Tag Archives: foodborne illness

Wawona Bagged Peaches, ALDI

Bagged Peaches from ALDI Recalled Following Salmonella Outbreak

By Food Safety Tech Staff
No Comments
Wawona Bagged Peaches, ALDI
Wawona Bagged Peaches, ALDI

As a precautionary measure, ALDI is voluntarily recalling assorted peaches received from its supplier, Wawona Packing Company, due to possible Salmonella contamination.

–UPDATE AUGUST 31, 2020 — Prima Wawona has recalled bagged, bulk and loose peaches that were distributed nationwide to retailers that include ALDI, Food Lion, Hannaford, Kroger, Target, Walmart and Wegmans. As of August 28, the CDC reported the outbreak of Salmonella infections reached 78 cases across 12 states.

In addition, the recall of Prima Wawona peaches has extended to Canada, Singapore and New Zealand. FDA states that the products may have been shipped to Australia, Canada, China, Costa Rica, Ecuador, El Salvador, Guatamala, Honduras, Mexico, Panama, the Philippines, Singapore, Taiwan and the United Arab Emirates.

–END UPDATE–

Do not eat, sell or serve Wawona-brand bagged peaches from ALDI stores, says the FDA. ALDI issued a voluntary recall of two-pound clear plastic bags of peaches from Wawona Packing Company, LLC following a multistate outbreak of Salmonella Enteritidis that has been linked to the product. The peaches were sold in ALDI stores from June 1 until present, and as of August 19, the CDC reported 68 cases of Salmonella infections across nine states, with 14 hospitalizations. No deaths have been reported

“FDA’s traceback investigation is ongoing to identify the source of this outbreak and to determine if potentially contaminated product has been shipped to additional retailers,” the agency stated in an investigation update.

FDA

More Cases of Cyclospora Reported from Bagged Salads, Pathogen Found in Irrigation Canal

By Food Safety Tech Staff
No Comments
FDA

Learn more about food safety supply chain management & traceability during the 2020 Food Safety Consortium Virtual Conference SeriesThe FDA and CDC have been investigating a multistate outbreak of Cyclospora involving bagged salads from Fresh Express since June. Although the products were recalled and should no longer be available in retail locations, the CDC continues to report more cases. As of August 12, 2020, the CDC counted 690 people with laboratory-confirmed Cyclospora infections throughout 13 states. Thirty-seven people have been hospitalized, and no deaths have been reported.

As the FDA conducted its traceback investigation to find the source of the outbreak linked to the Fresh Express products, the agency was able to identify several farms. It analyzed water samples from two public access points along a regional water management canal (C-23) west of Port St. Lucie, Florida. Using the FDA’s validated testing method, the samples tested positive for Cyclospora cayetanensis. However, it is important to note that the Cyclospora found might not be a direct match to the pathogen found in the clinical cases.

According to FDA: “Given the emerging nature of genetic typing methodologies for this parasite, the FDA has been unable to determine if the Cyclospora detected in the canal is a genetic match to the clinical cases, therefore, there is currently not enough evidence to conclusively determine the cause of this outbreak. Nevertheless, the current state of the investigation helps advance what we know about Cyclospora and offers important clues to inform future preventive measures.”

The agency’s traceback investigation is complete, but the cause or source of the outbreak has not been determined. The investigation also revealed that carrots are no longer of interest at as part of the outbreak, but red cabbage and iceberg lettuce are still being investigated. FDA is also working with Florida and the area’s local water district to learn more about the source of Cyclospora in the canal.

LIMS, Laboratory information management system, food safety

How Advanced LIMS Brings Control, Consistency and Compliance to Food Safety

By Ed Ingalls
No Comments
LIMS, Laboratory information management system, food safety

Recent food scandals around the world have generated strong public concerns about the safety of the foods being consumed. Severe threats to food safety exist at all stages of the supply chain in the form of physical, chemical and biological contaminants. The current pandemic has escalated the public’s concern about cross contamination between people and food products and packaging. To eliminate food risks, manufacturers need robust technologies that allow for reliable monitoring of key contaminants, while also facilitating compliance with the ISO 17025 standard to prove the technical competence of food testing laboratories.

Without effective data and process management, manufacturers risk erroneous information, compromised product quality and regulatory noncompliance. In this article, we discuss how implementing a LIMS platform enables food manufacturers to meet regulatory requirements and ensure consumer confidence in their products.

Safeguarding Food Quality to Meet Industry Standards

Food testing laboratories are continually updated about foodborne illnesses making headlines. In addition to bacterial contamination in perishable foods and ingredient adulteration for economic gains, chemical contamination is also on the rise due to increased pesticide use. Whether it is Salmonella-contaminated peanut butter or undeclared horsemeat inside beef, each food-related scandal is a strong reminder of the importance of safeguarding food quality.

Food safety requires both preventive activities as well as food quality testing against set quality standards. Establishing standardized systems that address both food safety and quality makes it easier for manufacturers to comply with regulatory requirements, ultimately ensuring the food is safe for public consumption.

In response to food safety concerns, governing bodies have strengthened regulations. Food manufacturers are now required to ensure bacteria, drug residues and contaminant levels fall within published acceptable limits. In 2017, the ISO 17025 standard was updated to provide a risk-based approach, with an increased focus on information technology, such as the use of software systems and maintaining electronic records.

The FDA issued a notice that by February 2022, food testing, in certain circumstances, must be conducted in compliance with the ISO 17025 standard. This means that laboratories performing food safety testing will need to implement processes and systems to achieve and maintain compliance with the standard, confirming the competence, impartiality and consistent operation of the laboratory.

To meet the ISO 17025 standard, food testing laboratories will need a powerful LIMS platform that integrates into existing workflows and is built to drive and demonstrate compliance.

From Hazard Analysis to Record-Keeping: A Data-Led Approach

Incorporating LIMS into the entire workflow at a food manufacturing facility enables the standardization of processes across its laboratories. Laboratories can seamlessly integrate analytical and quality control workflows. Modern LIMS platforms provide out-of-the-box compliance options to set up food safety and quality control requirements as a preconfigured workflow.

The requirements set by the ISO 17025 standard build upon the critical points for food safety outlined in the Hazard Analysis and Critical Control Points (HACCP) methodology. HACCP, a risk-based safety management procedure, requires food manufacturers to identify, evaluate and address all risks associated with food safety.

LIMS, laboratory information management system
LIMS can be used to visualize control points for HACCP analysis according to set limits. Graphic courtesy of Thermo Fisher Scientific.

The systematic HACCP approach involves seven core principles to control food safety hazards. Each of the following seven principles can be directly addressed using LIMS:

  • Principle 1. Conduct a hazard analysis: Using current and previous data, food safety risks are thoroughly assessed.
  • Principle 2. Determine the critical control points (CCPs): Each CCP can be entered into LIMS with contamination grades assigned.
  • Principle 3. Establish critical limits: Based on each CCP specification, analytical critical limits can be set in LIMS.
  • Principle 4. Establish monitoring procedures: By defining sampling schedules in LIMS and setting other parameters, such as frequency and data visualization, procedures can be closely monitored.
  • Principle 5. Establish corrective actions: LIMS identifies and reports incidents to drive corrective action. It also enables traceability of contamination and maintains audit trails to review the process.
  • Principle 6. Establish verification procedures: LIMS verifies procedures and preventive measures at the defined CCPs.
  • Principle 7. Establish record-keeping and documentation procedures: All data, processes, instrument reports and user details remain secured in LIMS. This information can never be lost or misplaced.

As food manufacturers enforce the safety standards set by HACCP, the process can generate thousands of data points per day. The collected data is only as useful as the system that manages it. Having LIMS manage the laboratory data automates the flow of quality data and simplifies product release.

How LIMS Enable Clear Compliance and Optimal Control

Modern LIMS platforms are built to comply with ISO 17025. Preconfigured processes include instrument and equipment calibration and maintenance management, traceability, record-keeping, validation and reporting, and enable laboratories to achieve compliance, standardize workflows and streamline data management.

The workflow-based functionality in LIMS allows researchers to map laboratory processes, automate decisions and actions based on set criteria, and reduce user intervention. LIMS validate protocols and maintain traceable data records with a clear audit history to remain compliant. Data workflows in LIMS preserve data integrity and provide records, according to the ALCOA+ principles. This framework ensures the data is Attributable, Legible, Contemporaneous, Original and Accurate (ALCOA) as well as complete, consistent and enduring. While the FDA created ALCOA+ for pharmaceutical drug manufacturers, these same principles can be applied to food manufacturers.

Environmental monitoring and quality control (QC) samples can be managed using LIMS and associated with the final product. To plan environmental monitoring, CCPs can be set up in the LIMS for specific locations, such as plants, rooms and laboratories, and the related samples can then be added to the test schedule. Each sample entering the LIMS is associated with the CCP test limits defined in the specification.

Near real-time data visualization and reporting tools can simplify hazard analysis. Managers can display information in different formats to monitor critical points in a process, flag unexpected or out-of-trend numbers, and immediately take corrective action to mitigate the error, meeting the requirements of Principles 4 and 5 of HACCP. LIMS dashboards can be optimized by product and facility to provide visibility into the complete process.

Rules that control sampling procedures are preconfigured in the LIMS along with specific testing rules based on the supplier. If a process is trending out of control, the system will notify laboratory personnel before the product fails specification. If required, incidents can be raised in the LIMS software to track the investigation of the issue while key performance indicators are used to track the overall laboratory performance.

Tasks that were once performed manually, such as maintaining staff training records or equipment calibration schedules, can now be managed directly in LIMS. Using LIMS, analysts can manage instrument maintenance down to its individual component parts. System alerts also ensure timely recalibration and regular servicing to maintain compliance without system downtime or unplanned interruptions. The system can prevent users from executing tests without the proper training records or if the instrument is due for calibration or maintenance work. Operators can approve and sign documents electronically, maintaining a permanent record, according to Principle 7 of HACCP.

LIMS allow seamless collaboration between teams spread across different locations. For instance, users from any facility or even internationally can securely use system dashboards and generate reports. When final testing is complete, Certificates of Analysis (CoAs) can be autogenerated with final results and showing that the product met specifications. All activities in the system are tracked and stored in the audit trail.

With features designed to address the HACCP principles and meet the ISO 17025 compliance requirements, modern LIMS enable manufacturers to optimize workflows and maintain traceability from individual batches of raw materials all the way through to the finished product.

Conclusion

To maintain the highest food quality and safeguard consumer health, laboratories need reliable data management systems. By complying with the ISO 17025 standard before the upcoming mandate by the FDA, food testing laboratories can ensure data integrity and effective process management. LIMS platforms provide laboratories with integrated workflows, automated procedures and electronic record-keeping, making the whole process more efficient and productive.

With even the slightest oversight, food manufacturers not only risk product recalls and lost revenue, but also losing the consumers’ trust. By upholding data integrity, LIMS play an important role in ensuring food safety and quality.

Alex Kinne, Thermo Fisher Scientific
In the Food Lab

Ensuring Food Safety in Meat Processing Through Foreign Object Detection

By Alex Kinne
No Comments
Alex Kinne, Thermo Fisher Scientific

The USDA estimates that foodborne illnesses cost more than $15.6 billion each year. However, biological contamination isn’t the only risk to the safety and quality of food. Food safety can also be compromised by foreign objects at virtually any stage in the production process, from contaminants in raw materials to metal shavings from the wear of equipment on the line, and even from human error. While the risk of foreign object contamination may seem easy to avoid, in 2019 alone the USDA reported 34 food recalls, impacting 17 million pounds of food due to ‘extraneous material’ which can include metal, plastic and even glass.

When FSMA went into effect, the focus shifted to preventing food safety problems, necessitating that food processors implement preventive controls to shift the focus from recovery and quarantine to proactive risk mitigation. Food producers developed Hazard Analysis and Critical Control Point (HACCP) plans focused on identifying potential areas of risk and placement of appropriate inspection equipment at these key locations within the processing line.

Metal detection is the most common detection technology used to find ferrous, non-ferrous, and stainless steel foreign objects in food. In order to increase levels of food safety and better protect brand reputation, food processors need detection technologies that can find increasingly smaller metal foreign objects. Leading retailers are echoing that need and more often stipulate specific detection performance in their codes of practice, which processors must meet in order to sell them product.

As food processors face increased consumer demand and continued price-per-unit pressures, they must meet the challenges of greater throughput demands while concurrently driving out waste to ensure maximum operational efficiencies.

Challenges Inherent in Meat Metal Detection

While some food products are easier to inspect, such as dry, inert products like pasta or grains, metal foreign object detection in meat is particularly challenging. This is due to the high moisture and salt content common in ready-to-eat, frozen and processed, often spicy, meat products that have high “product effect.” Bloody whole muscle cuts can also create high product effect.

The conductive properties of meat can mimic a foreign object and cause metal detectors to incorrectly signal the presence of a physical contaminant even when it is nonexistent. Food metal detectors must be intelligent enough to ignore these signals and recognize them as product effect to avoid false rejection. Otherwise, they can signal metal when it is not present, thus rejecting good product and thereby increasing costs through scrap or re-work.

Equipping for Success

When evaluating metal detection technologies, food processors should request a product test, which allows the processor to see how various options perform for their application. The gold standard is for the food processor to send in samples of their product and provide information about the processing environment so that the companies under consideration can as closely as possible simulate the manufacturing environment. These tests are typically provided at no charge, but care should be taken upfront to fully understand the comprehensiveness of the testing methodologies and reporting.

Among the options to explore are new technologies such as multiscan metal detection, which enables meat processors to achieve a new level of food safety and quality. This technology utilizes five user-adjustable frequencies at once, essentially doing the work of five metal detectors back-to-back in the production line and yielding the highest probability of detecting metal foreign objects in food. When running, multiscan technology allows inspectors to view all the selected frequencies in real time and pull up a report of the last 20 rejects to see what caused them, allowing them to quickly make appropriate adjustments to the production line.

Such innovations are designed for ease of use and to meet even the most rigorous retailer codes of practice. Brands, their retail and wholesale customers, and consumers all benefit from carefully considered, application-specific, food safety inspection.

Ensuring Safety

The food processing industry is necessarily highly regulated. Implementing the right food safety program needs to be a top priority to ensure consumer safety and brand protection. Innovative new approaches address these safety concerns for regulatory requirements and at the same time are designed to support increased productivity and operational efficiency.

Frank Meek, Orkin, Rollins
Bug Bytes

How to Keep Pathogen-Spreading Pests Out of Your Business

By Frank Meek
No Comments
Frank Meek, Orkin, Rollins

As food processors and retailers work tirelessly to feed the public during the current global health pandemic, pests continue to work overtime to keep their food supply on track. Filth flies, cockroaches and rodents, in particular, pose a threat to the food supply chain, especially with concerns of the transmission of pathogens at an all-time high. The last thing your business needs is an avoidable food safety incident that threatens your reputation and bottom line.

When it comes to food safety, pathogen-spreading pests have no place in your facility and pose a major public health risk. Not only can these filthy pests become a nuisance within your facility, they can also contaminate your products and spread foodborne bacteria such as Salmonella, E. coli and Listeria, which can cause illnesses.

Knowing what attracts these pests to your facility and the dangers they pose is important for effective removal. Let’s dive into the signs of cockroaches, filth flies and rodents, and the specific concerns they can cause.

Frank Meek shares his expertise in the complimentary on-demand webinar “Covert Operations: Places Pests Slide into Your Facility UnnoticedCockroaches

Cockroaches seek four things that food processing facilities provide in abundance—food, shelter, proper temperatures and water. With the ability to squeeze through tiny gaps and cracks, these dirty pests enjoy crawling under equipment, in cabinets and through drains to find their next meal. Cockroaches can be found in and around almost any place within your facility. They’re capable of carrying harmful bacteria that they can spread from one location to another. Look out for droppings, cast skins or egg cases, which might signal a cockroach problem.

Filth Flies

You may think these types of flies have no desire to be inside, but they are in fact happy to go wherever the conditions are right. The most common filth fly is the housefly. These winged pests can carry and spread more than 100 disease-causing pathogens including bacteria, fungi and viruses. These can cause illnesses such as cholera, dysentery and infantile diarrhea. Filth flies in your facility can lead to a major public health issue if your food becomes contaminated.

Rodents

One of the filthiest pests around, rodents can contaminate your food supply, destroy or consume products and cause structural damage to your facility. Like cockroaches, mice and rats can fit through relatively small spaces to find food and water. With sightings on the rise during the COVID-19 pandemic, you’ll want to keep an eye out for rodents near your food products. These mighty chewers pose a public health threat as they can transmit diseases such as hantavirus and lymphocytic choriomeningitis (LCM) via their urine and droppings.

The presence of these vermin in your facility threatens public health. Additionally, an infestation can slow down the supply chain by causing businesses to recall contaminated foods.

A rigorous sanitation routine is one of the most effective ways to proactively manage pests like cockroaches, rodents and filth flies. Regularly sanitizing and disinfecting your facility can help eliminate any pathogens left behind on hard surfaces and remove the attractants for which they search. While cleaning removes dirt and buildup, sanitization and disinfection kill bacteria and pathogens, reducing the risk of a food safety issue.

Including the following tips in your cleaning routine can help keep your products and reputation safe from harm.

  • Clean out drains routinely with an enzymatic cleaning solution that can break down the organic grime.
  • Disinfect high-touch hard surfaces with a proper and low-toxicity disinfectant to kill bacteria and pathogens that can cause food illnesses.
  • Move dumpsters away from your building to reduce flies being attracted to and then gaining easy entry into your facility.
  • Wipe spills as soon as they occur to prevent them from becoming a sticky paradise for flies and cockroaches.
  • Practice good hygiene in your work environment and ensure employees are washing their hands regularly and keeping break rooms free of trash and leftovers.

Implementing exclusion practices such as sealing cracks, gaps and holes in walls with a proper sealant can also help you keep pests out. Budget allowing, consider investing in insect light traps and mechanical traps to help reduce flying insects inside.

Communication with your suppliers and distributors is also important to ensure food safety. If your partners implement similar measures, you’re more likely to protect the public from harmful diseases. Furthermore, customers will continue to trust your business.

While following these tips can help reduce the chances of a pest infestation, it’s not always possible to keep pests and the pathogens they spread out of your food processing facility. Work with a trained pest control specialist to develop a customized prevention program for your business as each type of pest requires specific treatment. They can also help you schedule inspections to identify conditions in and around your facility that may attract flies, cockroaches and rodents, among other pests.

Wendy Stanley, Radley Corp.
FST Soapbox

The Future of Food Production: IoT and Blockchain

By Wendy Stanley
1 Comment
Wendy Stanley, Radley Corp.

Since the early 20th century, food safety has been a paramount concern for consumers in the United States. Upton Sinclair’s The Jungle, which painted a bleak, brutal, and downright disgusting picture of turn-of-the-century food processing facilities led to the creation of some of the country’s first food safety laws. Today, federal agencies and statutes make up a comprehensive food safety system to ensure that the growth, distribution and consumption of foods are safe from start to finish.

While food safety has significantly improved in the century since Sinclair’s time, stories of major outbreaks of foodborne illnesses continue to pop up across the country. Over the past few years, a significant number of outbreaks as a result of pathogens have made the headlines. To mitigate the threat of public health crises and ensure food production and distribution is safe and secure, companies must rely on modern technology to trace the movement of food across the entire supply chain.

How Technology Is Changing the Food Industry

Technology is a powerful, innovative force that has changed the way even well established companies must do business in order to stay relevant. From easier access to nutritional information to digital solutions that make food manufacturing and distribution more efficient, greater consumer awareness driven by technology empowers consumers to make decisions that can greatly affect the food industry’s bottom line.

Technology-driven accountability is playing one outsized role in allowing consumers to make better choices about the foods they consume and purchase. Social media and smartphone apps connect consumers to a wealth of resources concerning the harmful effects of certain ingredients in their food, the source of products, and how particular items are made and produced. In 2015, for example, The Campbell Soup Company removed 13 ingredients from its traditional soup recipes as a result of a greater public demand to understand food sources. Neither food giants nor small producers should expect to remain immune from greater public scrutiny over food health and safety.

Nutritional research is also helping change the conversation around food, granting nutritionists and consumers alike greater access to food-related data. Through easily accessible scholarly journals, apps that provide real-time nutrition information, and meal tracking apps that help users log and understand what they’re eating, consumers can gain a better understanding of nutrition to make more informed choices about their daily food intake. Researchers can also use food-tracking apps to make discoveries about consumer behavior and foods that are eaten.

Technology is also being used to tackle food waste, one of the most pervasive problems facing the food industry. One-third of the total amount of food produced globally, amounting to nearly $1.2 trillion, goes to waste every year. Solving this pervasive crisis has become an industry imperative that is being tackled through a variety of innovative technologies to improve shelf-life, dynamically adjust pricing based on sell-by dates, and allow restaurants to automatically monitor their daily waste.

In the food manufacturing sector, digitally-connected supply chain systems are providing greater visibility into the production of foods and beverages. Supplier management technology delivers data that can be used to optimize processes and improve quality in real-time, making it easy to adjust to consumer demands, respond to logistics challenges, and boost government compliance. The enhanced operational benefits offered through improved supply chain visibility allows manufacturers to produce products faster, safer, and with greater transparency.

Online ordering has also ushered in a new era of food industry behavior. The growing assortment of online ordering apps has just given the consumer more control over quickly ordering their next meal. The trend in online ordering has also allowed restaurants to experiment with new business models like virtual kitchens that offer menus that are only available online.

Connected Factory, manufacturing
The IoT adds a layer of technology to the food manufacturing process. (All photos licensed through Adobe Stock)

IoT: The Future of Food Safety

From the farm to the carryout bag, the impact of technology on the greater food industry is already evident in daily practice. Through enhanced access to data, food producers can run an efficient supply chain that reduces waste, boosts productivity, and meets consumer demand in real-time. Using a variety of online resources, consumers are empowered to quickly make well-informed food purchases that are healthier, more convenient and more sustainable than ever before.

The Internet-of-Things (IoT) adds a layer of technology to the food manufacturing process to ensure greater food safety. A broad series of networked sensors, monitors, and other Internet-connected devices, IoT technology can oversee the entire food manufacturing and distribution process from the warehouse to the point of sale. Boosting transparency across the board, intelligent sensors and cameras can transform any food manufacturing operation into a highly visible, data-backed process that allows for better decision-making and improved real-time knowledge.

While IoT technology is a powerful tool that can improve the efficiency of restaurants and provide enhanced customer experiences, some of its greatest potential lies in its ability to safely monitor food preparation and production. Live data from IoT devices makes it possible to closely monitor food safety data points, allowing manufacturers and restaurants to reduce the risks of foodborne illness outbreaks through enhanced data collection and automated reporting.

Domino’s Pizza, for instance, embraced IoT technology to enhance management processes and monitor the food safety of its products. In the past, restaurants have relied on workers to record food temperatures, a practice that was occasionally overlooked and could lead to issues with health inspectors. Using IoT devices for real-time temperature monitoring, Domino’s automatically records and displays temperature levels of a store’s production, refrigeration, and exhaust systems, allowing employees to view conditions from a live dashboard.

In addition to boosting food safety, the comprehensive monitoring offered by IoT technology can help food companies reduce waste, keep more effective records, and analyze more data for improved operations.

IoT isn’t just a safe solution for improving food safety: It’s a smart solution.

Blockchain: The Future of Food Traceability

The ubiquity of QR codes has made it easy for consumers to quickly gain access to information by scanning an image with their smartphone. From accessing product manuals to downloading songs, QR codes make it simple to provide detailed and relevant content to users in a timely manner.

Blockchain enhances the safety of the business of food production itself.

Blockchain technology provides a powerful opportunity to provide consumers with similar information about food safety. Able to instantaneously trace the lifecycle of food products, blockchain can report a food’s every point of contact throughout its journey from farm to table. By scanning a QR code, for instance, users can quickly access relevant information about a food product’s source, such as an animal’s health, and welfare. Shoppers at Carrefour, Europe’s largest retailer, area already using blockchain traceability to track the stage of production of free-range chickens across France.

Walmart piloted a blockchain implementation by tracing a package of sliced mangoes across every destination until it hit store shelves, from its origin at a farm in Mexico to intermittent stops at a hot-water treatment plant, U.S processing plant, and cold storage facility. Real-time product tracing can be conducted in just two seconds, enabling Walmart and other vendors to provide consumers with access to food safety information that could easily be updated should an outbreak or contamination occur.

Blockchain’s inherent transparency not only makes it possible to identify the safety of food production; it also enhances the safety of the business of food production itself. Because blockchain is based upon an immutable, anonymous ledger, record keeping and accounting can be made more secure and less prone to human error. Payments to farmers and other food suppliers can also become more transparent and equitable.

The High Tech Future of Food

Unlike the days of Sinclair’s The Jungle, food transparency is the name of today’s game. As consumers continue to demand greater access to better food on-demand, food producers must continue to find innovative ways of providing safe, healthy, and ethical solutions.

IoT devices and blockchain present food manufacturers with powerful technological solutions to solve complex problems. Brands choosing to rely on these innovations, such as Domino’s and Walmart, are helping ensure that food is produced, prepared and distributed with a foremost emphasis on health and safety. As these technologies continue to become more intelligent, well-connected, and embraced by leading food producers, consumers should rest assured that they’ll always be able to know exactly what they’re eating, where it’s from, and whether it’s safe.

Shane Morris, RiskLimiter, Gleason Technology
Retail Food Safety Forum

Modern Technology’s Approach to Food Safety

By Shane Morris
No Comments
Shane Morris, RiskLimiter, Gleason Technology

Many food retailers are dependent on outdated methods of recording product food temperature that include pen, paper and trust given to employees to remember to complete inspections. Unfortunately, this style of inspection completion can be an outlet for foodborne Illness outbreaks. As technologies advance to offer real-time reporting, managing such vital inspections and reports has never been so simple while drastically reducing risk and increasing consumer safety.

Food service management should be asking the following questions on a daily basis:

  • What food items passed & failed the cooling/cooking process?
  • Why did these items fail and what is the monetary value of product loss?
  • Have safety & operational checklist logs been completed on time?
  • What corrective actions were issued?
  • Have temperature-controlled cases failed within the last 24 hours?

With recent breakthroughs in food safety technology, the answers to the above questions can be found in your email inbox, online dashboard or mobile application. There are technologies available that give food service providers the ability to efficiently track and manage their food safety efforts by digitizing any type of food safety, quality assurance and sanitation inspections. One such technology uses a dual infrared/probe Bluetooth thermometer and real-time temperature sensors to help complete food safety temperature checks as well as bringing automation to cooling, cooking, and “time as temp” logs. This kind of technology can be integrated into food safety and risk management tools such as sensor monitoring or location-driven inspection technology.

This proprietary Bluetooth thermometer uses a dual infrared/probe and real-time temperature sensors. Image courtesy of RiskLimiter.

Sufficient inspection software is not just a format for checklist completion. Software developed for the food service industry is behavioral based, meaning the software will guide inspectors to their next question and corrective action; or it automates the processes all together. This includes reminding inspectors when inspections are due in addition to providing snap shots to management on the status of said inspections with the ability to easily pull all data from the cloud.

Automated Logs for Cooking, Cooling and ‘Time as Temp’

Before taking a closer look at how new technology is shaping cooling logs, cooking logs, and time as a public health control; the following are a few terms to remember:

  • Cooling & Cooking Logs: Recording of food product temperatures during cooking & cooling cycles that meet both time and temperature constraints outlined by the FDA.
  • Time as a Public Health Control: Food product whose holding compliance is measured not by temperature but by time spent in the range of 41° F – 135° F after either being cooled below 41° F or heated above 135° F, as outlined by the FDA.
  • Strategy: What is being done with the food product? Is it being cooked, cooled or held for Time as a Public Health Control?
  • Phase: Time and/or temperature constraints set within the strategy. For example, cooling product from 135° F to 70° F within two hours or cooking to 165° F before being served.

As one of the most groundbreaking forms of food safety inspections, automated cooling and cooking logs create the ability to customize strategies for such processes. Cooling and cooking logs are an important aspect of food safety for their ability to complete the product lifecycle that can often times be overlooked. Such logs also help to ensure food product is cooked to proper temperatures before it is served to customers. Cooling log strategies look for product to be cooled from 135° F to 70° F within two hours and from 70° F to 41° F within four hours. Cooking logs are built in similar fashion but may vary on the type of product.

Proactive technology allows food service personnel to automate the cooling and cooking process with sensors that record and save product temperatures during cooking and cooling strategies. Once temperature thresholds are succeeded or anticipated to be missed, customized alerts can notify employees that the food is either ready to be served or that action is needed to avoid product loss.

For example, cooling a batch of rotisserie chickens would typically require an employee to manually check the product temperature every 30 minutes to ensure the rotisserie chickens are being cooled properly. With new technology, this same employee can insert a food-grade sensor probe into one or more of the chickens and walk away. The employee can reference a mobile application and real-time push notifications to ensure the chickens are cooling from 135° F to 70° F within two hours and from 70° F to 41° F within four hours. If the software’s algorithms predict that the rotisserie chickens will not meet the conditions set in the phase, proactive push notifications will be sent to the employee for specific action to ensure proper cooling, which avoids product loss and consumer claims related to foodborne illness. Using this method also allows for overnight cooling logs in addition to saving labor hours, all while eliminating paper.

As demand for increased food safety practices continues to climb, so will the capabilities of behavioral based inspection technology. Equipped with industry leading software engineers along with dual purpose customer support and onboarding services, this space will expand on its software and hardware capabilities to replace all outdated methods of inspection processes.

Megan Nichols
FST Soapbox

How to Prevent Foodborne Pathogens in Your Production Plant

By Megan Ray Nichols
No Comments
Megan Nichols

Foodborne pathogens, such as bacteria and parasites in consumable goods, can result in illnesses and deaths, wreaking havoc on residents of states and countries. The companies at fault often face severe damage to their reputation as people fear that continuing to do business with a brand is not safe. Moreover, if the affected enterprises do not take decisive steps to prevent the problem from happening again, they may receive substantial fines or closure orders.

Statistics from the U.S. federal government indicate that there are approximately 48 million cases of foodborne illnesses in the American food supply each year. Fortunately, there are proven steps that production plant managers can take to minimize the risk of foodborne pathogens. Being familiar with the preventative measures, and taking steps to implement them prevents catastrophes.

Engage with Suppliers about Their Efforts to Kill or Reduce Foodborne Pathogens

Foodborne pathogens can enter a production plant on items like fresh produce received from farm suppliers. Agricultural professionals commonly use chlorine to decontaminate goods before shipping them. However, researchers used a chlorine solution on spinach leaves to assess its effectiveness in killing common types of bacteria. The team discovered that, even after chlorine exposure, some bacteria remained viable but undetectable by industrial methods.

Foodborne pathogens can originate at farms for other reasons, too. Failing to take the proper precautions during animal slaughter can introduce contaminants into meats that end up in food production facilities. Water impurities can also pose dangers.

All production plants should regularly communicate with suppliers about the actions they take against foodborne pathogens. Food safety is a collective effort. Practicing it means following all current guidance, plus updating methods if new research justifies doing so. If suppliers resist doing what’s in their power to stop foodborne pathogens, they must realize they’re at risk for severing profitable relationships with production plants that need raw goods.

Consider Using Sensors to Maintain Safe Conditions

The Internet of Things (IoT) encompasses a massive assortment of connected products that benefit industries and consumers alike. One practical solution to enhance food safety in a production plant involves installing smart sensors that detect characteristics that humans may miss.

For example, the USDA published a temperature safety chart that explains what to do with food after a power outage. Most items that people typically keep in refrigerators become dangerous to eat if kept above 40o F for more than two hours.

Food production plants typically have resources like backup power to assist if outages occur. But, imagine a cooler that appears to work as expected but has an internal malfunction that keeps the contents at incorrect temperatures. IoT sensors can help production plant staff members become immediately aware of such issues. Without that kind of information, they risk sending spoiled food into the marketplace and getting people sick.

Researchers also developed a sensor-equipped device that detects the effectiveness of hand washing efforts. In a pilot program involving 20 locations, contamination rates decreased by 60% over a month. Most restrooms at food preparation facilities remind people to wash their hands before returning to work. What if a person takes that action, but not thoroughly enough? Specialty sensors could reduce that chance.

Install Germicidal Ultraviolet Lights

With much of the world on lockdown due to the COVID-19 pandemic, many people want to know if germicidal ultraviolet lights could kill the novel coronavirus. Researchers lack enough information to answer that question definitively. They do know, however, that germicidal ultraviolet lights kill up to 99.99% of bacteria and pathogens.

Plus, these lights are particularly useful in food production because they get the job done without harsh chemicals that could make products unsafe. Ultraviolet lights can damage the skin and eyes, so you must only run them when there are no humans in the room. However, it’s immediately safe to enter the environment after switching the lights off.

These specialized light sources do not eliminate the need for other food safety measures. Think about implementing them as another safeguard against adverse consequences.

Teach Workers about Safe Practices

Food contamination risks exist at numerous points along the supply chain. Mishandling is a major culprit that could make several parties partially responsible for a foodborne pathogen problem. For example, if a person does not wear the proper gear when handling food or stores items intended for raw consumption in places where meat juices touch them, either of those things and many others could cause issues with foodborne pathogens.

As you inform employees about which procedures to take to manage the risks, emphasize that everyone has an essential role to play in keeping products free from contaminants. If workers make ready-to-eat foods, such as packaged sandwiches, ensure they understand how to avoid the cross-contamination that happens when reusing cutting boards or utensils without washing them first.

The FDA requires domestic and foreign food facilities to analyze and mitigate risks. Employee training is not the sole aspect of staying in compliance, but it’s a major component. If a person makes a mistake due to improper or nonexistent training, that blunder could have significant financial ramifications for a food production facility.

Widely cited statistics indicate that food recall costs average more than $10 million, which is a staggering figure in itself. It doesn’t include litigation costs incurred when affected individuals and their loved ones sue companies, or the expenses associated with efforts to rejuvenate a brand and restore consumer confidence after people decide to take their business elsewhere.

Ensuring that workers receive the necessary training may be especially tricky if a human resources professional hires a large batch of temporary employees to assist with rising seasonal demands. If a higher-up tells them that time is of the essence and the new workers must be ready to assume their roles on the factory floor as soon as possible, training may get overlooked. When that happens, the outcomes could be devastating. Efficiency should never get prioritized over safety.

Stay Abreast of Emerging Risks

Besides doing your part to curb well-known threats that could introduce foodborne pathogens, spend time learning about new problems that you may not have dealt with before.

For example, scientists have not confirmed the origin of COVID-19. However, since early evidence suggested live animal sales and consumption may have played key roles, Chinese officials cracked down on the wildlife trade and imposed new restrictions on what was largely an unregulated sector cloaked in secrecy.

Much remains unknown about COVID-19, and it’s but one virus for food producers to stay aware of and track as developments occur. The ongoing pandemic is a sobering reminder not to blame specific groups or ethnicities, and to avoid jumping to hasty conclusions. It’s good practice to dedicate yourself to learning about any production risks that could introduce foodborne pathogens. Read reputable sources, and don’t make unfounded assumptions.

A Collective and Constant Effort

There is no single way to combat all sources of foodborne pathogens. Instead, anyone involved in food production or supply must work diligently together and know that their obligation to prevent issues never ceases.

Carla Zarazir, Lebanese University
FST Soapbox

Coronavirus and Food Security

By Carla Zarazir
No Comments
Carla Zarazir, Lebanese University

The novel coronavirus (COVID-19) has been quickly spreading across the globe, which triggered most affected countries to officially declare a state of public health emergency. The World Health Organization (WHO) has labeled this rather fast outbreak as pandemic. Food companies were urged to apply proper hygiene practices such as regular handwashing and surface cleaning to keep the risk of contagion at its lowest level.1 At the moment, there are many ongoing clinical trials evaluating potential treatments for COVID-19 but no specific vaccine or medicine have been publicly made available, as of this writing.

COVID-19 belongs to a family of viruses that cause respiratory issues and can be passed on directly through contact with an infected person’s body fluids (i.e, cough or sneeze discharge) and indirectly, through contact with contaminated surfaces.2 But can the virus be transmitted through edible goods?

Coronavirus Transmission through Food
According to the CDC, there is no current indication to support the transmission of COVID-19 through food since, in general, it needs a living host on which to grow. However, sharing food and beverages, especially in public places, is discouraged. Moreover, good food safety practices are highly recommended, including refrigerating, keeping raw and cooked goods separated and heating food at suitable temperature (around 75 ̊ C).3

If the consumed food is hypothetically contaminated with the virus, the stomach acid (due to its acidic nature) will immediately inactivate it. In addition, COVID-19 cannot affect the body internally via the intestines. One rare exception to the previous statement occurs when the virus gets in contact with a specific type of respiratory cells.

According to food safety experts, foodborne illnesses are generally caused by bacterial cells that have the ability to grow in food and multiply rapidly within a short amount of time. On the other hand, viruses are dormant particles floating around living cells; only when they successfully breaks into the aforementioned cells, the multiplication process can take place.1,3

General Food Safety Advice for Food Businesses

Food manufacturers must follow good hygiene and safety practices to help ensure the consistent quality and safety of their products:4,5,6

  • Purchase raw material from reputable sources
  • Cook food thoroughly and maintain safe holding temperatures
  • Clean and sanitize surfaces (such as cooking boards, refrigerators handles, etc.) and equipment
  • Properly train staff in taking extreme hygiene measures
  • Employees showing signs of infectious illness must not attend work
  • Implement appropriate risk management strategies (e.g,. encourage social distancing and endorse online meetings when applicable)
  • Number of staff in a kitchen or food preparation area should be kept to a bare minimum
  • Space out workstations and food preparation areas, when possible

References

  1. World Health Organization. (2020). Coronavirus disease: advice for the public.
  2. Food Standards Australia & New Zealand. (2020). Novel Coronavirus and Food Safety.
  3. CDC. 2020. Food Safety and Coronavirus Disease 2019 (COVID-19).
  4. Harvard Health Publishing, Harvard Medical School. (2020). Coronavirus Resource Center.
  5. European Food Safety Authority (EFSA). 2020. Coronavirus: no evidence that food is a source or transmission route.
  6. USDA.(2020). Coronavirus Disease (COVID-19).
John McPherson, rfxcel
FST Soapbox

Clear Waters Ahead? The Push for a Transparent Seafood Supply Chain

By John McPherson
No Comments
John McPherson, rfxcel

The seafood supply chain handles 158 million metric tons of product every year, 50% of which comes from wild sources. Operating in every ocean on the planet, the industry is struggling to figure out how to overcome the numerous obstacles to traceability, which include unregulated fishing, food fraud and unsustainable fishing practices. With these and other problems continuously plaguing the supply chain, distributors and importers cannot consistently guarantee the validity, source or safety of their products. Furthermore, there are limits to what a buyer or retailer can demand of the supply chain. Niche solutions abound, but a panacea has yet to be found.

In this complex environment, there are increasing calls for better supply chain management and “catch to plate” provenance. One problem, however: The industry as a whole still regards traceability as a cost rather than an investment. There are signs this attitude is changing, however, perhaps due to pressure from consumers, governments and watchdog-type organizations to “clean up” the business and address the mounting evidence that unsustainable fishing practices cause significant environmental problems. Today, we’ve arrived at a moment when industry leaders are being proactive about transparency and technologies such as mobile applications and environmental monitoring software can genuinely help reform the seafood supply chain.

A Global Movement for Seafood Traceability

There are several prominent examples of the burgeoning worldwide commitment to traceability (and, by default, the use of new technologies) in the seafood supply chain. These include the Tuna 2020 Traceability Declaration, the Global Tuna Alliance, and the Global Dialogue on Seafood Traceability. Let’s focus on the latter to illustrate the efforts to bring traceability to the industry.

The Global Dialogue on Seafood Traceability. The GDST, or the Dialogue, is “an international, business-to-business platform established to advance a unified framework for interoperable seafood traceability practices.” It comprises industry stakeholders from different parts of the supply chain and civil society experts from around the world, working together to develop industry standards to, among other things, improve the reliability of information, make traceability less expensive, help reduce risk in the supply chain, and facilitate long-term social and environmental sustainability.

On March 16, 2020, the Dialogue launched its GDST 1.0 Standards, which will utilize the power of data to support traceability and the ability to guarantee the legal origin of seafood products. These are guidelines, not regulations; members who sign a pledge commit themselves to bringing these standards to their supply chains.

GDST 1.0 has two objectives. First, it aims to harmonize data standards to facilitate data sharing up and down the supply chain. It calls for all nodes to create Electronic Product Code Information Services (EPCIS) events to make interoperability possible (EPCIS is a GS1 standard that allows trading partners to share information about products as they move through the supply chain.). Second, it defines the key data elements that trading partners must capture and share to ensure the supply chain is free of seafood caught through illegal, unreported and unregulated (IUU) fishing and to collect relevant data for resource management.

Why Transparency Is Critical

By now it’s probably clear to you that the seafood sector is in dire need of a makeover. Resource depletion, lack of trust along the supply chain, and the work of global initiatives are just a few of the factors forcing thought leaders in the industry to rethink their positions and make traceability the supply chain default.

However, despite more and more willingness among stakeholders to make improvements, the fact is that the seafood supply chain remains opaque and mind-bogglingly complex. There are abundant opportunities for products to be compromised as they change hands over and over again across the globe on their journey to consumers. The upshot is that the status quo rules and efforts to change the supply chain are under constant assault.

You may ask yourself what’s at stake if things don’t change. The answer is actually quite simple: The future of the entire seafood sector. Let’s look at a few of the most pressing problems facing the industry and how transparency can help solve them.

Illegal, unreported, and unregulated fishing. IUU fishing includes fishing during off-season breeding periods, catching and selling unmanaged fish stocks, and trading in fish caught by slaves (yes, slaves). It threatens the stability of seafood ecosystems in every ocean.

According to the Food and Agriculture Organization of the United Nations, IUU fishing accounts for as much as 26 million tons of fish every year, with a value of $10–23 billion. It is “one of the greatest threats to marine ecosystems” and “takes advantage of corrupt administrations and exploits weak management regimes.” It occurs in international waters and within nations’ borders. It can have links to organized crime. It depletes resources available to legitimate operations, which can lead to the collapse of local fisheries. “IUU fishing threatens livelihoods, exacerbates poverty, and augments food insecurity.”

Transparency will help mitigate IUU fishing by giving buyers and wholesalers the ability to guarantee the source of their product and avoid seafood that has come from suspect sources. It will help shrink markets for ill-gotten fish, as downstream players will demand data that proves a product is from a legal, regulated source and has been reported to the appropriate government agencies.

International food fraud. When the supply for a perishable commodity such as seafood fluctuates, the supply chain becomes vulnerable to food fraud, the illegal practice of substituting one food for another. (For seafood, it’s most often replacing one species for another.) To keep an in-demand product flowing to customers, fishermen and restaurateurs can feel pressure to commit seafood fraud.

The problem is widespread. A 2019 report by Oceana, which works to protect and restore the Earth’s oceans, found through DNA analysis that 21% of the 449 fish it tested between March and August 2018 were mislabeled and that one-third of the establishments their researchers visited sold mislabeled seafood. Mislabeling was found at 26% of restaurants, 24% of small markets, and 12% of larger chain grocery stores. Sea bass and snapper were mislabeled the most. These results are similar to earlier Oceana reports.

Consumer health and food safety. It’s difficult to guarantee consumer health and food safety without a transparent supply chain. End-to-end traceability is critical during foodborne illness outbreaks (e.g., E. coli) and recalls, but the complex and global nature of the seafood supply chain presents a particularly daunting challenge. Species substitution (i.e., food fraud) has caused illness and death, and mishandled seafood can carry high histamine levels that pose health risks. Consumers have expectations that they are eating authentic food that is safe; the seafood industry has suffered from a lack of trust, and is starting to realize that the modern consumer landscape demands transparency.

Why Seafood Traceability Supports the Whole Supply Chain

Most seafood supply chain actors are well-intentioned companies. They regard themselves as stakeholders of a well-managed resource whose hardiness and survival are critical to their businesses and the global food supply chain. Many have implemented policies that require their buyers to verify—to the greatest extent possible—that the seafood they procure meets minimum standards for sustainability, safety and quality.

This kind of self-regulation has been an important first step, but enforcing such standards has been hampered by the lack of validated traceability systems in a digital supply chain. Of course, it costs money to implement these systems, which has been a sticking point, but industry leaders are starting to realize the value of the investment.

Suppliers. A key benefit of traceability for suppliers (i.e., processors and manufacturers) is that it allows them to really protect their business investments. Traceability achieves this because it demonstrates to consumers and trading partners that suppliers are doing things the correct way. Traceability also gives them better control over their supply chains and improves the quality of their product—other important “indicators” for consumers and trading partners.

These advantages also create opportunities for suppliers to build their brand reputations. For example, they can engage with consumers directly, using traceability data to explain that they are responsible stewards of fish populations and the environment and that their products are sustainably sourced and legitimate.

The bottom line is that suppliers that don’t modernize and digitize their supply chains probably won’t be able to stay in business. This stark realization should make them embrace traceability, as well as adopt practices that comply with the regulations that govern their operations. And once they “get with the program,” they should also be more inclined to follow initiatives and guidelines such as the GDST 1.0 Standards. This will invariably create more trust with their customers and partners.

Brands (companies) and distributors. These stakeholders also have a lot to gain from traceability. In a nutshell, they can know exactly what they’re purchasing and have peace of mind about the products’ origins, sustainability, and legitimacy. Like suppliers, they can readily comply with regulations, such as the U.S. Seafood Import Monitoring Program (SIMP), a risk-based traceability effort that requires importers to provide and report key data about 13 fish and fish products identified as vulnerable to IUU fishing and/or seafood fraud.

And, of equal importance to their own fortunes, brands and distributors can use traceability to bolster their reputations and build and solidify their relationships with customers. Being able to prove the who, what, when, where, how, and why of the products they’re selling is a powerful branding and communications tool.

The end of the supply chain: Retailers, food service groups/providers, and consumers. High-quality products with traceable provenance mean retailers and food service companies will have better supply chain control and more “ammunition” to protect their brands. As with the stakeholders above, they’ll also garner more customer loyalty. For their part, consumers will know where their seafood comes from, be assured that their food is safe, feel good about being responsible buyers, and be inclined to purchase only products they can verify.

Transparency, Technology, Trust and Collaboration

The seafood industry is at a critical point in its very long history. It’s not a new story in business: Adapt, adopt and improve or face the consequences—in this case, government penalties, sanction from environmental groups, consumer mistrust and abandonment, and decreased revenues or outright failure.

There is one twist to the story, however: What the industry does now will affect more than just its own interests. The health of all fish species, the environment, and the future of the food supply for an ever-growing population hang in the balance.

But as we’ve demonstrated, there is good news. Supply chain transparency, driven by international initiatives and new technologies, is catching on in the industry. Though companies still struggle to see transparency as an investment, not a cost, their stances seem to be softening, their attitudes changing. The writing is on the wall.

The message I want to end with is that supply chain stakeholders should know that transparency is attainable—and it needn’t be painful. Help is available from many quarters, from government and global initiatives like the GDST to consumers themselves. Working with the right solution provider is another broad avenue leading to supply chain transparency. Technology is at the point now that companies have solid options. They can integrate their current systems with new solutions. They can consider replacing outdated and expensive-to-operate systems with less complicated solutions that, in the long run, do more for less. Or they can procure an entirely new supply chain system that closes all the gaps and jumps all the hurdles to transparency.

Whatever path the industry decides follow, the time to act is now.