Tag Archives: hazards

Melody Ge, Kestrel Management
FST Soapbox

8 Tips to Food Safety Program Development for Small and Entrepreneurial Businesses

By Melody Ge
No Comments
Melody Ge, Kestrel Management

The FSMA HARPC regulation has been in the implementation phase for approximately a year. Many small and entrepreneurial businesses are in the process of starting or finalizing the development of a food safety plan to comply with FSMA requirements. This includes program development, operational awareness and employee training. Often, small companies find this development more challenging compared to mature companies for several reasons, including a lack of resources or simply not knowing where to start.

The following eight tips can help small businesses that are developing a food safety plan to comply with FSMA.

1. Don’t be scared.

FSMA Preventive Controls is nothing scary. It is simply a series of food safety protocols and related documentation. It might seem overwhelming at the beginning with many documents and changes; however, it is actually a good method and tool to help strengthen operation lines and management.

FSMA helps businesses sustain and streamline processes. It is helpful to first map out the production process from the very beginning (when raw materials are received) through the end (when finished products leave the facility). The more details that are documented on the process, the easier and less time consuming it will be later to prevent potential risks.

2. Be familiar with the process and the FDA hazard types.

Once all processes are mapped, take time to study and get familiar with them. It will be helpful to have a team of individuals with different job functions review process maps together. The objectives are to identify the following:

  • Where is the weakness?
  • Where can weaknesses be controlled?
  • What should be monitored?
  • When is a good time to monitor each process step?

According to FDA, five hazard types need to be considered and prevented: Physical, chemical, biological, intentional adulteration and radiological. These five types should always be kept in mind when reviewing and analyzing the direct production and non-direct production processes.

3. Thoroughly understand the entire supply chain.

Supply chain management is one of the key preventive controls required by FSMA. Just like mapping out the process, FDA requires each business to have a thorough understanding and control of its supply chain to ensure the risks are minimized from raw materials to end consumers. Whether you have foreign suppliers, distribution centers or co-manufacturers, finished product safety must not be compromised by any party. If foreign suppliers are being used, FSVP (Foreign Supplier Verification Program) must be implemented and communicated to vendors.

4. Think in food safety mindset.

If your business has just been established, then congratulations! You have the opportunity to start everything right from the beginning. Take food safety into consideration throughout every step in the process and operation. Considering food safety aspects and preventing hazard types might help you make your next good business decision.

5. Get everyone involved!

Food safety is not only the food safety and quality departments’ responsibilities; it reflects the entire company’s operational structure—from building structure, security, production line, and supply chain to procurement, HR and finance. Get everyone involved, from top management to line workers. Their expertise, experiences and feedback will help the entire program’s implementation and execution. With the inputs from each department function, the food safety program will be more practical to the entire business operation and, therefore, will be more solid and sustained, especially when it comes to ongoing implementation.

6. Designate one project leader.

If FSMA program development is considered a project that the whole company engages in, a project leader is required to make the journey efficient and smooth. The leader needs to have both the company operational experience, as well as food safety knowledge. The leader plays an important role in leading the project, coordinating the timeline, prioritizing work across departments, and communicating with all levels of employees.

7. Keep everything documented and recorded.

Documentation and recordkeeping are core to the entire program. Say what you do by writing down all procedures, policies, programs and SOPs. Do what you say by demonstrating what is contained in all records kept onsite. This is not only for audit purposes, but also for your own business growth. Your own operation data is the best data to improve and modify your processes, if needed. Records can be used for trend study and analysis after years in business. Records can reveal whether methods or programs implemented are working effectively and helping the business. Records can also provide strong support/evidence when there is an unexpected event.

8. Utilize free third-party resources.

There are many technologies linking the entire world together—leverage them to learn from your peers. GFSI-recognized certification programs, such as SQF, FSSC22000 and IFS, are releasing a global market program to specifically help small business start their programs. Webinars and trainings are available on many program development and food safety hot topics to help address challenges, and there are many tools and templates available for download to assist with documentation and recordkeeping.

Although there are a lot of perspectives and aspects to be considered to comply with FSMA, compliance can be achieved one step at a time. Start by mapping out your own production process today.

What To Consider When Developing A Facility Food Safety Plan

By Adam Serfas
No Comments

No two facilities will have the same food safety plan, as each should address the specific needs of that facility. Before beginning your draft, there are several critical factors to consider. Use the guide below as a checklist to review before starting or revisiting your own food safety plan—the following tips can be applied to all food and beverage processors and manufacturers.

1. Review current legislation that applies to your industry

The food safety sector evolves rapidly. Keep your finger on the pulse of updates and changes, whether current or forthcoming, to ensure that your plan is current and up to code. You can quickly familiarize yourself with guidelines and regulatory bodies dealing with your industry with a handful of excellent resources. Generally, we recommend starting with the FDA website, and from there you can navigate to resources that are specific to your industry. We also recommend you make use of the FDA’s Food Safety Plan Builder to assist you in meeting requirements for Current Good Manufacturing Practice, Hazard Analysis, and Risk-Based Preventative Controls for Human Food regulation.

2. Identify current potential risks in your facility

Once familiar with your industry requirements and inspection standards, the next step is to identify any current potential food safety risks specific to your facility. Be sure to incorporate employees at all levels while detailing these potential hazards or concerns. Oftentimes, employees at the management level will make note of things different than employees working on the plant floor. And the delivery truck driver’s perspective will vary from those of your janitorial team. Aim to build a comprehensive list, noting everything from obvious high-risk areas, to what might be trivial or unlikely facility hazards. The more robust the list, the easier your food safety plan will be to form later on.

3. Consider your facility layout

Your facility’s physical layout often determines what type of food safety plan is necessary. Ask yourself:

  • Does your facility have natural zones?
  • Is it comprised of multiple buildings?
  • Are certain defined areas more high-risk than others?
    If you answered “yes” to any of these questions, you’ll most likely want to incorporate a zone-based color-coding plan as a part of your food safety plan to ensure that all of your tools remain in their proper location and are used correctly.

4. Review the quality of your current tools
Take stock of your current tools, that includes everything used to make or process your product and everything required to clean the facility itself. Consider the tool quality—are these presentable and acceptable for an inspector to see? Do your brushes have loose bristles? Has your mop seen better days? Tools that are made of low-quality materials or are not in top shape present potential risks for a food-safe environment. Note which tools need to be replaced and perhaps consider incorporating color-coded tools if you have not yet done so, as they are a great way to step up your food safety practices and safeguard against cross contamination.

5. Review and communicate the food safety plan and training procedures

Review your current employee training materials –in particular, your cleaning and sanitation measures and food handling procedures–and hold a meeting to go over current training protocols with your team. Consider the following questions:

  • Are the expectations made clear?
  • Are there references to procedures that are no longer up to date?
  • Is there appropriate signage that can be readily referenced?
  • Is information available for non-native speakers?
  • Are the appropriate channels in place for employees to voice concerns about these training procedures?

Be sure to take notes on each of these items that need to be addressed. One of the most important pieces of a food safety plan – and something inspectors pay close attention to – is that it is properly communicated to all employees. Taking detailed notes as you discuss these procedures will be helpful in documenting your training methodology for the food safety plan and, of course, will help you to ensure that the training procedures themselves are the best they can be.

6. Consider the documentation requirements for your industry.

Your industry might require certain specific documentation for your food safety plan, which can include facility policies, procedures, safety review records, maps and more. Additionally, some governing bodies require that the food safety plan is completed by a certified individual who doesn’t necessarily need to be an employee of the facility. Review all necessary requirements to ensure that you satisfy all of these standards for your next inspection.

Should you have any questions when getting ready to start on your plan, we suggest you reach out to a company that specializes in color-coding tools, as they have experience in creating plans to accommodate all kinds of identified risks and can be a great resource.

food safety tech

Food Hazards Web Seminar Addresses Detection, Mitigation and Control

By Food Safety Tech Staff
No Comments
food safety tech

On June 1, Food Safety Tech is hosting a web seminar (also penned a “virtual conference”) about food hazards in the realm of pathogens and allergens. “Food Hazards: Detection, Mitigation & Control” begins at 11 am ET, kicking off with a presentation from Mickey Parish, Ph.D., senior science advisor at CFSAN, about the agency’s policy on Listeria monocytogenes. The following is a preview of what you’ll learn during the complimentary event (that’s right, it’s free for all attendees).

Critical Elements for a Successful Pathogen Environmental Monitoring Program

Nearly every segment of the food and pet food industries are either working on implementing pathogen environmental monitoring programs (PEMPs), or are working to optimize programs already in existence. Programs are increasing in complexity with many now covering multiple environmental pathogens, hygienic facility zones and sampling zones. Regulators and customers are stepping up requirements for aggressive, science-based PEMPs. The seven most critical elements for a successful PEMP will be discussed. These elements include: management commitment, determining the need for and stringency of the program, risk evaluation, sampling plan, sampling methods, data management and corrective actions.

Allergen Detection & Control

While global market demand for free-from food products is increasing, undeclared and mislabelled allergens, sulphites and gluten, throughout the supply chain, continue to be the number one cause of consumer product recalls.

To meet the varied regulatory landscape and protect consumers, effective preventative management systems must be implemented, verified and validated. What are the challenges, risks and opportunities for manufacturers and retailers to protect their brands? This informative session will provide insights into:

  • Government regulations and how management systems can align with the Food Safety Modernization Act (FSMA) and the Safe Food for Canadians Act
  • Successful interventions and protocols to reduce the risk of gluten and allergen related recalls
  • Differences between Management System/ Process and Product Third-Party Certifications

Pathogen Mitigation: Sanitary Design in Facilities and Sanitation Methods

This presentation will go into detail regarding pathogen mitigation strategies for food processing facilities. The relationship between hygienic design and sanitation as they factor into pathogen mitigation will also be discussed. The presentation will then examine various sanitation methods and how they can be applied within the food industry to help eliminate and control pathogens.

Each educational session will be followed by a technology spotlight and an interactive Q&A between attendees and speakers. Don’t miss out on this event—Register here!

Food Hazards: Detection, Mitigation & Control

Recorded June 1, 2018 – Runtime: 4:40:00 – Food hazards, especially pathogens and allergens, are leading causes of food recalls. Getting to the bottom of what is causing problems in a food facility requires best-in-class detection and control programs. This web seminar will educate food safety professionals about important elements in detection, mitigation and control of pathogens and allergens. Sponsored by: MilliporeSigma, Mérieux Nutrisciences, and Romer Labs.

FDA

FDA Releases Five FSMA Guidance Documents

By Food Safety Tech Staff
No Comments
FDA

Today the FDA issued five guidance documents related to FSMA with the goal of assisting food importers and producers meet provisions in the regulation.

The first two documents are related to the Foreign Supplier Verification Program (FSVP) regulation. The FDA issued the draft guidance, Foreign Supplier Verification Programs for Importers of Food for Humans and Animals, along with a small entity compliance guide. The third draft guidance is related to whether a measure provides the same level of public health protection as the corresponding requirement in 21 CFR part 112 or the PC requirements in part 117 or 507 . “This draft guidance aims to provide a framework for determining the adequacy of a process, procedure, or other action intended to provide the same level of protection as those required under the FSMA regulations for produce and for human or animal food,” according to FDA.

The FDA also released a final chapter in the draft guidance related to FSMA requirements for hazard analysis and risk-based PCs for human food. The chapter is intended to assist food facilities in complying with the supply chain program requirements.

The fifth guidance is an announcement of the FDA’s policy to exercise enforcement discretion related to the FSVP rule regarding certain grain importers that bring the product into the United States as raw agricultural commodities. “This enforcement discretion is meant to better align the FSVP rule with the exemption for non-produce RACs under the PC rules,” stated FDA.

Adam Serfas, R.S. Quality
FST Soapbox

Color Coding Helps Brewers Button Up QA Procedures

By Adam Serfas
No Comments
Adam Serfas, R.S. Quality

The passage of FSMA sparked industry-wide tightening of food safety standards. Perhaps one industry that has been affected more than others is brewing. Prior to the passage of this sweeping legislation, brewers weren’t held to the same standards as other food manufacturers and food processors. The act’s new categorization for brewers as “food” means that the FDA now has some jurisdiction over the industry in conjunction with the Alcohol and Tobacco Tax and Trade Bureau (TTB).

This increased scrutiny, particularly in the event of a recall, has caused many brewers to look to color-coding as a measure to tighten up their quality assurance protocols. Fortunately for brewers, there are many benefits to incorporating color-coding, making the process a worthwhile one.

Happy Inspectors

Perhaps the most immediate effect of incorporating color-coding in a facility is delighting any inspectors that may drop in. A color-coding plan is a documented method for evaluating potential hazards and implementing precautionary measures to preventing contamination—all things inspectors want to see. Failure to live up to these standards can result in follow up inspections and, in some cases, fines.

Proper Tool Usage

A color-coding plan indicates where and when a tool is to be used. While mistakes can still be made, a clear plan that is reflected in all tools and paired with adequate signage and training makes it much more likely that a tool will be used properly. Much of the equipment in a brewery is very expensive and can be easily damaged by using the wrong tool. For example, if an abrasive brush were to be used on a stainless steel tank, there can be irreparable damage.

Higher-Quality Tools

Tools that are color-coded are generally made at a food-grade, FDA-approved quality. This means they are much less likely to leave behind bristles, a potential contaminant you wouldn’t want finding its way into the product. Additionally, many breweries make use of caustics and acids followed by sanitizers in the cleaning process. A low-quality tool will degrade at a much higher rate as a result of coming into contact with these chemicals than a higher quality tool will. Simply put, higher quality tools last longer, saving you money in the long run.

Less Tool Wandering

A color-coding plan should indicate where a tool is used and where it is stored when it is not being used. When tools have this designated storage area they are much less likely to be carelessly misplaced. And in the event of a lost tool, it becomes much easier to recognize these tool gaps and replace as necessary sooner rather than later to ensure that the proper tool is always used for the task at hand.

Higher Efficiency

When protocols are in place for tool usage, time isn’t wasted finding the correct tool for the job. This may seem insignificant, but over time those lost minutes can add up.

Removal of Language Barriers

For facilities that employ foreign speakers, color-coding is extremely helpful in breaking down language barriers. A brewery production area can be a busy, fast-paced environment, so it is helpful to have a plan in place that is easily recognizable and understood by all employees.

It is however important to consider the fact that you may need to keep in mind the visibility of these colors for colorblind employees. It’s best to try to use high contrast colors in your plan.

Greater Traceability

Finally, in the unfortunate event of a recall, a color-coding plan helps add traceability potentially decreasing the amount of product that needs to be pulled from shelves. Certainly color-coding helps to prevent contamination issues that can cause a recall.

A well thought out color-coding plan that is carefully implemented can have numerous benefits in breweries both small and large. For questions related to drafting a color-coding plan from scratch or updating an existing plan, contacting a color-coding specialist is recommended.

USP Food Fraud Database

Why Include Food Fraud Records in Your Hazard Analysis?

By Karen Everstine, Ph.D.
2 Comments
USP Food Fraud Database

Food fraud is a recognized threat to the quality of food ingredients and finished food products. There are also instances where food fraud presents a safety risk to consumers, such as when perpetrators add hazardous substances to foods (e.g., melamine in milk, industrial dyes in spices, known allergens, etc.).

FSMA’s Preventive Controls Rules require food manufacturers to identify and evaluate all “known or reasonably foreseeable hazards” related to foods produced at their facilities to determine if any hazards require a preventive control. The rules apply both to adulterants that are unintentionally occurring and those that may be intentionally added for economically motivated or fraudulent purposes. The FDA HARPC Draft Guidance for Industry includes, in Appendix 1, tables of “Potential Hazards for Foods and Processes.” As noted during the recent GMA Science Forum, FDA investigators conducting Preventive Controls inspections are using Appendix 1 “extensively.”

The tables in Appendix 1 include 17 food categories and are presented in three series:

  • Information that you should consider for potential food-related biological hazards
  • Information that you should consider for potential food-related chemical hazards
  • Information that you should consider for potential process-related hazards

According to the FDA draft guidance, chemical hazards can include undeclared allergens, drug residues, heavy metals, industrial chemicals, mycotoxins/natural toxins, pesticides, unapproved colors and additives, and radiological hazards.

USP develops tools and resources that help ensure the quality and authenticity of food ingredients and, by extension, manufactured food products. More importantly, however, these same resources can help ensure the safety of food products by reducing the risk of fraudulent adulteration with hazardous substances.

Incidents for dairy ingredients, food fraud
Geographic Distribution of Incidents for Dairy Ingredients. Graphic courtesy of USP.

Data from food fraud records from sources such as USP’s Food Fraud Database (USP FFD) contain important information related to potential chemical hazards and should be incorporated into manufacturers’ hazard analyses. USP FFD currently has data directly related to the identification of six of the chemical hazards identified by FDA: Undeclared allergens, drug residues, heavy metals, industrial chemicals, pesticides, and unapproved colors and additives. The following are some examples of information found in food fraud records for these chemical hazards.

Undeclared allergens: In addition to the widely publicized incident of peanuts in cumin, peanut products can be fraudulently added to a variety of food ingredients, including ground hazelnuts, olive oils, ground almonds, and milk powder. There have also been reports of the presence of cow’s milk protein in coconut-based beverages.

Drug residues: Seafood and honey have repeatedly been fraudulently adulterated with antibiotics that are not permitted for use in foods. Recently, beef pet food adulterated with pentobarbital was recalled in the United States.

Heavy metals: Lead, often in the form of lead chromate or lead oxide which add color to spices, is a persistent problem in the industry, particularly with turmeric.

Industrial Chemicals: Industrial dyes have been associated with a variety of food products, including palm oil, chili powder, curry sauce, and soft drinks. Melamine was added to both milk and wheat gluten to fraudulently increase the apparent protein content and industrial grade soybean oil sold as food-grade oil caused the deaths of thousands of turkeys.

Pesticides: Fraud in organic labeling has been in the news recently. Also concerning is the detection of illegal pesticides in foods such as oregano due to fraudulent substitution with myrtle or olive leaves.

Unapproved colors/additives: Examples include undeclared sulfites in unrefined cane sugar and ginger, food dyes in wine, and tartrazine (Yellow No. 5) in tea powder.

Adulteration, chili powder, skim milk powder, olive oil
Time Series Plot of Records for Chili Powder (blue), Skim Milk Powder (green), and Olive Oil (orange)

Continue to page 2 below.

Minimizing Hazards and Fraud in Milk, IBM Research Partners with Cornell University

By Food Safety Tech Staff
1 Comment

Americans consume an estimated 600 pounds of milk and milk-based products annually, according to the USDA. In an effort to minimize the hazards in the milk supply and prevent food fraud, IBM Research and Cornell University are joining forces. Combining next-generation sequencing with bioinformatics, the research project will collect genetic data from the microbiome of raw milk samples in a real-world situation at the Cornell University dairy plant and farm in Ithaca, New York.

Specifically, IBM and Cornell will sequence and analyze the DNA and RNA of food microbiomes, which will serve as a raw milk baseline, to develop tools that monitor raw milk and detect abnormalities that could indicate safety hazards and potential fraud. The data collected may also be used to expand existing bioinformatics analytical tools used by the Consortium for Sequencing the Food Supply Chain, a project that was launched by IBM Research and Mars, Inc. at the beginning of 2015.

“As nature’s most perfect food, milk is an excellent model for studying the genetics of food. As a leader in genomics research, the Department of Food Science expects this research collaboration with IBM will lead to exciting opportunities to apply findings to multiple food products in locations worldwide.” – Martin Wiedmann, Gellert Family Professor in Food Safety, Cornell University.

“Characterizing what is ‘normal’ for a food ingredient can better allow the observation of when something goes awry,” said Geraud Dubois, director of the Consortium for Sequencing the Food Supply Chain, IBM Research – Almaden, in a press release. “Detecting unknown anomalies is a challenge in food safety and serious repercussions may arise due to contaminants that may never have been seen in the food supply chain before.”

Cornell University is the first academic institution to join the Consortium for Sequencing the Food Supply Chain.

Emulate, FDA, organ chip

Are Organs-on-Chips the Next Pioneers in Food Safety?

By Food Safety Tech Staff
No Comments
Emulate, FDA, organ chip

FDA is evaluating the use of micro-engineered chips as a potential model for studying hazards in food. Last week the agency announced a multi-year cooperative R&D agreement (CRADA) with Emulate, Inc., a manufacturer of organ-on-chip technology that “emulates human biology. The company’s Human Emulation System, a platform that includes organ-chips, instrumentation and software, recreates the natural physiology of human tissues and organs with the intention of providing a “predictive model of human response to diseases, medicines, chemicals, and foods with greater precision and detail than other preclinical testing methods, such as cell culture or animal-based experimental testing,” according to the company’s press release.

“The flexible polymer organ-chips contain tiny channels lined with living human cells and are capable of reproducing blood and air flow just as in the human body. The chips are translucent, giving researchers a window into the inner workings of the organ being studied.” – Suzanne Fitzpatrick, Ph.D., senior advisor for toxicology, CFSAN

In the agency’s blog, FDA Voice, Fitzpatrick states that the chip technology could shed light on how the body processes an ingredient in a supplement or how a toxin(s) affects cells. It could also one day lead to much less animal testing, if at all. The goal of the research, which will begin with a liver-chip, is to be able to predict how organs will respond to exposure to chemical hazards in foods, cosmetics and dietary supplements more precisely than cell culture or animal-based tests. In the future, other organ-chips may be used, including kidney, lung and intestine models.

Dr. Douglass Marshall, Chief Scientific Officer – Eurofins Microbiology Laboratories
Food Genomics

Microbiomes a Versatile Tool for FSMA Validation and Verification

By Douglas Marshall, Ph.D., Gregory Siragusa
No Comments
Dr. Douglass Marshall, Chief Scientific Officer – Eurofins Microbiology Laboratories

The use of genomics tools are valuable additions to companies seeking to meet and exceed validation and verification requirements for FSMA compliance (21 CFR 117.3). In this installment of Food Genomics, we present reasons why microbiome analyses are powerful tools for FSMA requirements currently and certainly in the future.

Recall in the first installment of Food Genomics we defined a microbiome as the community of microorganisms that inhabit a particular environment or sample. For example, a food plant’s microbiome includes all the microorganisms that colonize a plant’s surfaces and internal passages. This can be a targeted (amplicon sequencing-based) or a metagenome (whole shotgun metagenome-based) microbiome. Microbiome analysis can be carried out on processing plant environmental samples, raw ingredients, during shelf life or challenge studies, and in cases of overt spoilage.

As a refresher of FSMA requirements, here is a brief overview. Validation activities include obtaining and evaluating scientific and technical evidence that a control measure, combination of control measures, or the food safety plan as a whole, when properly implemented, is capable of effectively controlling the identified microbial hazards. In other words, can the food safety plan, when implemented, actually control the identified hazards? Verification activities include the application of methods, procedures, tests and other evaluations, in addition to monitoring, to determine whether a control measure or combination of control measures is or has been operating as intended, and to establish the validity of the food safety plan. Verification ensures that the controls in the food safety plan are actually being properly implemented in a way to control the hazards.

Validation establishes the scientific basis for food safety plan process preventive controls. Some examples include using scientific principles and data such as routine indicator microbiology, using expert opinions, conducting in-plant observations or tests, and challenging the process at the limits of its operating controls by conducting challenge studies. FSMA-required validation frequency first includes before the food safety plan is implemented (ideally), within the first 90 calendar days of production, or within a reasonable timeframe with written justification by the preventive controls qualified individual. Additional validation efforts must occur when a change in control measure(s) could impact efficacy or when reanalysis indicates the need.

FSMA requirements stipulate that validation is not required for food allergen preventive controls, sanitation preventive controls, supply-chain program, or recall plan effectiveness. Other preventive controls also may not require validation with written justification. Despite the lack of regulatory expectation, prudent processors may wish to validate these controls in the course of developing their food safety plan. For example, validating sanitation-related controls for pathogen and allergen controls of complex equipment and for how long a processing line can run between cleaning are obvious needs.

There are many routine verification activities expected of FSMA-compliant companies. For process verification, validation of effectiveness, checking equipment calibration, records review, and targeted sampling and testing are examples. Food allergen control verification includes label review and visual inspection of equipment; however, prudent manufacturers using equipment for both allergen-containing and allergen-free foods should consider targeted sampling and testing for allergens. Sanitation verification includes visual inspection of equipment, with environmental monitoring as needed for RTE foods exposed to the environment after processing and before packaging. Supply-chain verification should include second- and third-party audits and targeted sampling and testing. Additional verification activities include system verification, food safety plan reanalysis, third-party audits and internal audits.

Verification procedures should be designed to demonstrate that the food safety plan is consistently being implemented as written. Such procedures are required as appropriate to the food, facility and nature of the preventive control, and can include calibration of process monitoring and verification instruments, and targeted product and environmental monitoring testing.