Tag Archives: environmental monitoring

Food Safety Consortium

2020 Food Safety Consortium Converted to Virtual Event Series

By Food Safety Tech Staff
No Comments
Food Safety Consortium

With the COVID-19 pandemic continuing to take a toll on live events, Innovative Publishing Company, Inc. has made the careful decision to convert the Food Safety Consortium, which historically has taken place in Schaumburg, IL, to a virtual conference. This move takes into consideration Illinois’ COVID-19 plan to reopen its economy, which is a Five-Phase Plan. Phase 5 occurs when groups larger than 50 (conferences and conventions specifically mentioned) will be allowed. The state enters Phase 5 only when a vaccine or an effective treatment is in place. The decision to take the Food Safety Consortium virtual is based on the Illinois reopening plan, along with considering the safety and well being of staff, attendees, speakers and sponsors.

Every Thursday, beginning on September 10 through November 12, the Food Safety Consortium Virtual Conference Series will host two presentations and two sponsored Tech Talks, followed by a panel discussion with attendees. Food Safety Tech is the media sponsor.

“This will be much more than a bunch of webinars. We are excited to offer a virtual platform that facilitates greater human interaction,” says Rick Biros, president of Innovative Publishing and director of the Food Safety Consortium. “Whether it’s a random connection in a hotel lobby, a stroll by a booth at a trade show, or a seat next to a new friend in a learning session, we recognize that human connection is important for events. That’s why we’ve invested in new tools for the FSC Conference Virtual Platform to ensure those discussions, discoveries and connections can go on whether our event is offline or online. The new platform provides attendees with a way to keep track of live sessions, connect with sponsors and engage with peers, all in a familiar way. It will also include an event App that offers interactive features.”

Frank Yiannas, FDA deputy commissioner for food policy and response, will remain a keynote speaker, with the new presentation date to be announced.

Call for Abstracts

We are accepting abstracts for participation in the Food Safety Consortium Virtual Series. On the Submit an Abstract page, select Food Safety Consortium 2020 in the drop-down menu.

Categories include:

  • Food safety
  • Food defense
  • Food integrity
  • Food safety supply chain management
  • Lessons learned COVID-19
  • Regulatory compliance
  • Facility design
  • C-suite executive forum

Tech Talk Sponsorship

Companies that are interested in sponsoring a 10-minute technical presentation during the series can also submit their abstract through the portal. For pricing information, contact IPC Sales Director RJ Palermo.

Innovative Publishing has also converted the Cannabis Quality Conference to a virtual event. More information is available at Cannabis Industry Journal.

About Food Safety Tech

Food Safety Tech publishes news, technology, trends, regulations, and expert opinions on food safety, food quality, food business and food sustainability. We also offer educational, career advancement and networking opportunities to the global food industry. This information exchange is facilitated through ePublishing, digital and live events.

About the Food Safety Consortium Conference and Expo (The live event)

Food companies are concerned about protecting their customers, their brands and their own company’s financial bottom line. The term “Food Protection” requires a company-wide culture that incorporates food safety, food integrity and food defense into the company’s Food Protection strategy.

The Food Safety Consortium is an educational and networking event for Food Protection that has food safety, food integrity and food defense as the foundation of the educational content of the program. With a unique focus on science, technology and compliance, the “Consortium” enables attendees to engage in conversations that are critical for advancing careers and organizations alike. Delegates visit with exhibitors to learn about cutting-edge solutions, explore three high-level educational tracks for learning valuable industry trends, and network with industry executives to find solutions to improve quality, efficiency and cost effectiveness in the evolving food industry.

Data protection, security

The Digital Transformation of Global Food Security

By Katie Evans
No Comments
Data protection, security

Modern food supply chains are inherently complex, with products typically passing through multiple suppliers and distributors, as well as countries and continents, before they end up on the supermarket shelf. While global supply chains offer consumers greater choice and convenience, they also make protecting the security of food products more challenging. With additional stakeholders between farm and fork, products are exposed to an elevated risk of biological or chemical contamination, as well as food counterfeiting and adulteration challenges—potentially putting consumer health and brand reputation in jeopardy.

Given the importance of maintaining the safety, quality and provenance of food products, global regulatory bodies are placing the integrity of supply chains under increased scrutiny. In the United States, for example, the adoption of FSMA moved the focus from responding to foodborne illnesses to preventing them by prioritizing comprehensive food testing measures, enforcing inspections and checks, and enabling authorities to react appropriately to safety issues through fines, recalls or permit suspensions.1 Similarly, China’s revised Food Safety Law (known as FSL 2015) is widely considered to be the strictest in the country’s history, and seeks to drive up quality standards by empowering regulators, and enhancing traceability and accountability through robust record-keeping. 2 The European Union continues to closely regulate and monitor food safety through its General Food Law, which is independently overseen by the European Food Safety Authority from a scientific perspective.

Achieving the Highest Standards of Food Security, Integrity and Traceability

For producers, manufacturers and distributors, the heightened regulatory focus on the security and integrity of the food supply chain has placed additional emphasis on accurate record-keeping, transparent accountability and end-to-end traceability. To meet the needs of the modern regulatory landscape, food chain stakeholders require robust systems and tools to manage their quality control (QC), environmental monitoring and chain of custody data. Despite this, many businesses still handle this information using paper-based approaches or localized spreadsheets, which can compromise operational efficiency and regulatory compliance.

The fundamental flaw of these traditional data management approaches is their reliance on manual data entry and transcription steps, leaving information vulnerable to human error. To ensure the accuracy of data, some companies implement resource-intensive verification or review checks. However, these steps inevitably extend workflows and delay decision-making, ultimately holding up the release of products at a high cost to businesses. Moreover, as paper and spreadsheet-based data management systems must be updated by hand, they often serve merely as a record of past events and are unable to provide insight into ongoing activities. The time lag associated with recording and accessing supply chain information means that vital insight is typically unavailable until the end of a process, and data cannot be used to optimize operations in real-time.

Furthermore, using traditional data management approaches, gathering information in the event of an audit or food safety incident can be extremely challenging. Trawling through paperwork or requesting information contained in spreadsheets saved on local computers is time-consuming and resource-intensive. When it comes to establishing accountability for actions, these systems are often unable to provide a complete audit trail of events.

Digital Solutions Transform Food Security and Compliance

Given the limitations of traditional workflows, food supply chain stakeholders are increasingly seeking more robust data management solutions that will allow them to drive efficiency, while meeting the latest regulatory expectations. For many businesses, laboratory information management systems (LIMS) are proving to be a highly effective solution for collecting, storing and sharing their QC, environmental monitoring and chain of custody data.

One of the most significant advantages of managing data using LIMS is the way in which they bring together people, instruments, workflows and data in a single integrated system. When it comes to managing the receipt of raw materials, for example, LIMS can improve overall workflow visibility, and help to make processes faster and more efficient. By using barcodes, radiofrequency identification (RFID) tags or near-field communication, samples can be tracked by the system throughout various laboratory and storage locations. With LIMS tracking samples at every stage, ingredients and other materials can be automatically released into production as soon as the QC results have been authorized, streamlining processes and eliminating costly delays.

By storing the standard operating procedures (SOPs) used for raw material testing or QC centrally in a LIMS, worklists, protocols and instrument methods can be automatically downloaded directly to equipment. In this way, LIMS are able to eliminate time-consuming data entry steps, reducing the potential for human error and improving data integrity. When integrated with laboratory execution systems (LES), these solutions can even guide operators step-by-step through procedures, ensuring SOPs are executed consistently, and in a regulatory compliant manner. Not only can these integrated solutions improve the reliability and consistency of data by making sure tests are performed in a standardized way across multiple sites and testing teams, they can also boost operational efficiency by simplifying set-up procedures and accelerating the delivery of results. What’s more, because LIMS can provide a detailed audit trail of all user interactions within the system, this centralized approach to data management is a robust way of ensuring full traceability and accountability.

This high level of operational efficiency and usability also extends to the way in which data is processed, analyzed and reported. LIMS platforms can support multi-level parameter review and can rapidly perform calculations and check results against specifications for relevant customers. In this way, LIMS can ensure pathogens, pesticides and veterinary drug residues are within specifications for specific markets. With all data stored centrally, certificates of analysis can be automatically delivered to enterprise resource planning (ERP) software or process information management systems (PIMS) to facilitate rapid decision-making and batch release. Furthermore, the sophisticated data analysis tools built into the most advanced LIMS software enable users to monitor the way in which instruments are used and how they are performing, helping businesses to manage their assets more efficiently. Using predictive algorithms to warn users when principal QC instruments are showing early signs of deterioration, the latest LIMS can help companies take preventative action before small issues turn into much bigger problems. As a result, these powerful tools can help to reduce unplanned maintenance, keep supply chains moving, and better maintain the quality and integrity of goods.

While LIMS are very effective at building more resilient supply chains and preventing food security issues, they also make responding to potential threats much faster, easier and more efficient. With real-time access to QC, environmental monitoring and chain of custody data, food contamination or adulteration issues can be detected early, triggering the prompt isolation of affected batches before they are released. And in the event of a recall or audit, batch traceability in modern LIMS enables the rapid retrieval of relevant results and metadata associated with suspect products through all stages of production. This allows the determination of affected batches and swift action to be taken, which can be instrumental in protecting consumer safety as well as brand value.

Using LIMS to Protect Security and Integrity of the Food Supply Chain

Increasingly, LIMS are helping businesses transform food security by bringing people, instruments and workflows into a single integrated system. By simplifying and automating processes, providing end-to-end visibility across the food supply chain, and protecting the integrity of data at every stage, these robust digital solutions are not only helping food supply chain stakeholders to ensure full compliance with the latest regulations; they are enabling businesses to operate more efficiently, too.

References

  1. FDA. (2011). FDA Food Safety Modernization Act. Accessed October 3, 2019. Retrieved from https://www.fda.gov/food/food-safety-modernization-act-fsma/full-text-food-safety-modernization-act-fsma.
  2. Balzano, J. (2015). “Revised Food Safety Law In China Signals Many Changes And Some Surprises”. Forbes. Accessed October 3, 2019. Retrieved from https://www.forbes.com/sites/johnbalzano/2015/05/03/revised-food-safety-law-in-china-signals-many-changes-and-some-surprises/#624b72db6e59.
FDA

FDA Receives Record Turnout As Industry Eager to Discuss New Era of Smarter Food Safety

By Maria Fontanazza
No Comments
FDA

Industry from the public and private sector joined for a record turnout during the FDA public meeting yesterday to discuss the agency’s initiative, a new era of smarter food safety. The meeting, which was at maximum capacity for both in-person as well as webcast attendance, began with a call to action from FDA Deputy Commissioner, Office of Food Policy and Response, Frank Yiannas on the importance of all stakeholders in the industry to work together to drive the change. As Yiannas has previously commented, the food industry is in the midst of a revolution. The world is changing faster than ever, and the FDA is challenged with not just creating a safer, more technology-centric and traceable food system, but also getting there faster and more effectively. “I’ve always believed that words we use are important,” he said. As the day’s various discussions would be around the new era of smarter food safety, Yiannas gave the audience a definition to consider: “A new era is a memorable or important date or event, especially one that begins with a new period in our history.”

FDA held breakout sessions centered on areas critical to the initiative:

  • Tech-enabled traceability and outbreak response
  • Smarter tools and approaches for prevention
  • Adapting to new business models and retail modernization
  • Food safety culture

During each session, FDA facilitators asked the audience questions. The following are some key points brought out during the breakouts.

Tech-Enabled Traceability and Outbreak Response

  • FDA should consider all parts of the supply chain when thinking about traceability
  • Take into account considerations for sharing sensitive data along the supply chain
  • Speaking a common language and creating data standards, along with necessary minimum data elements for traceability is critical
  • Better communication related to data sharing as well as more meetings with FDA and stakeholders, especially during outbreaks
  • Show industry the ROI of the data
  • Provide a roadmap or recommendation for companies on where they can begin on their traceability journey
  • Request for unity across government agencies (i.e., FDA, USDA), as it would provide more clarity during an outbreak

Smarter Tools and Approaches for Prevention

  • Trust and transparency are key
  • Safeguards that address privacy concerns and liability
  • Data
    • Data sharing: Concern about retroactive investigations
    • Types of data: With the “treasure trove” of existing data out there, which is the most important and helpful in improving food safety?
  • Environmental assessments and root cause analysis—more dialogue between FDA and industry

Adapting to New Business Models and Retail Food Safety Modernization

  • More need for collaboration
  • Globalization and use of best practices
  • Establishing a common standard to level the playing field
  • Establish best practices for tamper resistance
  • The last mile: Food safety training for food delivery personnel as well as harmonization for last mile delivery
  • More consumer education

Food Safety Culture

  • Emphasis on behavior and humanizing the work: Focusing on what happens within organizations at all levels
  • Clarity and communication are important
  • Leveraging current food safety culture best practices as well as any relevant existing standards (i.e., ISO, Codex)
  • Partnerships are critical, finding the balance between compliance and collaboration

Other Factors FDA Must Consider

The FDA meeting also included panel discussions that drew out the realities FDA must consider in this rapidly changing environment. “These are exciting times and this initiative is recasting our thinking in a whole new light,” said CFSAN Director Susan Mayne, adding, “We need to get ahead of these challenges and not be in reactive mode.”

Consumer awareness and demands for healthy, locally sourced and minimally processed food, for example, are creating increased pressures on food companies and retailers. In addition, the digital savvy and diverse Generation Z (the population born between 1990 and 2010, which will comprise nearly 40% of the U.S. population by 2020) has buying habits and a strong desire for transparency that is shifting how food companies will need to do business, according to Mary Wagner, president of MX Wagner & Associates.

“Trust represents safety, quality and commitment on a much more personal level to our consumers,” said Dirk Herdes, senior vice president at the Nielsen Company, emphasizing the need to communicate with authenticity. “Consumers have never been more informed, but never have been more overwhelmed with information. It’s not data—it’s trust. Trust is the new currency with which we’ll operate.”

FDA and USDA also remain committed to building a stronger relationship between the agencies, said Mindy Brashears, Ph.D., deputy undersecretary for food safety at USDA. “As science moves forward, we have to allow our policies to move forward to keep consumers safe,” she added.

The comments shared during yesterday’s meeting, along with written and electronic comments (with a deadline of November 20), will be considered as FDA puts together its blueprint document for a new era of smarter food safety. More information about providing comments can be found on the Federal Register page.

FST Soapbox

A Digital Approach to Environmental Monitoring: Let’s Get Proactive!

By David Hatch
No Comments

Technology and automation for safety and surveillance have already impacted nearly every industry in the world. For example, in the United States and many other developed regions, we have just lived through the transformation to electronic health records within the healthcare industry. Prior to that, we lived through the digital transformation of all of our banking information to an online banking platform—now the norm across the world.

However, the food and beverage industry is still learning how technology can improve their organizations. The food safety segment of this market is particularly in need of a digital transformation, as the risk associated with foodborne illness is potentially catastrophic to food companies, and moreso, to the end consumers who are impacted by preventable pathogenic outbreaks.

Along with regulation advancements, such as the timed roll-out of FSMA, the industry continues to work towards a more effective approach to food safety. But most regulations, and advancements in the industry are pointed toward a reactive stance to food safety issues, rather than a preventive stance. For example, although traceability is important in leading investigations to the source and taking remediation steps sooner, a more proactive approach to prevention should be considered when investing in food safety programs.

This is where the importance of an automated environmental monitoring program comes in. To be proactive requires a commitment to embracing data and digital technology. Knowing where to start to effectively pivot your digital approach can be a challenge.

Understanding the following thought process can help you to recognize areas of potential improvement and growth within your environmental monitoring program.

  • Define Your Business Objectives. Ask how profitability and production uptime is connected to food safety issues.
  • Verify Suppliers. Establish protocols for incoming product from external suppliers and validate their food safety performance and ability to maintain a clean facility.
  • Modernize Your Environmental Monitoring Program (EMP). Are you able to confirm that your EMP is being executed consistently? Across all facilities?
  • Understand Data Exhaust. See how your organization’s valuable data can be used to identify trends and accelerate root cause analysis that impact decision-making processes.

Define Your Business Objectives

Food companies large and small are being challenged to implement required processes and procedures to meet the demands of FSMA, and ultimately achieve a more proactive and preventative food safety stance. Transformation in this arena, led by government regulation, and enhanced by standards certification requirements, has highlighted the responsibility of suppliers and manufacturers to protect consumers.

Many organizations are not aware that a single failure in their food safety program could actually be the most devastating profitability risk that the organization faces today. When your organization is focused on production uptime and profitability, it can be easy to overlook the details involved in maintaining a strong food safety program. In reality, though, food safety and profitability are inextricably linked due to the risk of production interruptions that can be caused by safety issues.

Whenever a food recall occurs, it has the potential to start the dominoes falling, with major implications regarding costs, reputational damage, compliance penalties, supply chain interruption, and sales declines. Worse yet, these impacts can last for years after the actual event. By delaying both the importance of recognizing the seriousness of this risk as well as taking necessary steps to prevent it, your organization’s reputation could be on the line.

Unfortunately, planning is often sacrificed when managers fail to implement the proper technological solutions. Fulfilling fundamental documentation requirements involves a smart, automated approach. This is the best way to optimize recall prevention. By incorporating an automated EMP process, a supplier management system, and other FSMA Preventive Controls measures, suppliers ultimately improve the strength of the entire chain for their partners, consumers and themselves.

There are many other facets to food safety, but the EMP is where inspectors and auditors will look to see the indicators of contamination and the efficacy of your sanitation controls. Therefore, it is critical that your organization exhibit not only that you are on top of things and are following your EMP procedures consistently, but that you can analyze and pinpoint issues as they arise, and that you have a track record of corrective actions in response to those issues. This, in-turn, allows you to see where your business objectives are most at-risk.

Regardless of which specific food industry segment your company operates in, or which governing body it reports to, it’s essential to stay informed and compliant with changing regulations in order to reduce the risk of experiencing a recall. In a strategic operational role, intelligent environmental monitoring allows companies to not only proactively work to avoid public health issues, but is vital to retaining a consistent bottom line.

Verify Suppliers

Earlier this year, the FDA heralded what they call a “New Era of Smarter Food Safety”. As technology becomes increasingly accessible, more and more companies are investigating how technology can be used to harness and control the growing complexity of supply chain implications.

The challenge of making sure your organization is doing its due diligence to prevent recalls is further complicated when incorporating outside suppliers. For example, 15% of the United State’s overall food supply is imported from more than 200 other countries, according to the FDA. Making sure the product coming into a facility is also meeting your standards is vital to preventing pathogens from entering your supply chain either through containers, people, or the incoming product itself.

The complexity grows exponentially when we contemplate what this means for tracking food safety across a supply chain of this scope. Generally suppliers are asked to provide verification for the cleanliness of the product they are bringing into your facility. However, by going a step further and establishing test points for the product when it comes in, you will be better equipped to catch pathogens before they can enter into your own supply chain and potentially contaminate other products. While you may already have a good relationship with your suppliers, being able to independently verify the safety of their products and that their own processes are working, creates a mutually beneficial relationship.

Modernize Your Environmental Monitoring Program

Food experts at the World Health Organization headquarters in Geneva discussed the critical nature of ensuring food safety across geographic boundaries, as it is an issue that affects everyone. Incidents of pathogen outbreaks around the world have a direct impact on the health of global citizens, with one in 10 people falling ill due to food contamination.

A traditional EMP allows organizations to continuously verify that their sanitation programs are working by scheduling testing, monitoring results for any signs of pathogens, and maintaining compliance with regulatory bodies. Historically, this type of program is documented in spreadsheets and three-ring binders, but today the acceptance of new tools being offered by vendors and labs are expanding offerings to modernize the monitoring process.

Food safety professionals, many of whom are trained microbiologists, should have better tools at their disposal than spreadsheets that force them to manually sift through data. All regulatory bodies in the food industry have guidelines when it comes to where, what, and when you should be testing in your facilities. Ensuring that this is happening is a basic requirement for meeting regulatory mandates.

By choosing an automated EMP, FSQA teams are able to schedule testing plans including randomization and test point coverage rules, see what testing is being performed when, and obtain all testing data in one system for ease of access before or during an audit. This offers an “always-on” source of audit data and more importantly, trending and root-cause analysis capabilities to find and define actions to remediate recurring problems.

Further, an automated EMP that is integrated with your food safety plan allows you to set up workflows and automatically notify appropriate team members according to your organization’s policies. Each remediation step can be recorded and time stamped as the corrective action moves towards completion.

Understand Data Exhaust

A dominant theme pushed forward by FSMA is the need to document all aspects of your food safety plan, from the written outline to the records indicating proper implementation. Today’s manufacturers face a time of heightened regulation, and with stricter enforcement comes greater requirements for documentation. Automated EMPs not only provide your organization insight into what is happening within your facilities for documentation, it also gives time back to your FSQA team who, instead of spending their days with three ring binders, can analyze and investigate recurring issues in your facility to look for new, innovative ways for the organization to maintain a high standard of quality.

However, effective testing also means reading, understanding and responding to results. It is not enough to simply meet the required volume and frequency of environmental testing metrics. You need to use the resulting information to effect change and improvements by lowering the likeliness of pathogens, allergens and contaminants from entering the food supply chain. The more data collected, the more it leads to true understandings. What testing might show is just the symptoms of the problem—not the root cause of a far bigger problem. As more data is available, it becomes more valuable through the insights that can be gained through trend analysis. This, in turn, moves the conversation to higher levels within the organization who care about ensuring productivity and reducing avoidable risk.

Incorporating your lab into the equation is essential. Find a lab partner that offers an automated testing program that is integrated with their LIMS. Your organization will then be in a better position to ensure results are being responded to in an appropriate time frame.

There are many diagnostic tools in use today, both in-plant and at the lab. Each of these tools generates “data exhaust” in the form of a diagnostic result. But are your data streams being integrated and analyzed to find correlations and potential cause/effect relationships? Or does your ATP device simply record its data to a dedicated laptop or spreadsheet?

Testing, combined with an automated EMP, can allow you to combine data from various diagnostic systems (on-premise or from your lab partner) to identify trends and therefore a more holistic path to remediation. For this to occur, data must be accessible, aggregated and actionable, which an automated EMP achieves.

Forward-thinking companies and facility managers are leveraging valuable software solutions to improve processes, protect reputations, minimize inefficiencies, and simplify multifaceted compliance and audit tasks. Over the next three to five years, numerous organizations will reduce their risk of food recalls by combining their EMPs with analytics capabilities to reduce food risk and improve quality using diagnostic solutions and data assets. This change will be arduous, as all digital transformations in other industries have shown. But, in the end, they have shown the value and long-term success that the food industry now needs to experience.

Matrix Sciences and Savour Food Safety International

Matrix Sciences Acquires Savour Food Safety International and Savor Safe Food

By Food Safety Tech Staff
No Comments
Matrix Sciences and Savour Food Safety International
Gina Kramer
Gina (Nicholson) Kramer, executive director of Savour Food Safety International

Matrix Sciences International, Inc. has announced the acquisition of Savour Food Safety International and Savor Safe Food, organizations that provide consulting, auditing and training services in food safety and quality, and product development.

“Gina and her teams have built two strong companies with outstanding reputations that come from providing a unique level of service to their customers,” said Robert Wiebe, CEO of Matrix Sciences, in a company press release. “This strategic investment adds to the scope and depth of our Advisory business and has real linkage to our other services. ” Gina (Nicholson) Kramer is the executive director of Savour Food Safety International and also a member of Food Safety Tech’s Editorial Advisory Board. She will continue to serve in the same role and said the acquisition will not change how Savour Food Safety does business. However, the deal will give the firm access to new services, including laboratory testing, process validation, environmental monitoring program assessments, and R&D and sensory testing. “Matrix Sciences is creating an unparalleled team of expert services to provide customers with resources of a large company while maintaining a very focused, personalized approach to service for every client,” said Kramer.

Matrix Sciences has operations nationwide to address the needs of food and beverage industries and has grown through acquisitions of Richter International and Neumann Risk Services as well.

Gina (Nicholson) Kramer will be moderating Salmonella Detection & Control Sanitation Workshop at the 2019 Food Safety Consortium Conference & Expo.

Todd Fabec, Rfxcel
FST Soapbox

Why the Modern Food Supply Chain Needs Real-Time Environmental Monitoring

By Todd Fabec
No Comments
Todd Fabec, Rfxcel

Food supply chains are becoming more complex, as food companies are increasingly faced with blind spots such as deviations from required environmental conditions, theft, fraud and poor handling. Supply chains are global; transit routes that involve road, rail, sea and air create many potential points of failure in food safety or product integrity protocol that, until recently, were largely outside a company’s control.

Learn more about how to address risks in your supply chain at the Food Safety Supply Chain Conference | May 29–30, 2019 | Rockville, MD (or attend virtually)To maintain product quality and safety, companies should implement an environmental monitoring (EM) solution that paints a complete picture of their food products as they move through the supply chain. EM solutions that utilize devices powered by the Internet of Things (IoT) allow real-time tracking of cargo and provide actionable data that can mitigate common problems, change outcomes, and protect brands and consumer health.

Let’s take a deeper look into the problems that food manufacturers and distributors are facing how EM solutions can minimize or eliminate them altogether.

Current Hurdles for Food Supply Chains

As the global network of food trade expands, the diverse challenges facing suppliers, manufacturers, distributors and logistics companies present even more of a threat to supply chains and revenue.

According to PwC agribusiness advisory partner, Greg Quinn, worldwide food fraud results in losses of at least $65 billion a year. Luxury products such as Japanese Wagyu beef and Italian olive oil are regularly counterfeited and incorrectly labeled, and buyers often have no way to trace the origins of what they are purchasing.

Companies in the food and beverage industry also face diversion and theft, which can happen at any of the many blind spots along the supply chain. In fact, food and beverages were among the top commodities targeted by thieves in North America last year, accounting for 34% of all cargo theft, according to a report by BSI Supply Chain Services and Solutions.

Food product quality and safety are also seriously compromised when cargo is poorly handled while in transit, with hazards such as exposure to water, heat and cold, or substance contamination. These types of damages can be particularly acute in the cold chain, where perishable products must be moved quickly under specific environmental conditions, including temperature, humidity and light.

Furthermore, inefficiencies in routing—from not adhering to transport regulations to more basic oversights such as not monitoring traffic or not utilizing GPS location tracking—delay shipments, can result in product spoilage and/or shortened shelf life, and cost companies money. Routing and EM have become more important in light of FSMA, which FDA designed to better protect consumers by strengthening food safety systems for foodborne illnesses.

In short, businesses that manage food supply chains need to be on top of their game to guarantee product quality and safety and care for their brand.

How Does Product Tracking Technology Work?

Real-time EM solutions are proving to be an invaluable asset for companies seeking to combat supply chain challenges. Such product tracking capabilities give companies a vibrant and detailed picture of where their products are and what is happening to them. With EM in the supply chain, IoT technology is the crucial link to continuity, visibility and productivity.

So, how does integrated EM work? Sensors on pallets, cases or containers send data over communication networks at regular intervals. The data is made available via a software platform, where users can set parameters (e.g., minimum and maximum temperature) to alert the system of irregularities or generate reports for analysis. This data is associated with the traceability data and becomes part of a product’s pedigree, making it a powerful tool for supply chain visibility.

EM Combats Supply Chain Stumbling Blocks

EM allows companies to monitor their supply chain, protect consumers and realize considerable return on investment. The technology can show companies how to maximize route efficiencies, change shippers, or detect theft or diversion in real time. Tracking solutions transmit alerts, empowering manufacturers and suppliers to use data to halt shipments that may have been adulterated, redirect shipments to extend shelf life, and manage food recalls—or avoid them altogether. Recalls are a particularly important consideration: One 2012 study concluded that the average direct cost of a recall in the United States was $10 million.

The IoT-enabled technology provides real-time information about how long an item has been in transit, if the vehicle transporting it adhered to the approved route, and, if the shipment stopped, where and for how long. This is crucial information, especially for highly perishable goods. For example, leafy greens can be ruined if a truck’s engine and cooling system are turned off for hours at a border crossing. With EM and tracking, businesses are able to understand and act upon specific risks using detailed, unit-level data.

For example, a company can find out if pallets have dislodged, fallen, or have been compromised in other ways while in transit. They can receive alerts if the doors of a truck are opened at an unscheduled time or location, which could indicate theft. Thieves target food cargo more often than other products because it’s valuable, easy to sell and perishable, and evidence of the theft does not last very long. In fact, the U.S. Federal Bureau of Investigation estimates that cargo theft costs U.S. businesses $30 billion each year, with food and beverage being one of the primary targets. Businesses need to get smart about preventative actions.

All of this actionable data is available in real time, allowing businesses to make decisions immediately, not after the fact when it’s too late. When necessary, they can divert or reroute shipments or take actions to remedy temperature excursions and other environmental concerns. This saves money and protects their reputation. Furthermore, third-party logistics firms and contracted delivery companies can be held accountable for incidents and inefficiencies.

Conclusion

As the benefits of global supply chains have grown, so have the risks. With the FSMA shifting responsibility for safety to food companies, real-time EM is a vital step to ensure cargo is maintained in the correct conditions, remains on track to its destination, and is safeguarded from theft and fraud. With the advent of IoT-enabled tracking and EM technologies, supply chain operations can be streamlined and companies can prevent waste and financial losses, protect their investments and brand identity, and gain an advantage in the marketplace.

Tim Daniels, Autoscribe Informatics
In the Food Lab

Using LIMS to Get In Shape for FDA’s Visit

By Tim Daniels
No Comments
Tim Daniels, Autoscribe Informatics

FSMA is a major reform of the U.S. food safety laws. It shifts the emphasis for food safety to preventing contamination during manufacture instead of just responding to it. As part of the implementation process, the FDA will enforce these new rules during routine random inspections at food manufacturing sites. With such a significant change in emphasis, Shawn K. Stevens of Food Industry Counsel LLC, released an FDA Inspection Checklist. The checklist is designed to help food and beverage manufacturers to prepare for an agency inspection and to ensure they have the required controls and checks in place. Before we look in more detail at the checklist, it is worth reviewing some of the underlying requirements.

Some Basic Requirements

One of the fundamental requirements of FSMA is the establishment of an environmental monitoring program at each facility. It defines the testing protocols for appropriate microorganisms and verifies that the preventative measures undertaken are effective. Clear procedures and systems are required to identify the test microorganisms most suited to the risks in their systems. They need procedures to identify the locations from which samples will be collected and the number of sites to be sampled, since the number and location must be adequate to determine whether the preventative controls are effective. They also need to identify the timing and frequency for collecting and testing samples. The tests to be conducted must be specified, including the analytical methods used and the corrective action procedures in the event that testing detects an environmental pathogen or an indicating organism. Just as importantly, all of the data associated with this testing program needs to both be recorded and accessible for audit purposes.

Acquiring and Managing Environmental Monitoring Data

Any environmental monitoring program will come at a cost to the food manufacturer. While the program itself will need to be set up by experts in the field, much of the implementation can be carried out by lesser-qualified technicians. So a key aspect is having the tools to implement a program where the most effective use is made of each resource available, as this keeps costs down. In principle, one such tool is a Laboratory Information Management System (LIMS).  The use of a LIMS is commonplace in QA Labs to record and monitor laboratory samples, tests and results in order to simplify and automate processes and procedures. There is a variety of ways in which a LIMS could facilitate the environmental monitoring process to enable best practice even by non-specialist staff. For example, analysis can be simplified if each set of test results can be automatically linked to respective sampling points in the facility. Out-of-specification test results could be linked to corrective and preventive actions (CAPA). Test failures at a particular sampling point could be used to trigger more frequent testing at that point according to pre-set criteria.

  • The data management capabilities within a LIMS make it possible to:
  • Implement data management strategies that increase security and availability of data
  • Eliminate manual assembly of data for analysis and audit
  • Make data more useful with easy retrieval/visibility

Perhaps most importantly, a properly configured LIMS can provide a suitable framework for set-up and adjustment by the environmental monitoring expert, while reducing the expertise required to operate it on a daily basis.

Laboratory Information Management Systems
The Matrix Gemini Environmental monitoring solution is an example of an information management system that uses the capabilities of a LIMS to record and monitor laboratory samples, tests and results to simplify and automate environmental monitoring in QA Labs. Image courtesy of Autoscribe Informatics

FDA Inspection Checklist

This comprehensive document highlights the steps that companies need to take to prepare for the inspection process, navigate the inspection itself and respond to any criticisms arising from the inspection.

There are three main areas in the checklist where a LIMS could help satisfy FSMA requirements:

  1. Finalizing written food safety systems and making sure certain employees know the plans. LIMS provides the framework to set up documented food safety sampling requirements and track microbial test results over time. This facilitates recall and more detailed investigation should a sample fail.
  2. Well organized and maintained data, and ease of records access. LIMS should be capable of date and time stamping every entry and since it will contain all the test data over time, this can be easily recalled should the need arise. Typically a standard operating procedure would be developed, which will increase testing and start “out-of-specification” actions if abnormal microbial contamination is detected. LIMS can provide a full audit trail for all test data and produce reports showing result trends over time, highlighting variance and peaks in data.
  3. Proper documentation of corrective actions. In the event of failures, investigators will want to focus on the particular sample points and the “out-of-specification” actions that were initiated to investigate and resolve these failures. Typically three months of data is requested around these sample points, although up to two years’ worth of data could be requested. LIMS should allow data to be instantly pulled from the database as a report for further investigation.

FDA investigators will be most interested in what happens in the event of a failure and what learning gets incorporated into your regular regime. What happens when an out-of-specification result is obtained is the crux of preventive testing regimes. Actions might include changing sanitation methods, increasing test frequency or locations in areas of concern, segregating traffic patterns, re-training staff and so forth. Some of these actions, such as increasing test frequency, can be automated. All actions must be clearly documented, which can be done by adding appropriate records directly into the LIMS. This captures the actions that each quality improvement cycle needs in order to discover the likely root cause of any problems and how they may be avoided in the future.

All corrective actions should identify the root cause of the deviation, actions taken to prevent recurrence and, if product safety is not affected, a written conclusion (supported by factual and scientific data) that the deviation “does not create an immediate food safety issue.”

The emphasis should always be on preventive actions to remove potential points of failure before issues get into the final delivered products causing stock loss and costly recalls.

Configuring a LIMS for Environmental Monitoring

While most LIMS in principle provide the capability to handle the requirements of environmental monitoring, the system will need to be configured to do so, and this may not be a trivial exercise. The software will need to be configured to represent user requirements in terms of workflows, screen designs, menu designs, terminology, numbering schemes, report designs and much more. For many LIMS, full configuration for specific applications requires custom coding, which will require re-validation.

Once configured, LIMS can offer a practical way for food and beverage companies to document their sanitation/safety programs and instantly show written evidence of both testing and corrective actions when the FDA comes knocking.

Shawn K. Stevens, Food Industry Counsel
Food Safety Attorney

Are You Ready for an FDA Inspection?

By Shawn K. Stevens
1 Comment
Shawn K. Stevens, Food Industry Counsel

Don’t miss the Plenary Mock Food Safety Trial: Sam I Am who made Green Eggs and Ham is represented by Shawn Stevens vs. Food Safety victims represented by Bill Marler. Judged by Steve Sklare | November 30 at the 2017 Food Safety Consortium | Learn moreWith FSMA regulations coming into effect, food companies must prepare for the arrival of FDA investigators, as the agency has made it a priority to inspect U.S. food facilities, and they won’t always show up announced. Prior to an investigator’s arrival, it’s important to iron out several details in order to be adequately prepared. The following are 10 questions that every company should add to its pre-inspection checklist and make sure they are addressed before the inspection.

  1. Where will you meet? Pinpoint a place where you will host the FDA investigators. It should be a space that has enough room for them to review records, but it should not provide access to records (paper or digital) that could be viewed unsupervised.
  2. Who are the Designated Individuals? Assign a primary and secondary Designated Individual (DI) for each facility. This person serves as the liaison with the FDA investigators and should coordinate vacation time to ensure that one DI will always be available if FDA arrives. Although not required, the DI should also complete Preventive Control Qualified Individual Training.
  3. Has the written food safety plan been finalized? And, do the primary and secondary DIs know its components (i.e., GMPs, Sanitation Programs, Preventive Control Plan, Recall Plan, Environmental Monitoring Program, Foreign Supplier Verification Plan, Sanitary Transportation Plan, Food DefensePlan, and Produce Safety Plan)?
  4. Are records readily accessible? The DI should be able to immediately access any supporting records from the past three months for FDA review (FDA requires that most records are maintained for at least two years, but investigators usually ask to review the preceding three months).
  5. Have corrective actions been documented? When a deviation occurs, you must document all corrective actions. These actions should identify the deviation’s root cause and actions to prevent recurrence. If product safety is not affected, this should include a written conclusion that the deviation “does not create an immediate or direct food safety issue.”
  6. Have you conducted environmental monitoring and environmental sampling? If your company processes ready- to-eat food products that are exposed to the environment prior to packaging, FDA will require you to have an environmental monitoring program. In addition, the agency will collect 100–200 microbiological samples from your facility, so you need to know exactly what FDA will find before it arrives. By conducting your own FDA-style facility swabbing, you’ll be able to identify and immediately correct any hidden problems. It’s also important to develop your swabbing and testing plan with the help of legal counsel so that  the final testing results are confidential.
  7. Do you have a “No Photographs” policy? If not, you should. FDA Investigators will often insist on taking photographs while inspecting the processing environment. If your corporate policy prohibits visitors from taking photographs, you may in some cases be able to prevent FDA from taking pictures as well.
  8. Do you have a “Do Not Sign” policy? Sometimes, FDA Investigators will insist that a company representative sign a statement or affidavit during an inspection. You’re not legally obligated to do sign such a document. You should develop a policy stating you will neither sign nor acknowledge any written statements presented by FDA Investigators.
  9. Have you identified a suitable “on call” food industry lawyer? Add a food industry lawyer familiar with the inspection process to the company’s emergency contact list. This lawyer should be notified and remain “on call” during the inspection and serve as a resource to help answer any regulatory or investigator-related questions that arise during the process.
  10. Did you conduct a mock FDA inspection? One of the most effective ways to prepare for an FDA visit is to conduct a mock inspection. Food industry consultants and/or lawyers can visit your facility and play the role of the Investigator. Ask them to review your programs to identify possible regulatory shortfalls, and work with you to implement strategies that will strengthen your programs and reduce your regulatory exposure.

There are several more points to add to your pre-inspection checklist. To get the rest, attend the webinar, FDA Inspection Readiness Checklists, on March 28.

Listeria

How One Company Eliminated Listeria Using Chlorine Dioxide Gas

By Kevin Lorcheim
No Comments
Listeria

The previous article discussed the various decontamination options available to eliminate Listeria. It was explained why the physical properties of gaseous chlorine dioxide make it so effective. This article focuses on one company’s use of chlorine dioxide gas decontamination for both contamination response and for preventive control.

The summer of 2015 saw multiple ice cream manufacturers affected by Listeria monocytogenes. The ice cream facility detailed in this article never had a supply outage, but ceased production for a short amount of time in order to investigate and correct their contamination. After a plant-wide review of procedures, workflows, equipment design and product testing, multiple corrective actions were put into place to eliminate Listeria from the facility and help prevent it from returning. One such corrective action was to decontaminate the production area and cold storage rooms using chlorine dioxide gas. This process took place after the rest of the corrective actions, so as to decontaminate the entire facility immediately before production was set to resume.

Responsive Decontamination

The initial decontamination was in response to the Listeria monocytogenes found at various locations throughout the facility. A food safety investigation and microbiological review took place to find the source of the contamination within the facility in order to create a corrective action plan in place. Listeria was found in a number of locations including the dairy brick flooring that ran throughout the production area. A decision was made to replace the flooring, among other equipment upgrades and procedural changes in order to provide a safer food manufacturing environment once production resumed. Once the lengthy repair and upgrade list was completed, the chlorine dioxide gas decontamination was initiated.

The facility in question was approximately 620,000 cubic feet in volume, spanning multiple rooms as well as a tank alley located on a different floor. The timeline to complete the decontamination was 2.5 days. The first half-day consisted of safety training, a plant orientation tour, a meeting with plant supervisors, and the unpacking of equipment. The second day involved the setup of all equipment, which included chlorine dioxide gas generators, air distribution blowers, and a chlorine dioxide gas concentration monitor. Gas injection tubing was run from the chlorine dioxide gas generators throughout the facility to approximately 30 locations within the production area. The injection points were selected to aid its natural gaseous distribution by placing them apart from one another. Gas sample tubing was run to various points throughout the facility in locations away from the injection locations to sample gas concentrations furthest away from injection points where concentrations would be higher. Sample locations were also placed in locations known to be positive for Listeria monocytogenes to provide a more complete record of treatment for those locations. In total, 14 sample locations were selected between plant supervisors and the decontamination team. Throughout the entire decontamination, the gas concentration monitor would be used to continuously pull samples from those locations to monitor the concentration of chlorine dioxide gas and ensure that the proper dosage is reached.

As a final means of process control, 61 biological indicators were brought to validate that the decontamination process was effective at achieving a 6-log sporicidal reduction. 60 would be placed at various challenging locations within the facility, while one would be randomly selected to act as a positive control that would not be exposed to chlorine dioxide gas. Biological indicators provide a reliable method to validate decontamination, as they are produced in a laboratory to be highly consistent and contain more than a million bacterial spores impregnated on a paper substrate and wrapped in a Tyvek pouch. Bacterial spores are considered to be the hardest microorganism to kill, so validating that the process was able to kill all million spores on the biological indicator in effect also proves the process was able to eliminate Listeria from surfaces. The biological indicators were placed at locations known to be positive for Listeria, as well as other hard-to-reach locations such as the interior of production equipment, underneath equipment and inside some piping systems.

In order to prepare the facility for decontamination, all doors, air handling systems, and penetrations into the space were sealed off to keep the gas within the production area. After a safety sweep for personnel, the decontamination was performed to eliminate Listeria from all locations within the production area.

Click page 2 to continue reading.

Maria Fontanazza, Zephyr Wilson, Food Safety Consortium

Encourage Employees to Find Listeria

By Food Safety Tech Staff
No Comments
Maria Fontanazza, Zephyr Wilson, Food Safety Consortium

Building the right food safety culture around environmental monitoring requires a realistic approach to your processes. “Culture starts with understanding your process,” Zephyr Wilson, product manager at Roka Bioscience told Food Safety Tech at the 2016 Food Safety Consortium. “You need to ask questions—a lot of questions.”

In the following video, Wilson talks about food safety culture in the context of environmental monitoring and how companies should approach environmental monitoring. “Understand all of your processes,” she said. “Take an honest look at your metrics and make sure you’re encouraging your employees to find the Listeria.”

She also reviews the steps a company should take when undergoing self-auditing, and encourages companies to work under the direction of an attorney to ensure that all results are confidential.