Tag Archives: hazards

Susanne Kuehne, Decernis
Food Fraud Quick Bites

The Golden Goose, A Timeless Moneymaker

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Donkey, Decernis
Find records of fraud such as those discussed in this column and more in the Food Fraud Database. Image credit: Susanne Kuehne

Grimm’s Fairy Tale got it right after all: The “Golden Donkey” (German expression for “Golden Goose”) does indeed exist. In India, officials shut down a factory producing fake turmeric, chili powder and other spices and condiments. Authorities confiscated mostly inedible and hazardous ingredients, which included man-made pigments and colorants, acids, hay and last but not least, donkey dung. The health impact and where the “spices” were sold in retail are under investigation.

Resource

  1. Mishra, S. (December 16, 2020). “Police raid factory making counterfeit spices ‘out of donkey dung and acid’”. Independent.
Earl Arnold, AIB International
FST Soapbox

HACCP is the Past, Present and a Building Block for the Future

By Earl Arnold
No Comments
Earl Arnold, AIB International

“Food safety plan” is a term often used in the food industry to define an operation’s plan to prevent or reduce potential food safety issues that can lead to a serious adverse health consequence or death to humans and animals to an acceptable level. However, depending on the facility, their customers, and or regulatory requirements, the definition and specific requirements for food safety plans can be very different. To ensure food safety, it’s important that the industry finds consensus in a plan that is vetted and has worked for decades.

One of the first true food safety plans was HACCP. Developed in 1959 for NASA with the assistance of the food industry, its goal was to ensure food produced for astronauts was safe and would not create illness or injury while they were in space. This type of food safety plan requires twelve steps, the first five of which are considered the preliminary tasks.

  1. Assemble a HACCP team
  2. Describe the finished product
  3. Define intended use and consumer
  4. Create process and flow diagram
  5. Verify process and flow diagrams

This is followed by the seven principles of HACCP.

  1. Conduct the hazard analysis
  2. Identify critical control points
  3. Establish critical limits
  4. Establish monitoring requirements
  5. Establish corrective actions for deviations
  6. Procedures for verification of the HACCP plan
  7. Record keeping documenting the HACCP system

HACCP is accompanied by several prerequisites that support the food safety plan, which can include a chemical control program, glass and brittle plastics program, Good Manufacturing Practices (GMPs), allergen control program, and many others. With these requirements and support, HACCP is the most utilized form of a food safety plan in the world.

When conducting the hazard analysis (the first principle of HACCP), facilities are required to assess all products and processing steps to identify known or potential biological, chemical and physical hazards. Once identified, if it is determined that the hazard has a likelihood of occurring and the severity of the hazard would be great, then facilities are required to implement Critical Control Points (CCP) to eliminate or significantly reduce that identified hazard. Once a CCP is implemented, it must be monitored, corrective actions developed if a deviation in the CCP is identified and each of these are required to be verified. Records then also need to be maintained to demonstrate the plan is being followed and that food safety issues are minimized and controlled.

HACCP is, for the most part, the standard food safety plan used to meet the Global Food Safety Initiative (GFSI) standards. This is utilized in various third-party audit and customer requirements such as FSSC 22000, SQF, BRC, IFS and others. These audit standards that many facilities use and comply with also require the development of a food safety management system, which includes a food safety plan.

Further, HACCP is often used to demonstrate that potential food safety issues are identified and addressed. FDA has adopted and requires a regulated HACCP plan for both 100% juice and seafood processing facilities. USDA also requires the regulated development of HACCP for meat processing and other types of facilities to minimize potential food safety issues.

For facilities required to register with the FDA—unless that facility is exempt or required to comply with regulated HACCP—there is a new type of food safety plan that is required. This type of plan builds upon HACCP principles and its steps but goes beyond what HACCP requires. Under 21 CFR 117, specific additions assist in identifying and controlling additional food safety hazards that are on the rise. This includes undeclared allergen recalls, which constituted 47% of recalls in the last reportable food registry report published by FDA.

Prior to developing this plan, FDA provided recommendations for preliminary steps that can be completed and are essential in development of a robust food safety plan but are not a regulatory requirement. The steps are very similar to the preliminary tasks required by HACCP, including the following:

  1. Assemble a food safety team
  2. Describe the product and its distribution
  3. Describe the intended use and consumers of the food
  4. Develop a flow diagram and describe the process
  5. Verify the flow diagram on-site

Their recommended plan also requires a number of additional steps, including:

  1. A written hazard analysis. Conducted by or overseen by a Preventive Controls Qualified Individual (PCQI). However, this hazard analysis requires assessing for any known or reasonably foreseeable biological, chemical, physical, radiological, or economically motivated adulteration (food fraud that historically leads to a food safety issue only). You may note that two additional hazards—radiological and EMA—have been added to what HACCP calls for in the assessment.
  2. Written preventive controls if significant hazards are identified. However, similar preventive controls are different than a CCP. There are potentially four types of preventive controls that may be utilized for potential hazards, including Process Preventive Controls (the same as CCP), Allergen Preventive Controls, Sanitation Preventive Controls, Supply Chain Preventive Controls and Others if identified.
  3. A written supply chain program if a Supply Chain Preventive Control is identified. This includes having an approved supplier program and verification process for that program.
  4. A written recall plan if a facility identified a Preventive Control.
  5. Written monitoring procedures for any identified Preventive Control that includes the frequency of the monitoring what is required to do and documenting that monitoring event.
  6. Written corrective actions for identified Preventive Controls in case of deviations during monitoring. Corrective actions must be documented if they occur.
  7. Written verification procedures as required. This could include how monitoring and corrective actions are verified, procedures themselves are verified, and calibration of equipment as required. Also required is training, including a Preventive Control Qualified Individual. Additional training is required for those individuals responsible for performing monitoring, implementing corrective actions, and verification of Preventive Controls. Further, all personnel need to have basic food safety training and all training needs to be documented.

While the term “food safety plan” is used widely, it’s important that operations don’t just use the term, but enact a plan that is vetted, proven to work, and encompasses the principles of HACCP. Doing so will help ensure that their facility is producing foods that customers and consumers will know is safe.

Susanne Kuehne, Decernis
Food Fraud Quick Bites

Many Bad Apples Spoil the Bunch

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Rotten apples
Find records of fraud such as those discussed in this column and more in the Food Fraud Database. Image credit: Susanne Kuehne

Food fraud can have a substantial impact on a consumer’s health, like in this case of fruit juice that was sold (including to school lunch programs) in spite of contamination with arsenic and mycotoxins. The fruit used for the juice was decomposing, and also processed in a facility that unacceptably violated hygiene and food safety standards. The FDA filed a lawsuit against the company, which in the meantime has ceased operations.

Resource

  1. Vigdor, N. (November 10, 2020) “School Lunch Program Supplier Sold Juice With High Arsenic Levels, U.S. Says in Lawsuit”. The New York Times.

 

Susanne Kuehne, Decernis
Food Fraud Quick Bites

Things Do Not Get Better With Sage

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Sage, food fraud
Find records of fraud such as those discussed in this column and more in the Food Fraud Database. Image credit: Susanne Kuehne

Herbs remain a target for fraudsters. The latest investigation of sage samples by the Institute of Global Food Security (IGFS) at Queen’s University Belfast used a combination of spectroscopic and chemometric methods to check whether sage contained 100% of the actual herb. One quarter of samples from the UK included unapproved (fortunately, no hazardous) bulk material, such as tree leaves, some in significant concentrations of more than half of the product.

Resource

  1. Sage News”. (November 9, 2020). The Hippocratic Post.

 

Sudip Saha, Future Market Insights
FST Soapbox

Five Trends Defining the Food Industry Post-COVID

By Sudip Saha
No Comments
Sudip Saha, Future Market Insights

Food retailers and the entire food and beverage (F&B) industry are now operating very differently than they did some six months ago. The pandemic has brought immense shifts in supply chains, imposed new hazard controls, and—perhaps most importantly—turned consumer preferences upside down.

To accommodate these changes, food manufacturers, retailers, restaurants and others stepped up to innovate and secure the continuity of their services. But now, as many industries begin to drop the notion of ever going back to what once was, it’s time we started thinking about how many of the newly introduced processes will stick around for the long-term.

What will be the main trends defining the food industry as a whole post-COVID?

Learn more about COVID-19 in the food industry, technology and food safety culture during the 2020 Food Safety Consortium Virtual Conference Series  | Episodes run every Thursday through December 17Adopted Habits Aren’t Going Anywhere

The pandemic brought radical changes to our everyday lives, and it’s clear that many of the newly adopted behaviors won’t disappear overnight. Consumers will continue to rely on grocery retailers to keep them both fed and healthy while expecting minimum disruptions and a high respect for safety regulations—both in terms of handling and the state of delivered products.

Take-home grocery sales grew by 17% between April and July, breaking the record for the fastest period of growth since 1994. Online grocery shopping also gained popularity while managing to engage entirely new demographics. Some 10% of baby boomers now say they would buy more groceries online once the pandemic is over—compared to 34% of Gen Xs and 40% of millennials.

Due to consumer hyper-awareness of safety and sanitation, the whole food industry will continue to be defined by safety practices. Sanitizing common surfaces like keyboards, door handles, tables and chairs regularly will remain the norm. Beyond “manual” rules such as the mandatory use of facemasks, requirements such as regular health checks could boost the adoption of technology across the industry—transforming not only customer-facing interactions but also the processes behind the curtain.

Technology as an Enabler

Every crisis sparks innovation, and the food industry has certainly proved this thesis. Technology has become the ultimate aide, enabling interactions that would otherwise be impossible. These include contactless ordering, payments and pickup—processes that are likely to stick around even beyond COVID-19.

At the same time, the pandemic accelerated the usage of innovations that previously struggled to become mainstream. This includes virtual tipping jars or mobile order-and-pay, such as the options introduced by fast-food giants including McDonald’s, Subway, KFC, and Burger King.

There’s an obvious appetite for F&B companies to further incorporate technology. For example, the Coca-Cola Company is rolling out a touchless fountain experience that can be used with a smartphone for contactless pouring. Heineken, on the other hand, turned to virtual tech to launch a new product—a cardboard topper for multipack beer that will eliminate plastic from millions of cans. With travel restrictions hindering the mobility of engineers, the company leveraged virtual technology to install the new machinery needed at its Manchester-based factory.

But it’s not just solitary innovations; the market has already seen new AI-based technologies that help food businesses better manage risk in their workforce. Food manufacturing, distribution and provision require many different touchpoints; by predicting, monitoring and testing the health and safety of the workers involved in these processes, companies can ensure they keep their operations running, even if another wave of COVID-19 hits. Solutions like these will be crucial when looking to add another layer of safety that goes beyond mandatory governmental regulations.

Food Safety Revamped

Even though COVID-19 is transmitted through airborne respiratory droplets, and the risk of contracting the virus through food is low, people around the world are concerned about the possibility. After all, 40% of people are more careful about washing unpackaged fruit and vegetables than before the pandemic.

The pandemic has already made societies rethink various established concepts, such as wet markets or the consumption of wild animals. The pandemic could, therefore, lead to changed behaviors, and newly imposed rules such as formalizing small and micro food enterprises, provisions for direct sales by farmers, leveraging technology to ensure safety, and investments in a more robust food infrastructure altogether.

Such changes could also irreversibly affect street food—a sector that is bound to feel the hit of COVID-19. Particularly in countries with diverse street food culture, one of the emerging trends will be the rise of gourmet street food brands that can provide both great taste and high hygiene standards.

Food Sustainability to the Forefront

2020 will be a year of reckoning for the world’s food systems. The pandemic exposed the flaws of the global food supply chain that continues to be highly centralized and operating on a just-in-time basis. This is why we have seen panic food runs, urgent supply shortages and high amounts of food waste as many businesses were shut down overnight. In developing countries, several agencies expect that a “hunger pandemic” and a doubling of people starving could happen unless serious action is taken.

As we rethink the underlying principles of the food industry such as safety and supply, other concepts such as transparency and visibility into product sourcing and manufacturing also come into the spotlight. Consumers across the globe are more likely to prioritize offerings that are healthy and locally sourced than they were before COVID-19.

Food produced with the overuse of chemicals in monoculture cropping systems and large-scale animal farming significantly impact the availability of natural resources and cause substantial greenhouse gas emissions. Added to that, practices like industrial animal farming that operate with large numbers of livestock in confined spaces are a breeding ground for viruses, and have been linked to prior outbreaks such as the outbreak of swine flu in 2009. They also enable the spread of antibiotic-resistant organisms due to the common overuse of antibiotics administered to prevent infections caused by cramped living conditions.

Consumers are increasingly aware of this: Nearly 25% of Americans are now eating more plant-based food. As we move forward, diverse food companies are likely to tap into this trend, resulting in great opportunities for plant-based, nutritious, local, and even healthy DIY meals and products. For example, an Australian food producer has recently announced the launch of a new proprietary product range that will offer the first vegan ready-to-drink protein shakes on the Australian market.

A New Way of Dining

The restaurant market has been one of the direct victims of the pandemic but has shown impressive elasticity in adapting to the new realities. Many businesses have introduced service extensions such as deliveries and take-outs, as well as pop-up grocery stores. Enjoying great popularity, some of these options will stick around far beyond the pandemic.

However, there’s a counterforce hindering significant expansion: The simple fact that many consumers discovered a new joy in cooking. A recent study notes that 54% of Americans are now cooking more than they were before the pandemic, with 35% saying that they “enjoy cooking more now than ever.” But at the same time, 33% of consumers say they’re getting more takeout than before the pandemic. This implies that the post-pandemic normal will likely see a shift toward eating at home more often, whether that means cooking or takeout and delivery.

Therefore, restaurants are likely to continue diversifying their services, experiment with food bundles and DIY meal kits, or even luxurious in-home chef visit experiences as an alternative to high-end restaurant dining.

The past crises have shown that economic uncertainty is directly linked to changes in demand for private-label and value brands. After the 2008 financial crisis, 60% of U.S. consumers were more interested in reasonably priced products with core features than in higher-priced, cutting-edge products. So while luxury dining is not completely disappearing, it could take on other aspects.

In Denmark, for example, a two-Michelin star restaurant is moving to serve burgers. In China, a country that many look to as the model for the post-COVID world, there has also been a clear push toward more affordable dining as well. Hot pot and barbecue venues have been thriving, particularly among customers in their 20s and 30s. Many fine dining restaurants, on the other hand, have started offering affordable lunch menus or have cut prices to correspond to the current value-conscious behaviors.

It’s clear that the future of food retail and the F&B industry will be significantly marked by the pandemic. Its prolonged nature will also cause the newly adopted habits to become further solidified—and many processes will adapt to match them. For example, while contactless deliveries were accelerated in the past months, businesses are working hard to make them as efficient as convenient as possible, making it unlikely that such investments would be erased overnight, once COVID-19 is no longer a threat.

OSHA

OSHA Fines Smithfield Foods, JBS for Failing to Protect Workers from COVID-19

By Food Safety Tech Staff
No Comments
OSHA

Last week OSHA cited Smithfield Packaged Meats in Sioux Falls, South Dakota for failing to protect its workers from COVID-19 exposure. The federal agency issued a fine of $13,494 and cited a violation of failing to provide a violation-free environment following an inspection. More than 1200 workers for Smithfield Foods have contracted COVID-19 and four have died since April. The company, which produces 5% of the nation’s pork, has been under investigation since the early spring for its workplace conditions and the large coronavirus outbreak among employees. It has continued to defend itself against “misinformation”, with President and CEO Kenneth Sullivan going as far as submitting a letter to Senators Elizabeth Warren and Cory Booker at the end of June. Smithfield has 15 business days to pay the fine or contest the citation—and the company will reportedly contest the fine, as a company spokesperson called it “wholly without merit”.

During the September 17 Episode of the 2020 Food Safety Consortium Virtual Conference Series, experts will discuss COVID-19, worker safety and managing quality in the new normal | Register NowOSHA also slapped meat packer JBS with a proposed fine of $15,615, also for a “violation of the general duty clause for failing to provide a workplace free from recognized hazards that can cause death or serious harm”. Nearly 300 workers have reportedly contracted COVID-19, and seven employees died. JBS also has 15 days to comply with or contest the fine, which a company spokesperson said is “entirely without merit” and that OSHA was trying to enforce a standard not even in existence in March.

“Contrary to the allegations in the citation, the Greeley facility is in full compliance with all recommended guidance and hazard abatements. The facility has been audited and reviewed by multiple health professionals and government experts, including the CDC, local and state health departments, third-party epidemiologists, and the Department of Labor, National Institute for Occupational Safety and Health, who twice visited the plant during the citation period, and issued favorable reports on April 20 and May 8,” according to a statement by a JBS spokesperson. “The Greeley facility has only had 14 confirmed positives in the past three and half months, representing 0.4% of our Greeley workforce, despite an ongoing community outbreak. The facility has not had a positive case in nearly seven weeks, despite more than 1,730 positives in the county and more than 33,300 positive cases in the state during the same time period.”

Meanwhile Kim Cordova, president of the union that represents JBS workers, stated that the company penalty is simply a drop in the bucket and not severe enough. “A $15,000 ‘penalty’ from OSHA is nothing to a large company like JBS. In fact, it only incentivizes the company to continue endangering its employees. The government has officially failed our members, the more than 3,000 workers at JBS Greeley, who have protected the food supply chain while our communities quarantined during the pandemic. It is immoral and unethical, but in the current Administration, unfortunately not illegal, that OSHA waited seven months to investigate the unsafe working conditions that led to this deadly outbreak. Because of this failure, JBS Greeley is the site of the most meat processing plant worker deaths in the nation due to Covid-19.”

Manuel Orozco, AIB International
FST Soapbox

Detecting Foreign Material Will Protect Your Customers and Brand

By Manuel Orozco
No Comments
Manuel Orozco, AIB International

During the production process, physical hazards can contaminate food products, making them unfit for human consumption. According to the USDA’s Food Safety and Inspection Service (FSIS), the leading cause of food recalls is foreign material contamination. This includes 20 of the top 50, and three of the top five, largest food recalls issued in 2019.

As methods for detecting foreign materials in food have improved over time, you might think that associated recalls should be declining. To the contrary, USDA FSIS and FDA recalls due to foreign material seem to be increasing. During the entire calendar year of 2018, 28 of the 382 food recalls (7.3%) in the USDA’s recall case archive were for foreign material contamination. Through 2019, this figure increased to approximately 50 of the 337 food recalls (14.8%). Each of these recalls may have had a significant negative impact on those brands and their customers, which makes foreign material detection a crucial component of any food safety system.

The FDA notes, “hard or sharp foreign materials found in food may cause traumatic injury, including laceration and perforation of tissues of the mouth, tongue, throat, stomach and intestine, as well as damage to the teeth and gums”. Metal, plastic and glass are by far the most common types of foreign materials. There are many ways foreign materials can be introduced into a product, including raw materials, employee error, maintenance and cleaning procedures, and equipment malfunction or breakage during the manufacturing and packaging processes.

The increasing use of automation and machinery to perform tasks that were once done by hand are likely driving increases in foreign matter contamination. In addition, improved manufacturer capabilities to detect particles in food could be triggering these recalls, as most of the recalls have been voluntary by the manufacturer.

To prevent foreign material recalls, it is key to first prevent foreign materials in food production facilities. A proper food safety/ HACCP plan should be introduced to prevent these contaminants from ending up in the finished food product through prevention, detection and investigation.
Food manufacturers also have a variety of options when it comes to the detection of foreign objects from entering food on production lines. In addition to metal detectors, x-ray systems, optical sorting and camera-based systems, novel methods such as infrared multi-wavelength imaging and nuclear magnetic resonance are in development to resolve the problem of detection of similar foreign materials in a complex background. Such systems are commonly identified as CCPs (Critical Control Points)/preventive controls within our food safety plans.

But what factors should you focus on when deciding between different inspection systems? Product type, flow characteristics, particle size, density and blended components are important factors in foreign material detection. Typically, food manufacturers use metal and/or x-ray inspection for foreign material detection in food production as their CCP/preventive control. While both technologies are commonly used, there are reasons why x-ray inspection is becoming more popular. Foreign objects can vary in size and material, so a detection method like an x-ray that is based on density often provides the best performance.

Regardless of which detection system you choose, keep in mind that FSMA gives FDA the power to scientifically evaluate food safety programs and preventive controls implemented in a food production facility, so validation and verification are crucial elements of any detection system.

It is also important to remember that a key element of any validation system is the equipment validation process. This process ensures that your equipment operates properly and is appropriate for its intended use. This process consists of three steps: Installation qualification, operational qualification and performance qualification.

Installation qualification is the first step of the equipment validation process, designed to ensure that the instrument is properly installed, in a suitable environment free from interference. This process takes into consideration the necessary electrical requirements such as voltage and frequency ratings, as well as other factors related with the environment, such as temperature and humidity. These requirements are generally established by the manufacturer and can be found within the installation manual.

The second step is operational qualification. This ensures that the equipment will operate according to its technical specification. In order to achieve this, the general functions of the equipment must be tested within the specified range limits. Therefore, this step focuses on the overall functionality of the instrument.

The third and last step is the performance qualification, which is focused on providing documented evidence through specific tests that the instrument will performs according to the routine specifications. These requirements could be established by internal and industry standards.

Following these three steps will allow you to provide documented evidence that the equipment will perform adequately within the work environment and for the intended process. After completion of the equipment validation process, monitoring and verification procedures must be established to guarantee the correct operation of the instrument, as well procedures to address deviations and recordkeeping. This will help you effectively control the hazards identified within our operation.

There can be massive consequences if products contaminated with foreign material are purchased and consumed by the public. That’s why the development and implementation of a strong food safety/ HACCP plan, coupled with the selection and validation of your detection equipment, are so important. These steps are each key elements in protecting your customers and your brand.

LIMS, Laboratory information management system, food safety

How Advanced LIMS Brings Control, Consistency and Compliance to Food Safety

By Ed Ingalls
No Comments
LIMS, Laboratory information management system, food safety

Recent food scandals around the world have generated strong public concerns about the safety of the foods being consumed. Severe threats to food safety exist at all stages of the supply chain in the form of physical, chemical and biological contaminants. The current pandemic has escalated the public’s concern about cross contamination between people and food products and packaging. To eliminate food risks, manufacturers need robust technologies that allow for reliable monitoring of key contaminants, while also facilitating compliance with the ISO 17025 standard to prove the technical competence of food testing laboratories.

Without effective data and process management, manufacturers risk erroneous information, compromised product quality and regulatory noncompliance. In this article, we discuss how implementing a LIMS platform enables food manufacturers to meet regulatory requirements and ensure consumer confidence in their products.

Safeguarding Food Quality to Meet Industry Standards

Food testing laboratories are continually updated about foodborne illnesses making headlines. In addition to bacterial contamination in perishable foods and ingredient adulteration for economic gains, chemical contamination is also on the rise due to increased pesticide use. Whether it is Salmonella-contaminated peanut butter or undeclared horsemeat inside beef, each food-related scandal is a strong reminder of the importance of safeguarding food quality.

Food safety requires both preventive activities as well as food quality testing against set quality standards. Establishing standardized systems that address both food safety and quality makes it easier for manufacturers to comply with regulatory requirements, ultimately ensuring the food is safe for public consumption.

In response to food safety concerns, governing bodies have strengthened regulations. Food manufacturers are now required to ensure bacteria, drug residues and contaminant levels fall within published acceptable limits. In 2017, the ISO 17025 standard was updated to provide a risk-based approach, with an increased focus on information technology, such as the use of software systems and maintaining electronic records.

The FDA issued a notice that by February 2022, food testing, in certain circumstances, must be conducted in compliance with the ISO 17025 standard. This means that laboratories performing food safety testing will need to implement processes and systems to achieve and maintain compliance with the standard, confirming the competence, impartiality and consistent operation of the laboratory.

To meet the ISO 17025 standard, food testing laboratories will need a powerful LIMS platform that integrates into existing workflows and is built to drive and demonstrate compliance.

From Hazard Analysis to Record-Keeping: A Data-Led Approach

Incorporating LIMS into the entire workflow at a food manufacturing facility enables the standardization of processes across its laboratories. Laboratories can seamlessly integrate analytical and quality control workflows. Modern LIMS platforms provide out-of-the-box compliance options to set up food safety and quality control requirements as a preconfigured workflow.

The requirements set by the ISO 17025 standard build upon the critical points for food safety outlined in the Hazard Analysis and Critical Control Points (HACCP) methodology. HACCP, a risk-based safety management procedure, requires food manufacturers to identify, evaluate and address all risks associated with food safety.

LIMS, laboratory information management system
LIMS can be used to visualize control points for HACCP analysis according to set limits. Graphic courtesy of Thermo Fisher Scientific.

The systematic HACCP approach involves seven core principles to control food safety hazards. Each of the following seven principles can be directly addressed using LIMS:

  • Principle 1. Conduct a hazard analysis: Using current and previous data, food safety risks are thoroughly assessed.
  • Principle 2. Determine the critical control points (CCPs): Each CCP can be entered into LIMS with contamination grades assigned.
  • Principle 3. Establish critical limits: Based on each CCP specification, analytical critical limits can be set in LIMS.
  • Principle 4. Establish monitoring procedures: By defining sampling schedules in LIMS and setting other parameters, such as frequency and data visualization, procedures can be closely monitored.
  • Principle 5. Establish corrective actions: LIMS identifies and reports incidents to drive corrective action. It also enables traceability of contamination and maintains audit trails to review the process.
  • Principle 6. Establish verification procedures: LIMS verifies procedures and preventive measures at the defined CCPs.
  • Principle 7. Establish record-keeping and documentation procedures: All data, processes, instrument reports and user details remain secured in LIMS. This information can never be lost or misplaced.

As food manufacturers enforce the safety standards set by HACCP, the process can generate thousands of data points per day. The collected data is only as useful as the system that manages it. Having LIMS manage the laboratory data automates the flow of quality data and simplifies product release.

How LIMS Enable Clear Compliance and Optimal Control

Modern LIMS platforms are built to comply with ISO 17025. Preconfigured processes include instrument and equipment calibration and maintenance management, traceability, record-keeping, validation and reporting, and enable laboratories to achieve compliance, standardize workflows and streamline data management.

The workflow-based functionality in LIMS allows researchers to map laboratory processes, automate decisions and actions based on set criteria, and reduce user intervention. LIMS validate protocols and maintain traceable data records with a clear audit history to remain compliant. Data workflows in LIMS preserve data integrity and provide records, according to the ALCOA+ principles. This framework ensures the data is Attributable, Legible, Contemporaneous, Original and Accurate (ALCOA) as well as complete, consistent and enduring. While the FDA created ALCOA+ for pharmaceutical drug manufacturers, these same principles can be applied to food manufacturers.

Environmental monitoring and quality control (QC) samples can be managed using LIMS and associated with the final product. To plan environmental monitoring, CCPs can be set up in the LIMS for specific locations, such as plants, rooms and laboratories, and the related samples can then be added to the test schedule. Each sample entering the LIMS is associated with the CCP test limits defined in the specification.

Near real-time data visualization and reporting tools can simplify hazard analysis. Managers can display information in different formats to monitor critical points in a process, flag unexpected or out-of-trend numbers, and immediately take corrective action to mitigate the error, meeting the requirements of Principles 4 and 5 of HACCP. LIMS dashboards can be optimized by product and facility to provide visibility into the complete process.

Rules that control sampling procedures are preconfigured in the LIMS along with specific testing rules based on the supplier. If a process is trending out of control, the system will notify laboratory personnel before the product fails specification. If required, incidents can be raised in the LIMS software to track the investigation of the issue while key performance indicators are used to track the overall laboratory performance.

Tasks that were once performed manually, such as maintaining staff training records or equipment calibration schedules, can now be managed directly in LIMS. Using LIMS, analysts can manage instrument maintenance down to its individual component parts. System alerts also ensure timely recalibration and regular servicing to maintain compliance without system downtime or unplanned interruptions. The system can prevent users from executing tests without the proper training records or if the instrument is due for calibration or maintenance work. Operators can approve and sign documents electronically, maintaining a permanent record, according to Principle 7 of HACCP.

LIMS allow seamless collaboration between teams spread across different locations. For instance, users from any facility or even internationally can securely use system dashboards and generate reports. When final testing is complete, Certificates of Analysis (CoAs) can be autogenerated with final results and showing that the product met specifications. All activities in the system are tracked and stored in the audit trail.

With features designed to address the HACCP principles and meet the ISO 17025 compliance requirements, modern LIMS enable manufacturers to optimize workflows and maintain traceability from individual batches of raw materials all the way through to the finished product.

Conclusion

To maintain the highest food quality and safeguard consumer health, laboratories need reliable data management systems. By complying with the ISO 17025 standard before the upcoming mandate by the FDA, food testing laboratories can ensure data integrity and effective process management. LIMS platforms provide laboratories with integrated workflows, automated procedures and electronic record-keeping, making the whole process more efficient and productive.

With even the slightest oversight, food manufacturers not only risk product recalls and lost revenue, but also losing the consumers’ trust. By upholding data integrity, LIMS play an important role in ensuring food safety and quality.

Coronavirus, COVID-19

Meatpacking Workers Sue OSHA Over Hazardous Working Conditions During COVID-19 Pandemic

By Food Safety Tech Staff
No Comments
Coronavirus, COVID-19

View the complimentary webinar, “Instant Replay & Update: Is Your Plant COVID-19 Safe?”A lawsuit filed yesterday against OSHA alleges that the agency did not protect meat packing plant workers during the COVID-19 pandemic. Three workers from Pennsylvania-based Maid-Rite Specialty Foods are suing OSHA for putting workers in “imminent danger” as a result of hazardous working conditions, according to The Washington Post. The lawsuit stated that Maid-Rite did not:

  • Implement social distancing measures on the processing lines
  • Provide acceptable personal protective equipment
  • Address sick workers safely by not separating them
  • Tell all workers who may have been in close contact with sick workers

Maid Rite is also accused of incentivizing sick employees to report to work with bonuses.

Both OSHA and Maid Rite have not yet commented on the lawsuit as of yet.

For months, COVID-19 outbreaks at meat and poultry processing plants have been a problem, with more than 11,000 infections being reported.

During the 2020 Food Safety Consortium Virtual Conference Series, experts will address The Intersection of OSHA and Food Safety Personnel during the episode, COVID-19’s Impact on Food Safety Management. This session will occur on Thursday, November 12. Learn more.

Alex Kinne, Thermo Fisher Scientific
In the Food Lab

Ensuring Food Safety in Meat Processing Through Foreign Object Detection

By Alex Kinne
No Comments
Alex Kinne, Thermo Fisher Scientific

The USDA estimates that foodborne illnesses cost more than $15.6 billion each year. However, biological contamination isn’t the only risk to the safety and quality of food. Food safety can also be compromised by foreign objects at virtually any stage in the production process, from contaminants in raw materials to metal shavings from the wear of equipment on the line, and even from human error. While the risk of foreign object contamination may seem easy to avoid, in 2019 alone the USDA reported 34 food recalls, impacting 17 million pounds of food due to ‘extraneous material’ which can include metal, plastic and even glass.

When FSMA went into effect, the focus shifted to preventing food safety problems, necessitating that food processors implement preventive controls to shift the focus from recovery and quarantine to proactive risk mitigation. Food producers developed Hazard Analysis and Critical Control Point (HACCP) plans focused on identifying potential areas of risk and placement of appropriate inspection equipment at these key locations within the processing line.

Metal detection is the most common detection technology used to find ferrous, non-ferrous, and stainless steel foreign objects in food. In order to increase levels of food safety and better protect brand reputation, food processors need detection technologies that can find increasingly smaller metal foreign objects. Leading retailers are echoing that need and more often stipulate specific detection performance in their codes of practice, which processors must meet in order to sell them product.

As food processors face increased consumer demand and continued price-per-unit pressures, they must meet the challenges of greater throughput demands while concurrently driving out waste to ensure maximum operational efficiencies.

Challenges Inherent in Meat Metal Detection

While some food products are easier to inspect, such as dry, inert products like pasta or grains, metal foreign object detection in meat is particularly challenging. This is due to the high moisture and salt content common in ready-to-eat, frozen and processed, often spicy, meat products that have high “product effect.” Bloody whole muscle cuts can also create high product effect.

The conductive properties of meat can mimic a foreign object and cause metal detectors to incorrectly signal the presence of a physical contaminant even when it is nonexistent. Food metal detectors must be intelligent enough to ignore these signals and recognize them as product effect to avoid false rejection. Otherwise, they can signal metal when it is not present, thus rejecting good product and thereby increasing costs through scrap or re-work.

Equipping for Success

When evaluating metal detection technologies, food processors should request a product test, which allows the processor to see how various options perform for their application. The gold standard is for the food processor to send in samples of their product and provide information about the processing environment so that the companies under consideration can as closely as possible simulate the manufacturing environment. These tests are typically provided at no charge, but care should be taken upfront to fully understand the comprehensiveness of the testing methodologies and reporting.

Among the options to explore are new technologies such as multiscan metal detection, which enables meat processors to achieve a new level of food safety and quality. This technology utilizes five user-adjustable frequencies at once, essentially doing the work of five metal detectors back-to-back in the production line and yielding the highest probability of detecting metal foreign objects in food. When running, multiscan technology allows inspectors to view all the selected frequencies in real time and pull up a report of the last 20 rejects to see what caused them, allowing them to quickly make appropriate adjustments to the production line.

Such innovations are designed for ease of use and to meet even the most rigorous retailer codes of practice. Brands, their retail and wholesale customers, and consumers all benefit from carefully considered, application-specific, food safety inspection.

Ensuring Safety

The food processing industry is necessarily highly regulated. Implementing the right food safety program needs to be a top priority to ensure consumer safety and brand protection. Innovative new approaches address these safety concerns for regulatory requirements and at the same time are designed to support increased productivity and operational efficiency.