAMP assay kits, on the other hand, offer more of a ready-to-use approach as they offer ready to use lysis buffer and simplified workflow to prepare DNA samples. By only requiring two transfer steps, it can significantly reduces the risk of false negatives caused by erroneous laboratory preparation.

Finally, it simplifies multiple test protocols into one. Food safety lab professionals using PCR technology have historically been required to perform different test protocols for each individual pathogen, whether that be Salmonella, Listeria, E. coli O157:H7 or other. Not surprisingly, this can increase the chances of error. Oftentimes, labs are resource-challenged and pressure-packed environments. Having to keep multiple testing steps straight all of the time has proven to be a recipe for trouble.

LAMP brings the benefit of a single assay protocol for testing all pathogens, enabling technicians to use the same protocol for all pathogen tests. This streamlined workflow involving minimal steps simplifies the process and reduces risk of human-caused error.

Index and Indicator Testing

LAMP technology has streamlined and advanced pathogen detection, but it’s impractical and unfeasible for producers to molecularly test every single product they produce and every nook and cranny in their production environments. Here is where an increasing number of companies are utilizing index and indicator tests as part of more comprehensive pathogen environmental programs. Rather than testing for specific pathogenic organisms, these tools give a microbiological warning sign that conditions may be breeding undesirable food safety or quality outcomes.

Index tests are culture-based tests that detect microorganisms whose presence (or detection above a threshold) suggest an increased risk for the presence of an ecologically similar pathogen. Listeria spp. Is the best-known index organism, as its presence can also mark the presence of deadly pathogen Listeria monocytogenes. However, there is considerable skepticism among many in the research community if there are any organisms outside of Listeria spp. that can be given this classification.

Indicator tests, on the other hand, detect the presence of organisms reflecting the general microbiological condition of a food or the environment. The presence of indicator organisms can not provide any information on the potential presence or absence of a specific pathogen or an assessment of potential public health risk, but their levels above acceptable limits can indicate insufficient cleaning and sanitation or operating conditions.

Should indicator test results exceed the established control limits, facilities are expected to take appropriate corrective action and to document the actions taken and results obtained. Utilizing cost-effective, fast indicator tests as benchmark to catch and identify problem areas can suggest that more precise, molecular methods need to be used to verify that the products are uncontaminated.

Process Matters

As discussed, technology plays a large role in pathogen detection, and advances like LAMP molecular detection methods combined with strategic use of index and indicator tests can provide food producers with powerful tools to safeguard their consumers from foodborne illnesses. However, whether a producer is testing environmental samples, ingredients or finished product, a test is only as useful as the comprehensive pathogen management plan around it.

The entire food industry is striving to meet the highest safety standards and the best course of action is to adopt a solution that combines the best technologies available with best practices in terms of processes as well –from sample collection and preparation to monitoring and detection.

Eddie Hall, Vital Vio
FST Soapbox

How Automated Technology is Transforming Sanitation in Plant Operations

By Eddie Hall
No Comments
Eddie Hall, Vital Vio

Food safety remains a top-of-mind concern for food manufacturers, especially considering some of the top recalls in 2019 were caused by bacteria contamination—including Listeria and E. coli. Every aspect of the plant operation, from maintenance to executives, to junior staff and quality control, holds both responsibility and concern in producing safe food. Unfortunately, there’s a lot at stake when plant operations’ sanitation programs run into issues, which can cause health threats.

While the rapid explosion of new innovations complements our daily lives in efficiency and convenience, plant operations may find difficulty in keeping up-to-speed with new technology such as robotics, drones and automated applications. When facilities’ equipment becomes more and more outdated, it poses food safety challenges around cleaning, maintenance and upgrades.

Luckily, in some cases, innovation is becoming much easier to deploy. Opportunities abound for food processing plants to integrate new technologies into their operations to deliver significant returns on investment while simultaneously enhancing sanitation, safety and production efficiency on the plant floor.

The Dangers with Today’s Practices

There are many pitfalls with older, more traditional cleaning techniques. In a place where cleanliness is critical to food safety and public health around the world, the industry understands sanitation means more than just scrubbing, mopping and wiping. While these are important daily practices to be done around the processing plant, there are still concerns on whether this kind of intermittent cleaning is truly enough to keep surfaces completely sanitized—knowing that continuous cleaning around the clock seems impractical in any facilities.

Unfortunately, there are many areas, some very hard to reach, for bacteria and other pathogens to live and spread around a processing plant. Zone 1, which holds the conveyor belt and other common high-touch points, consistently comes into contact with food, chemicals and humans. However, for processors to reduce the likelihood of contaminated food, they must consider areas outside of Zone 1 as well—including employee break rooms, hallways and bathrooms—to implement automated sanitation technologies. Additionally, the most common food contaminants, such as Listeria, Salmonella and E. coli, are usually invisible to the naked eye. Therefore, plants need to employ automated technology to continuously kill microscopic bacteria, mold and fungi to prevent regrowth and ensure clean food and equipment.

Looking to New Tech to Fight Germs

When looking to upgrade a plant operation facility, automated technology should be top-of-mind. Automated food production technologies solve two main problems: Food safety and sanitation efficiency. Wash-down robotic systems work to prevent food contamination, while other automated robots complete tasks on the production floor such as packaging, transporting and lifting. With the CDC estimating that roughly one in six Americans suffer from foodborne illnesses, the need for improved sanitation design is integral.

In today’s age, there are several ways to achieve heightened cleanliness by incorporating automation and robotics into production lines. Slicers, dicers and cutters are manufactured with hygienic design in mind. Smart cleaning equipment can automatically store various cleaning steps. Data tracking applications can monitor sanitation steps and ensure all boxes are checked throughout the cleaning program.

Incorporating antimicrobial LED lighting ensures sanitation is truly integrated into the facility’s design—working continually 24/7 to kill and prevent bacteria, and its growth while also serving a dual purpose of both antimicrobial protection and a proper source of illumination. As is the case with this type of technology, once these lights are installed, it becomes an easy, hands-free way of reducing labor, chemicals and, in many cases, work stoppages.

According to Meticulous Research, the global food automation market is expected to be worth $14.3 billion by 2025. With automation set to explode, it’s important for leaders in the food and beverage industry to take advantage of safety tech innovations to advance sanitation around the processing plant. Facility upgrades to improve, enhance and automate sanitation could impact food manufacturers in the long-term by decreasing costs, preventing recalls, improving brand value, gaining consumer trust, minimizing risk and impacting the bottom line.

Christine Charlotte Akselsen, Kezzler
FST Soapbox

Connecting the Dots for Food Safety at GFSI 2020

By Christine Charlotte Akselsen
No Comments
Christine Charlotte Akselsen, Kezzler

Representatives at this year’s GFSI conference hailed from 53 countries and spanned the food industry, academia, the public sector and beyond. They came together in Seattle, a city that has long stood at the cutting edge of technological innovation, and as such was a fitting host for this year’s theme: “One Connected World. One Safe Food Supply”.

Speakers at the forefront of their fields shared knowledge and showcased creative methods of delivering connectivity—interpersonal, technology-mediated and otherwise, all geared towards the ultimate goal of helping provide safer food for consumers everywhere.

Meanwhile, there were numerous opportunities to connect with representatives of industry giants such as Costa, Nestle, McDonald’s, Amazon and Starbucks, as well as regulatory agencies, certification & accreditation bodies, NGOs, academia and the media, at the various networking sessions.

Urgent Action Required

As the conference kicked off, it was Peter Freedman, the managing director of The Consumer Goods Forum (CGF), who set out the importance of the task at hand. His message was one of urgency in delivering positive change.

Freedman pointed to recent global events, such as the wildfires in Brazil, as examples of how the world could be at a tipping point. “Action is more urgent than ever”, he told delegates, stating that it is no longer just a matter of responding, but responding urgently. Freedman also pointed to E. coli outbreaks in 2017, 2018 and late 2019 to drive home to industry leaders gathered at the conference that food safety cannot be taken for granted.

The spirit of the event was, as usual, geared towards a collaborative approach. Delegates were asked to leave their commercial interests at the door and work purely towards “a world where all food is safe” for the duration of the event.

“This week is not about us as individuals, it’s about how we come together as a collective of brilliant minds to provide solutions,” GFSI Director Erica Sheward stated. She then invited the audience to stand in recognition of this commitment, and sure enough everyone in the packed auditorium took to their feet demonstrating their commitment to the shared mission.

GFSI’s New Benchmarking Requirements

The GFSI used the conference as a platform to launch its new Benchmarking Requirements Version 2020, which establish a new foundation for food safety. To close the opening session, Sheward joined Mike Robach, Chairman of the GFSI Board, Vice-Chairs Anita Scholte op Reimer and Gillian Kelleher and GFSI Senior Technical Manager Marie-Claude Quentin around a red ‘action button’ to mark their publication.

The requirements are geared towards enabling a common understanding and mutual trust in the supply chain that facilitates trade, improves efficiency and lends nameplate authority to operations certified to a GFSI-recognized program. They incorporate stakeholder input from public consultations and are regularly revised to reflect best practices and evolving needs in the industry.

GFSI positioned the new version as more than just an update, but a complete rethink “representing the beginning of a new generation of recognition”. The two primary objectives of Version 2020, are to achieve transparency and objectivity, with new and strengthened elements that include two new scopes focused on hygienic design, elements of food safety culture and reinforced impartiality of the auditing process and the monitoring of certification bodies.

Shark Tank Sessions

This year’s GFSI program also included a new format to help showcase how the latest technology is being used to further food safety. Leaders in innovation took part in a number of Shark Tank-style breakout sessions to pitch their technology solutions to the sharks and the attendees.

A total of nine cutting-edge companies took to the stage to pitch their concepts to a panel of experts—‘sharks’—who are well-placed to judge their value for the industry. The nine competitors were selected from a large pool of applicants based on their innovative spirit, disruptive potential and feasibility.

Each presenter had 12-minutes to outline the context in which their solution is utilized, the technology supporting it and how it is implemented. Following the pitches, each presenter came under the scrutiny of the sharks who were able to ask clarifying questions.

Kezzler was among the companies to take to the stage with CEO Christine Akselsen sharing insights from work with FrieslandCampina’s infant formula brand, FRISO. Referencing the grass-to-glass case study, she demonstrated how Kezzler’s technology works in practice, tracking information from farms in The Netherlands to consumers in China. Following the sessions an audience vote determined the winner of the competition, which was announced during the final plenary of the conference. Kezzler was also crowned as the first-ever GFSI Shark Tank champion.

Michael Bartholomeusz, TruTag
In the Food Lab

Intelligent Imaging and the Future of Food Safety

By Michael Bartholomeusz, Ph.D.
1 Comment
Michael Bartholomeusz, TruTag

Traditional approaches to food safety no longer make the grade. It seems that stories of contaminated produce or foodborne illnesses dominate the headlines increasingly often. Some of the current safeguards set in place to protect consumers and ensure that companies are providing the freshest, safest food possible continue to fail across the world. Poorly regulated supply chains and food quality assurance breakdowns often sicken customers and result in recalls or lawsuits that cost money and damage reputations. The question is: What can be done to prevent these types of problems from occurring?

While outdated machinery and human vigilance continue to be the go-to solutions for these problems, cutting-edge intelligent imaging technology promises to eliminate the issues caused by old-fashioned processes that jeopardize consumer safety. This next generation of imaging will increase safety and quality by quickly and accurately detecting problems with food throughout the supply chain.

How Intelligent Imaging Works

In broad terms, intelligent imaging is hyperspectral imaging that uses cutting-edge hardware and software to help users establish better quality assurance markers. The hardware captures the image, and the software processes it to provide actionable data for users by combining the power of conventional spectroscopy with digital imaging.

Conventional machine vision systems generally lack the ability to effectively capture and relay details and nuances to users. Conversely, intelligent imaging technology utilizes superior capabilities in two major areas: Spectral and spatial resolution. Essentially, intelligent imaging systems employ a level of detail far beyond current industry-standard machinery. For example, an RGB camera can see only three colors: Red, green and blue. Hyperspectral imaging can detect between 300 and 600 real colors—that’s 100–200 times more colors than detected by standard RGB cameras.

Intelligent imaging can also be extended into the ultraviolet or infrared spectrum, providing additional details of the chemical and structural composition of food not observable in the visible spectrum. Hyperspectral imaging cameras do this by generating “data cubes.” These are pixels collected within an image that show subtle reflected color differences not observable by humans or conventional cameras. Once generated, these data cubes are classified, labeled and optimized using machine learning to better process information in the future.

Beyond spectral and spatial data, other rudimentary quality assurance systems pose their own distinct limitations. X-rays can be prohibitively expensive and are only focused on catching foreign objects. They are also difficult to calibrate and maintain. Metal detectors are more affordable, but generally only catch metals with strong magnetic fields like iron. Metals including copper and aluminum can slip through, as well as non-metal objects like plastics, wood and feces.

Finally, current quality assurance systems have a weakness that can change day-to-day: Human subjectivity. The people put in charge of monitoring in-line quality and food safety are indeed doing their best. However, the naked eye and human brain can be notoriously inconsistent. Perhaps a tired person at the end of a long shift misses a contaminant, or those working two separate shifts judge quality in slightly different ways, leading to divergent standards unbeknownst to both the food processor and the public.

Hyperspectral imaging can immediately provide tangible benefits for users, especially within the following quality assurance categories in the food supply chain:

Pathogen Detection

Pathogen detection is perhaps the biggest concern for both consumers and the food industry overall. Identifying and eliminating Salmonella, Listeria, and E.coli throughout the supply chain is a necessity. Obviously, failure to detect pathogens seriously compromises consumer safety. It also gravely damages the reputations of food brands while leading to recalls and lawsuits.

Current pathogen detection processes, including polymerase chain reaction (PCR), immunoassays and plating, involve complicated and costly sample preparation techniques that can take days to complete and create bottlenecks in the supply chain. These delays adversely impact operating cycles and increase inventory management costs. This is particularly significant for products with a short shelf life. Intelligent imaging technology provides a quick and accurate alternative, saving time and money while keeping customers healthy.

Characterizing Food Freshness

Consumers expect freshness, quality and consistency in their foods. As supply chains lengthen and become more complicated around the world, food spoilage has more opportunity to occur at any point throughout the production process, manifesting in reduced nutrient content and an overall loss of food freshness. Tainted meat products may also sicken consumers. All of these factors significantly affect market prices.

Sensory evaluation, chromatography and spectroscopy have all been used to assess food freshness. However, many spatial and spectral anomalies are missed by conventional tristimulus filter-based systems and each of these approaches has severe limitations from a reliability, cost or speed perspective. Additionally, none is capable of providing an economical inline measurement of freshness, and financial pressure to reduce costs can result in cut corners when these systems are in place. By harnessing meticulous data and providing real-time analysis, hyperspectral imaging mitigates or erases the above limiting factors by simultaneously evaluating color, moisture (dehydration) levels, fat content and protein levels, providing a reliable standardization of these measures.

Foreign Object Detection

The presence of plastics, metals, stones, allergens, glass, rubber, fecal matter, rodents, insect infestation and other foreign objects is a big quality assurance challenge for food processors. Failure to identify foreign objects can lead to major added costs including recalls, litigation and brand damage. As detailed above, automated options like X-rays and metal detectors can only identify certain foreign objects, leaving the rest to pass through untouched. Using superior spectral and spatial recognition capabilities, intelligent imaging technology can catch these objects and alert the appropriate employees or kickstart automated processes to fix the issue.

Mechanical Damage

Though it may not be put on the same level as pathogen detection, food freshness and foreign object detection, consumers put a premium on food uniformity, demanding high levels of consistency in everything from their apples to their zucchini. This can be especially difficult to ensure with agricultural products, where 10–40% of produce undergoes mechanical damage during processing. Increasingly complicated supply chains and progressively more automated production environments make delivering consistent quality more complicated than ever before.

Historically, machine vision systems and spectroscopy have been implemented to assist with damage detection, including bruising and cuts, in sorting facilities. However, these systems lack the spectral differentiation to effectively evaluate food and agricultural products in the stringent manner customers expect. Methods like spot spectroscopy require over-sampling to ensure that any detected aberrations are representative of the whole item. It’s a time-consuming process.

Intelligent imaging uses superior technology and machine learning to identify mechanical damage that’s not visible to humans or conventional machinery. For example, a potato may appear fine on the outside, but have extensive bruising beneath its skin. Hyperspectral imaging can find this bruising and decide whether the potato is too compromised to sell or within the parameters of acceptability.

Intelligent imaging can “see” what humans and older technology simply cannot. With the ability to be deployed at a number of locations within the food supply chain, it’s an adaptable technology with far-reaching applications. From drones measuring crop health in the field to inline or end-of-line positioning in processing facilities, there is the potential to take this beyond factory floors.

In the world of quality assurance, where a misdiagnosis can literally result in death, the additional spectral and spatial information provided by hyperspectral imaging can be utilized by food processors to provide important details regarding chemical and structural composition previously not discernible with rudimentary systems. When companies begin using intelligent imaging, it will yield important insights and add value as the food industry searches for reliable solutions to its most serious challenges. Intelligent imaging removes the subjectivity from food quality assurance, turning it into an objective endeavor.