Tag Archives: hazards

Sudip Saha, Future Market Insights
FST Soapbox

Five Trends Defining the Food Industry Post-COVID

By Sudip Saha
No Comments
Sudip Saha, Future Market Insights

Food retailers and the entire food and beverage (F&B) industry are now operating very differently than they did some six months ago. The pandemic has brought immense shifts in supply chains, imposed new hazard controls, and—perhaps most importantly—turned consumer preferences upside down.

To accommodate these changes, food manufacturers, retailers, restaurants and others stepped up to innovate and secure the continuity of their services. But now, as many industries begin to drop the notion of ever going back to what once was, it’s time we started thinking about how many of the newly introduced processes will stick around for the long-term.

What will be the main trends defining the food industry as a whole post-COVID?

Learn more about COVID-19 in the food industry, technology and food safety culture during the 2020 Food Safety Consortium Virtual Conference Series  | Episodes run every Thursday through December 17Adopted Habits Aren’t Going Anywhere

The pandemic brought radical changes to our everyday lives, and it’s clear that many of the newly adopted behaviors won’t disappear overnight. Consumers will continue to rely on grocery retailers to keep them both fed and healthy while expecting minimum disruptions and a high respect for safety regulations—both in terms of handling and the state of delivered products.

Take-home grocery sales grew by 17% between April and July, breaking the record for the fastest period of growth since 1994. Online grocery shopping also gained popularity while managing to engage entirely new demographics. Some 10% of baby boomers now say they would buy more groceries online once the pandemic is over—compared to 34% of Gen Xs and 40% of millennials.

Due to consumer hyper-awareness of safety and sanitation, the whole food industry will continue to be defined by safety practices. Sanitizing common surfaces like keyboards, door handles, tables and chairs regularly will remain the norm. Beyond “manual” rules such as the mandatory use of facemasks, requirements such as regular health checks could boost the adoption of technology across the industry—transforming not only customer-facing interactions but also the processes behind the curtain.

Technology as an Enabler

Every crisis sparks innovation, and the food industry has certainly proved this thesis. Technology has become the ultimate aide, enabling interactions that would otherwise be impossible. These include contactless ordering, payments and pickup—processes that are likely to stick around even beyond COVID-19.

At the same time, the pandemic accelerated the usage of innovations that previously struggled to become mainstream. This includes virtual tipping jars or mobile order-and-pay, such as the options introduced by fast-food giants including McDonald’s, Subway, KFC, and Burger King.

There’s an obvious appetite for F&B companies to further incorporate technology. For example, the Coca-Cola Company is rolling out a touchless fountain experience that can be used with a smartphone for contactless pouring. Heineken, on the other hand, turned to virtual tech to launch a new product—a cardboard topper for multipack beer that will eliminate plastic from millions of cans. With travel restrictions hindering the mobility of engineers, the company leveraged virtual technology to install the new machinery needed at its Manchester-based factory.

But it’s not just solitary innovations; the market has already seen new AI-based technologies that help food businesses better manage risk in their workforce. Food manufacturing, distribution and provision require many different touchpoints; by predicting, monitoring and testing the health and safety of the workers involved in these processes, companies can ensure they keep their operations running, even if another wave of COVID-19 hits. Solutions like these will be crucial when looking to add another layer of safety that goes beyond mandatory governmental regulations.

Food Safety Revamped

Even though COVID-19 is transmitted through airborne respiratory droplets, and the risk of contracting the virus through food is low, people around the world are concerned about the possibility. After all, 40% of people are more careful about washing unpackaged fruit and vegetables than before the pandemic.

The pandemic has already made societies rethink various established concepts, such as wet markets or the consumption of wild animals. The pandemic could, therefore, lead to changed behaviors, and newly imposed rules such as formalizing small and micro food enterprises, provisions for direct sales by farmers, leveraging technology to ensure safety, and investments in a more robust food infrastructure altogether.

Such changes could also irreversibly affect street food—a sector that is bound to feel the hit of COVID-19. Particularly in countries with diverse street food culture, one of the emerging trends will be the rise of gourmet street food brands that can provide both great taste and high hygiene standards.

Food Sustainability to the Forefront

2020 will be a year of reckoning for the world’s food systems. The pandemic exposed the flaws of the global food supply chain that continues to be highly centralized and operating on a just-in-time basis. This is why we have seen panic food runs, urgent supply shortages and high amounts of food waste as many businesses were shut down overnight. In developing countries, several agencies expect that a “hunger pandemic” and a doubling of people starving could happen unless serious action is taken.

As we rethink the underlying principles of the food industry such as safety and supply, other concepts such as transparency and visibility into product sourcing and manufacturing also come into the spotlight. Consumers across the globe are more likely to prioritize offerings that are healthy and locally sourced than they were before COVID-19.

Food produced with the overuse of chemicals in monoculture cropping systems and large-scale animal farming significantly impact the availability of natural resources and cause substantial greenhouse gas emissions. Added to that, practices like industrial animal farming that operate with large numbers of livestock in confined spaces are a breeding ground for viruses, and have been linked to prior outbreaks such as the outbreak of swine flu in 2009. They also enable the spread of antibiotic-resistant organisms due to the common overuse of antibiotics administered to prevent infections caused by cramped living conditions.

Consumers are increasingly aware of this: Nearly 25% of Americans are now eating more plant-based food. As we move forward, diverse food companies are likely to tap into this trend, resulting in great opportunities for plant-based, nutritious, local, and even healthy DIY meals and products. For example, an Australian food producer has recently announced the launch of a new proprietary product range that will offer the first vegan ready-to-drink protein shakes on the Australian market.

A New Way of Dining

The restaurant market has been one of the direct victims of the pandemic but has shown impressive elasticity in adapting to the new realities. Many businesses have introduced service extensions such as deliveries and take-outs, as well as pop-up grocery stores. Enjoying great popularity, some of these options will stick around far beyond the pandemic.

However, there’s a counterforce hindering significant expansion: The simple fact that many consumers discovered a new joy in cooking. A recent study notes that 54% of Americans are now cooking more than they were before the pandemic, with 35% saying that they “enjoy cooking more now than ever.” But at the same time, 33% of consumers say they’re getting more takeout than before the pandemic. This implies that the post-pandemic normal will likely see a shift toward eating at home more often, whether that means cooking or takeout and delivery.

Therefore, restaurants are likely to continue diversifying their services, experiment with food bundles and DIY meal kits, or even luxurious in-home chef visit experiences as an alternative to high-end restaurant dining.

The past crises have shown that economic uncertainty is directly linked to changes in demand for private-label and value brands. After the 2008 financial crisis, 60% of U.S. consumers were more interested in reasonably priced products with core features than in higher-priced, cutting-edge products. So while luxury dining is not completely disappearing, it could take on other aspects.

In Denmark, for example, a two-Michelin star restaurant is moving to serve burgers. In China, a country that many look to as the model for the post-COVID world, there has also been a clear push toward more affordable dining as well. Hot pot and barbecue venues have been thriving, particularly among customers in their 20s and 30s. Many fine dining restaurants, on the other hand, have started offering affordable lunch menus or have cut prices to correspond to the current value-conscious behaviors.

It’s clear that the future of food retail and the F&B industry will be significantly marked by the pandemic. Its prolonged nature will also cause the newly adopted habits to become further solidified—and many processes will adapt to match them. For example, while contactless deliveries were accelerated in the past months, businesses are working hard to make them as efficient as convenient as possible, making it unlikely that such investments would be erased overnight, once COVID-19 is no longer a threat.

OSHA

OSHA Fines Smithfield Foods, JBS for Failing to Protect Workers from COVID-19

By Food Safety Tech Staff
No Comments
OSHA

Last week OSHA cited Smithfield Packaged Meats in Sioux Falls, South Dakota for failing to protect its workers from COVID-19 exposure. The federal agency issued a fine of $13,494 and cited a violation of failing to provide a violation-free environment following an inspection. More than 1200 workers for Smithfield Foods have contracted COVID-19 and four have died since April. The company, which produces 5% of the nation’s pork, has been under investigation since the early spring for its workplace conditions and the large coronavirus outbreak among employees. It has continued to defend itself against “misinformation”, with President and CEO Kenneth Sullivan going as far as submitting a letter to Senators Elizabeth Warren and Cory Booker at the end of June. Smithfield has 15 business days to pay the fine or contest the citation—and the company will reportedly contest the fine, as a company spokesperson called it “wholly without merit”.

During the September 17 Episode of the 2020 Food Safety Consortium Virtual Conference Series, experts will discuss COVID-19, worker safety and managing quality in the new normal | Register NowOSHA also slapped meat packer JBS with a proposed fine of $15,615, also for a “violation of the general duty clause for failing to provide a workplace free from recognized hazards that can cause death or serious harm”. Nearly 300 workers have reportedly contracted COVID-19, and seven employees died. JBS also has 15 days to comply with or contest the fine, which a company spokesperson said is “entirely without merit” and that OSHA was trying to enforce a standard not even in existence in March.

“Contrary to the allegations in the citation, the Greeley facility is in full compliance with all recommended guidance and hazard abatements. The facility has been audited and reviewed by multiple health professionals and government experts, including the CDC, local and state health departments, third-party epidemiologists, and the Department of Labor, National Institute for Occupational Safety and Health, who twice visited the plant during the citation period, and issued favorable reports on April 20 and May 8,” according to a statement by a JBS spokesperson. “The Greeley facility has only had 14 confirmed positives in the past three and half months, representing 0.4% of our Greeley workforce, despite an ongoing community outbreak. The facility has not had a positive case in nearly seven weeks, despite more than 1,730 positives in the county and more than 33,300 positive cases in the state during the same time period.”

Meanwhile Kim Cordova, president of the union that represents JBS workers, stated that the company penalty is simply a drop in the bucket and not severe enough. “A $15,000 ‘penalty’ from OSHA is nothing to a large company like JBS. In fact, it only incentivizes the company to continue endangering its employees. The government has officially failed our members, the more than 3,000 workers at JBS Greeley, who have protected the food supply chain while our communities quarantined during the pandemic. It is immoral and unethical, but in the current Administration, unfortunately not illegal, that OSHA waited seven months to investigate the unsafe working conditions that led to this deadly outbreak. Because of this failure, JBS Greeley is the site of the most meat processing plant worker deaths in the nation due to Covid-19.”

Manuel Orozco, AIB International
FST Soapbox

Detecting Foreign Material Will Protect Your Customers and Brand

By Manuel Orozco
No Comments
Manuel Orozco, AIB International

During the production process, physical hazards can contaminate food products, making them unfit for human consumption. According to the USDA’s Food Safety and Inspection Service (FSIS), the leading cause of food recalls is foreign material contamination. This includes 20 of the top 50, and three of the top five, largest food recalls issued in 2019.

As methods for detecting foreign materials in food have improved over time, you might think that associated recalls should be declining. To the contrary, USDA FSIS and FDA recalls due to foreign material seem to be increasing. During the entire calendar year of 2018, 28 of the 382 food recalls (7.3%) in the USDA’s recall case archive were for foreign material contamination. Through 2019, this figure increased to approximately 50 of the 337 food recalls (14.8%). Each of these recalls may have had a significant negative impact on those brands and their customers, which makes foreign material detection a crucial component of any food safety system.

The FDA notes, “hard or sharp foreign materials found in food may cause traumatic injury, including laceration and perforation of tissues of the mouth, tongue, throat, stomach and intestine, as well as damage to the teeth and gums”. Metal, plastic and glass are by far the most common types of foreign materials. There are many ways foreign materials can be introduced into a product, including raw materials, employee error, maintenance and cleaning procedures, and equipment malfunction or breakage during the manufacturing and packaging processes.

The increasing use of automation and machinery to perform tasks that were once done by hand are likely driving increases in foreign matter contamination. In addition, improved manufacturer capabilities to detect particles in food could be triggering these recalls, as most of the recalls have been voluntary by the manufacturer.

To prevent foreign material recalls, it is key to first prevent foreign materials in food production facilities. A proper food safety/ HACCP plan should be introduced to prevent these contaminants from ending up in the finished food product through prevention, detection and investigation.
Food manufacturers also have a variety of options when it comes to the detection of foreign objects from entering food on production lines. In addition to metal detectors, x-ray systems, optical sorting and camera-based systems, novel methods such as infrared multi-wavelength imaging and nuclear magnetic resonance are in development to resolve the problem of detection of similar foreign materials in a complex background. Such systems are commonly identified as CCPs (Critical Control Points)/preventive controls within our food safety plans.

But what factors should you focus on when deciding between different inspection systems? Product type, flow characteristics, particle size, density and blended components are important factors in foreign material detection. Typically, food manufacturers use metal and/or x-ray inspection for foreign material detection in food production as their CCP/preventive control. While both technologies are commonly used, there are reasons why x-ray inspection is becoming more popular. Foreign objects can vary in size and material, so a detection method like an x-ray that is based on density often provides the best performance.

Regardless of which detection system you choose, keep in mind that FSMA gives FDA the power to scientifically evaluate food safety programs and preventive controls implemented in a food production facility, so validation and verification are crucial elements of any detection system.

It is also important to remember that a key element of any validation system is the equipment validation process. This process ensures that your equipment operates properly and is appropriate for its intended use. This process consists of three steps: Installation qualification, operational qualification and performance qualification.

Installation qualification is the first step of the equipment validation process, designed to ensure that the instrument is properly installed, in a suitable environment free from interference. This process takes into consideration the necessary electrical requirements such as voltage and frequency ratings, as well as other factors related with the environment, such as temperature and humidity. These requirements are generally established by the manufacturer and can be found within the installation manual.

The second step is operational qualification. This ensures that the equipment will operate according to its technical specification. In order to achieve this, the general functions of the equipment must be tested within the specified range limits. Therefore, this step focuses on the overall functionality of the instrument.

The third and last step is the performance qualification, which is focused on providing documented evidence through specific tests that the instrument will performs according to the routine specifications. These requirements could be established by internal and industry standards.

Following these three steps will allow you to provide documented evidence that the equipment will perform adequately within the work environment and for the intended process. After completion of the equipment validation process, monitoring and verification procedures must be established to guarantee the correct operation of the instrument, as well procedures to address deviations and recordkeeping. This will help you effectively control the hazards identified within our operation.

There can be massive consequences if products contaminated with foreign material are purchased and consumed by the public. That’s why the development and implementation of a strong food safety/ HACCP plan, coupled with the selection and validation of your detection equipment, are so important. These steps are each key elements in protecting your customers and your brand.

LIMS, Laboratory information management system, food safety

How Advanced LIMS Brings Control, Consistency and Compliance to Food Safety

By Ed Ingalls
No Comments
LIMS, Laboratory information management system, food safety

Recent food scandals around the world have generated strong public concerns about the safety of the foods being consumed. Severe threats to food safety exist at all stages of the supply chain in the form of physical, chemical and biological contaminants. The current pandemic has escalated the public’s concern about cross contamination between people and food products and packaging. To eliminate food risks, manufacturers need robust technologies that allow for reliable monitoring of key contaminants, while also facilitating compliance with the ISO 17025 standard to prove the technical competence of food testing laboratories.

Without effective data and process management, manufacturers risk erroneous information, compromised product quality and regulatory noncompliance. In this article, we discuss how implementing a LIMS platform enables food manufacturers to meet regulatory requirements and ensure consumer confidence in their products.

Safeguarding Food Quality to Meet Industry Standards

Food testing laboratories are continually updated about foodborne illnesses making headlines. In addition to bacterial contamination in perishable foods and ingredient adulteration for economic gains, chemical contamination is also on the rise due to increased pesticide use. Whether it is Salmonella-contaminated peanut butter or undeclared horsemeat inside beef, each food-related scandal is a strong reminder of the importance of safeguarding food quality.

Food safety requires both preventive activities as well as food quality testing against set quality standards. Establishing standardized systems that address both food safety and quality makes it easier for manufacturers to comply with regulatory requirements, ultimately ensuring the food is safe for public consumption.

In response to food safety concerns, governing bodies have strengthened regulations. Food manufacturers are now required to ensure bacteria, drug residues and contaminant levels fall within published acceptable limits. In 2017, the ISO 17025 standard was updated to provide a risk-based approach, with an increased focus on information technology, such as the use of software systems and maintaining electronic records.

The FDA issued a notice that by February 2022, food testing, in certain circumstances, must be conducted in compliance with the ISO 17025 standard. This means that laboratories performing food safety testing will need to implement processes and systems to achieve and maintain compliance with the standard, confirming the competence, impartiality and consistent operation of the laboratory.

To meet the ISO 17025 standard, food testing laboratories will need a powerful LIMS platform that integrates into existing workflows and is built to drive and demonstrate compliance.

From Hazard Analysis to Record-Keeping: A Data-Led Approach

Incorporating LIMS into the entire workflow at a food manufacturing facility enables the standardization of processes across its laboratories. Laboratories can seamlessly integrate analytical and quality control workflows. Modern LIMS platforms provide out-of-the-box compliance options to set up food safety and quality control requirements as a preconfigured workflow.

The requirements set by the ISO 17025 standard build upon the critical points for food safety outlined in the Hazard Analysis and Critical Control Points (HACCP) methodology. HACCP, a risk-based safety management procedure, requires food manufacturers to identify, evaluate and address all risks associated with food safety.

LIMS, laboratory information management system
LIMS can be used to visualize control points for HACCP analysis according to set limits. Graphic courtesy of Thermo Fisher Scientific.

The systematic HACCP approach involves seven core principles to control food safety hazards. Each of the following seven principles can be directly addressed using LIMS:

  • Principle 1. Conduct a hazard analysis: Using current and previous data, food safety risks are thoroughly assessed.
  • Principle 2. Determine the critical control points (CCPs): Each CCP can be entered into LIMS with contamination grades assigned.
  • Principle 3. Establish critical limits: Based on each CCP specification, analytical critical limits can be set in LIMS.
  • Principle 4. Establish monitoring procedures: By defining sampling schedules in LIMS and setting other parameters, such as frequency and data visualization, procedures can be closely monitored.
  • Principle 5. Establish corrective actions: LIMS identifies and reports incidents to drive corrective action. It also enables traceability of contamination and maintains audit trails to review the process.
  • Principle 6. Establish verification procedures: LIMS verifies procedures and preventive measures at the defined CCPs.
  • Principle 7. Establish record-keeping and documentation procedures: All data, processes, instrument reports and user details remain secured in LIMS. This information can never be lost or misplaced.

As food manufacturers enforce the safety standards set by HACCP, the process can generate thousands of data points per day. The collected data is only as useful as the system that manages it. Having LIMS manage the laboratory data automates the flow of quality data and simplifies product release.

How LIMS Enable Clear Compliance and Optimal Control

Modern LIMS platforms are built to comply with ISO 17025. Preconfigured processes include instrument and equipment calibration and maintenance management, traceability, record-keeping, validation and reporting, and enable laboratories to achieve compliance, standardize workflows and streamline data management.

The workflow-based functionality in LIMS allows researchers to map laboratory processes, automate decisions and actions based on set criteria, and reduce user intervention. LIMS validate protocols and maintain traceable data records with a clear audit history to remain compliant. Data workflows in LIMS preserve data integrity and provide records, according to the ALCOA+ principles. This framework ensures the data is Attributable, Legible, Contemporaneous, Original and Accurate (ALCOA) as well as complete, consistent and enduring. While the FDA created ALCOA+ for pharmaceutical drug manufacturers, these same principles can be applied to food manufacturers.

Environmental monitoring and quality control (QC) samples can be managed using LIMS and associated with the final product. To plan environmental monitoring, CCPs can be set up in the LIMS for specific locations, such as plants, rooms and laboratories, and the related samples can then be added to the test schedule. Each sample entering the LIMS is associated with the CCP test limits defined in the specification.

Near real-time data visualization and reporting tools can simplify hazard analysis. Managers can display information in different formats to monitor critical points in a process, flag unexpected or out-of-trend numbers, and immediately take corrective action to mitigate the error, meeting the requirements of Principles 4 and 5 of HACCP. LIMS dashboards can be optimized by product and facility to provide visibility into the complete process.

Rules that control sampling procedures are preconfigured in the LIMS along with specific testing rules based on the supplier. If a process is trending out of control, the system will notify laboratory personnel before the product fails specification. If required, incidents can be raised in the LIMS software to track the investigation of the issue while key performance indicators are used to track the overall laboratory performance.

Tasks that were once performed manually, such as maintaining staff training records or equipment calibration schedules, can now be managed directly in LIMS. Using LIMS, analysts can manage instrument maintenance down to its individual component parts. System alerts also ensure timely recalibration and regular servicing to maintain compliance without system downtime or unplanned interruptions. The system can prevent users from executing tests without the proper training records or if the instrument is due for calibration or maintenance work. Operators can approve and sign documents electronically, maintaining a permanent record, according to Principle 7 of HACCP.

LIMS allow seamless collaboration between teams spread across different locations. For instance, users from any facility or even internationally can securely use system dashboards and generate reports. When final testing is complete, Certificates of Analysis (CoAs) can be autogenerated with final results and showing that the product met specifications. All activities in the system are tracked and stored in the audit trail.

With features designed to address the HACCP principles and meet the ISO 17025 compliance requirements, modern LIMS enable manufacturers to optimize workflows and maintain traceability from individual batches of raw materials all the way through to the finished product.

Conclusion

To maintain the highest food quality and safeguard consumer health, laboratories need reliable data management systems. By complying with the ISO 17025 standard before the upcoming mandate by the FDA, food testing laboratories can ensure data integrity and effective process management. LIMS platforms provide laboratories with integrated workflows, automated procedures and electronic record-keeping, making the whole process more efficient and productive.

With even the slightest oversight, food manufacturers not only risk product recalls and lost revenue, but also losing the consumers’ trust. By upholding data integrity, LIMS play an important role in ensuring food safety and quality.

Coronavirus, COVID-19

Meatpacking Workers Sue OSHA Over Hazardous Working Conditions During COVID-19 Pandemic

By Food Safety Tech Staff
No Comments
Coronavirus, COVID-19

View the complimentary webinar, “Instant Replay & Update: Is Your Plant COVID-19 Safe?”A lawsuit filed yesterday against OSHA alleges that the agency did not protect meat packing plant workers during the COVID-19 pandemic. Three workers from Pennsylvania-based Maid-Rite Specialty Foods are suing OSHA for putting workers in “imminent danger” as a result of hazardous working conditions, according to The Washington Post. The lawsuit stated that Maid-Rite did not:

  • Implement social distancing measures on the processing lines
  • Provide acceptable personal protective equipment
  • Address sick workers safely by not separating them
  • Tell all workers who may have been in close contact with sick workers

Maid Rite is also accused of incentivizing sick employees to report to work with bonuses.

Both OSHA and Maid Rite have not yet commented on the lawsuit as of yet.

For months, COVID-19 outbreaks at meat and poultry processing plants have been a problem, with more than 11,000 infections being reported.

During the 2020 Food Safety Consortium Virtual Conference Series, experts will address The Intersection of OSHA and Food Safety Personnel during the episode, COVID-19’s Impact on Food Safety Management. This session will occur on Thursday, November 12. Learn more.

Alex Kinne, Thermo Fisher Scientific
In the Food Lab

Ensuring Food Safety in Meat Processing Through Foreign Object Detection

By Alex Kinne
No Comments
Alex Kinne, Thermo Fisher Scientific

The USDA estimates that foodborne illnesses cost more than $15.6 billion each year. However, biological contamination isn’t the only risk to the safety and quality of food. Food safety can also be compromised by foreign objects at virtually any stage in the production process, from contaminants in raw materials to metal shavings from the wear of equipment on the line, and even from human error. While the risk of foreign object contamination may seem easy to avoid, in 2019 alone the USDA reported 34 food recalls, impacting 17 million pounds of food due to ‘extraneous material’ which can include metal, plastic and even glass.

When FSMA went into effect, the focus shifted to preventing food safety problems, necessitating that food processors implement preventive controls to shift the focus from recovery and quarantine to proactive risk mitigation. Food producers developed Hazard Analysis and Critical Control Point (HACCP) plans focused on identifying potential areas of risk and placement of appropriate inspection equipment at these key locations within the processing line.

Metal detection is the most common detection technology used to find ferrous, non-ferrous, and stainless steel foreign objects in food. In order to increase levels of food safety and better protect brand reputation, food processors need detection technologies that can find increasingly smaller metal foreign objects. Leading retailers are echoing that need and more often stipulate specific detection performance in their codes of practice, which processors must meet in order to sell them product.

As food processors face increased consumer demand and continued price-per-unit pressures, they must meet the challenges of greater throughput demands while concurrently driving out waste to ensure maximum operational efficiencies.

Challenges Inherent in Meat Metal Detection

While some food products are easier to inspect, such as dry, inert products like pasta or grains, metal foreign object detection in meat is particularly challenging. This is due to the high moisture and salt content common in ready-to-eat, frozen and processed, often spicy, meat products that have high “product effect.” Bloody whole muscle cuts can also create high product effect.

The conductive properties of meat can mimic a foreign object and cause metal detectors to incorrectly signal the presence of a physical contaminant even when it is nonexistent. Food metal detectors must be intelligent enough to ignore these signals and recognize them as product effect to avoid false rejection. Otherwise, they can signal metal when it is not present, thus rejecting good product and thereby increasing costs through scrap or re-work.

Equipping for Success

When evaluating metal detection technologies, food processors should request a product test, which allows the processor to see how various options perform for their application. The gold standard is for the food processor to send in samples of their product and provide information about the processing environment so that the companies under consideration can as closely as possible simulate the manufacturing environment. These tests are typically provided at no charge, but care should be taken upfront to fully understand the comprehensiveness of the testing methodologies and reporting.

Among the options to explore are new technologies such as multiscan metal detection, which enables meat processors to achieve a new level of food safety and quality. This technology utilizes five user-adjustable frequencies at once, essentially doing the work of five metal detectors back-to-back in the production line and yielding the highest probability of detecting metal foreign objects in food. When running, multiscan technology allows inspectors to view all the selected frequencies in real time and pull up a report of the last 20 rejects to see what caused them, allowing them to quickly make appropriate adjustments to the production line.

Such innovations are designed for ease of use and to meet even the most rigorous retailer codes of practice. Brands, their retail and wholesale customers, and consumers all benefit from carefully considered, application-specific, food safety inspection.

Ensuring Safety

The food processing industry is necessarily highly regulated. Implementing the right food safety program needs to be a top priority to ensure consumer safety and brand protection. Innovative new approaches address these safety concerns for regulatory requirements and at the same time are designed to support increased productivity and operational efficiency.

Dave Premo, Birko Corp.
FST Soapbox

How to Maintain Food Safety and Protect Your Brand During Construction

By Dave Premo
No Comments
Dave Premo, Birko Corp.

If your food processing facility needs an expansion or update, construction can be a disruptive event. Throughout the process, a variety of food safety hazards can be present, potentially putting your products at risk. While the contractors you work with are skilled at their trade, protecting your brand is ultimately your responsibility.

Construction, food safety
Developing a thorough plan can keep products, the facility and your employees safe during construction. Images courtesy of Birko.

Extra precautions are needed to minimize the food safety risks during construction, but by developing a thorough plan and following it diligently, you can keep your products, facility and employees safe.

Preparation: The Important First Steps for Safety

Having an established environmental plan before construction starts will make the construction process go smoothly and help maintain safety. If the plan your staff is following needs changes or improvements, make updates in advance of construction and be sure that your staff is up to speed before the project begins.

First, remove any equipment that can be moved from the construction zone and cover all electrical panels, open conduit and electrical outlets to minimize areas that might harbor dust or bacteria during construction.

Next, taking steps to separate the construction and production areas is crucial. Installing heavy gauge plastic sheeting or even temporary walls to isolate the construction area will help prevent cross-contamination. Any doors or wall openings on the temporary barriers should be sealed on both sides, and the gaps between the base of the barriers and the floor should be adequately sealed to keep the surrounding production areas safe. Do whatever is necessary to minimize organisms from traveling by air outside of the construction zone.

The HVAC and air handling system in the construction area should also be evaluated for cross-contamination potential. Be sure to close off or divert the airflow to prevent air movement from the construction zone to any production areas. In addition, make sure the system will be able to accommodate additional areas or space after construction is complete and make any upgrades if necessary. Thoroughly clean the HVAC system and filters before the construction process starts.

Similarly, evaluate any drains that are present in the construction zone for cross-contamination potential and take precautions to keep pathogens from passing from the construction area to the food production areas.

Make Contractors Part of Your Plan

While contractors might have years of experience in their trade, they don’t know your food safety plan. Schedule a formal food safety training session with the contractor and all members of the construction staff. Don’t allow anyone to work in the facility before completing the training. Determine which protective clothing contractors and their team will need, such as frocks, boot covers or hairnets, and provide a separate bag or place to store them during the construction process.

Designating a single entrance for contractors and construction staff will minimize confusion and avoid mistaken entries into prohibited areas. Educate them on the appropriate traffic flow as they arrive, enter the facility, and conduct their work. Their entrance should be separate from those used by office and food production employees. Have quat or alcohol hand and tool sanitizers stationed at the designated contractor entrance, and require them to sanitize any tools, materials or equipment before entering the facility. Emphasize that no mud or other debris should be tracked into the facility. Provide the necessary guidance and monitor the entrance area to prevent that from happening.

Shoe coverings, food safety, construction
Effectively communicate safety plan with all contractors involved.

Construction staff and in-house food production staff should be separated at all times. To prevent cross-contamination, there shouldn’t be any direct paths from the construction area to the production area. No material from the construction area should ever be brought into the food production area. Contractors and construction staff should also be prohibited from using the break rooms or restrooms that are used by the facility employees. Because they won’t have access to other areas, temporary hand wash sinks may be needed for construction employees to follow frequent hand washing and sanitizing procedures.

Best Practices for Sanitation During Construction

Before demolishing and removing any walls during the construction process, apply a foam disinfectant at 800–1000 ppm without rinsing. If any equipment needs to be moved, or if there will be new equipment brought into the area, clean and disinfect it with quat at 800–1000 ppm without rinsing.

Quat should also be applied heavily on the floors around the designated construction team entrances. Foam or spray contractors’ walkways and the construction area floor every four hours at 800–1000 ppm. Allow contractors, forklifts, dollies or other wheeled carts to regularly travel through the disinfectant to keep their feet and wheels sanitized as they move throughout the construction area.

If your construction project involves new equipment installation, discuss the sanitation requirements and restrictions with a sanitation chemical provider before purchasing this equipment to ensure you have the right chemistry on hand. Any new equipment should be cleaned and sanitized, as well as the area where it will be installed, before bringing the equipment into the area. Make sure all the surfaces of the new equipment are compatible with your current cleaning chemistry and that the installation follows proper food safety guidelines. If necessary, upgrade your food safety process to accommodate the new equipment.

Transitioning from Construction to Safe Food Production
Once the construction project is complete, remove all construction materials, tools, debris, plastic sheeting and temporary walls. Seal any holes that might have occurred in the floors, walls and ceilings where equipment was moved, and repair or replace epoxy or other floor coverings. Inspect any forklifts or man lifts used during the construction, and clean and sanitize them.

Clean the HVAC and air handling system and return it to either its pre-construction settings or an updated configuration based on what the new area requires.

Continue cleaning everything in the construction area, from ceiling to floor, including lights, walls, drains, refrigeration units and all equipment following SSOPs. Note that different cleaning products containing solvents may be needed for the initial cleaning to remove cutting oil, welding flux residues, greases, and other elements from the construction process. Be sure to have those cleaning products on hand before you get to this step to avoid delays of a thorough sanitation process. Where necessary, passivate any stainless steel equipment.

Finally, test the environment. Collect a special set of swabs and monitor the results. Apply post-rinse sanitizer and then begin food production. Implement an enhanced environmental monitoring program in all areas disrupted by the construction until the data shows a return to the baseline levels. Revise your facility SSOPs in light of any changes based on the new construction.

Achieving Seamless Productivity

Expansion can mean new capabilities for your business, but lax food safety processes during construction can jeopardize the new opportunities your expansion brings. By having a strong plan in place, following it diligently, educating contractors on your plan, monitoring activity, and using effective sanitizing chemistry, you will be able to expand while protecting your brand and avoiding food safety issues.

Susanne Kuehne, Decernis
Food Fraud Quick Bites

Milking The Business

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Cow, milk, adulteration
Find records of fraud such as those discussed in this column and more in the Food Fraud Database. Image credit: Susanne Kuehne.

Milk has enjoyed increasing popularity in China, however, the milk supply chain is still vulnerable to fraud throughout the country. Milk can be adulterated in variety of ways, from dilution with water to the addition of carbohydrate- or nitrogen-based and protein-rich adulterants as well as a variety of unapproved (sometimes hazardous) additives. This study used Fourier transform-infrared spectroscopy to determine fraud in 52 ultra-high-temperature commercial milk samples. Twenty-three percent of the samples turned out to be adulterated and some of the samples were even flagged for multiple issues.

Resource

  1. Yuzheng Y., et.al. (June 1, 2020) “Prevalence of Milk Fraud in the Chinese Market and its Relationship with Fraud Vulnerabilities in the Chain.” MDPI.
Megan Nichols
FST Soapbox

Four Ways To Improve Your Food Safety Management System

By Megan Ray Nichols
No Comments
Megan Nichols

Foodborne illnesses cost billions of dollars each year in the United States. A lack of standards can lead to severe consequences, including loss of customers, negative impact on brand reputation and employees missing work due to illness. As a result, safety is vital for any brand that is committed to high-quality food and maintaining a positive brand image.

Food safety management systems—the processes and procedures that companies set up to prevent contamination—are essential in reducing the risk of foodborne illness and ensuring the safest products possible.

By FDA regulation, most food processors must have HACCP as well as corrective actions/preventive action (CAPAs) plans in place. Even with the right safety guidelines, however, contamination or exposure to food hazards can still occur. The following are four ways to improve the quality of your food safety management system.

1. Conduct Regular Audits

Even if your business’s HACCP is highly effective in theory, it won’t prevent contamination unless actual practice lines up with documentation. Regular audits can ensure employee practice complies.

HACCPs are structured around identifying both potential food hazards and critical control points (CCPs) where your system has the opportunity to prevent, mitigate or eliminate a potential issue. Usually, this means storing food items or performing some biological, physical or chemical action to a target limit— like a specific temperature—to prevent or mitigate contamination.

For example, in the manufacturing of chicken products, cooking and hot-holding are critical control points at which the product needs to be heated to a certain temperature to eliminate or prevent potential hazards. Here, an audit would be a chance to ensure employees cooked and hot-held foods at the proper temperatures. If they aren’t, the food safety management team can make policy changes that ensure practice lines up with planning.

The audit process should be consistent and occur regularly. It should also cover every aspect of your HACCP strategy and place a particular focus on potential hazards and CCPs. These audits can be a way to uncover the strengths and weaknesses of your current HACCP strategy. Companies can use this information to build upon existing practices or demonstrate how procedures could be more effective.

Stainless steel
Stainless steel is popular in food handling due to impermeable surface and resistance to corrosion, two characteristics that help reduce the risk of food contamination. (free image from Splash)

2. Consider a CCP Monitoring System

You can use automated or digital systems to ensure that CCPs aren’t deviating from control limits. With the right sensors, it’s possible to ensure that food remains between target limits at each CCP. For example, automated sensors can quickly alert plant staff if the temperature of food in cold storage rises above a certain threshold, or if there is a deviation from a given CCP.

These alerts can help staff quickly respond to deviations, ensuring compliance, and reducing the risk of contamination by food hazards.

3. Review and Maintain Equipment

An thorough equipment program can be highly effective in reducing the risk of food contamination. To minimize risk, your plan should look at the equipment needed in your plant, as well as how it’s constructed and maintained. For example, choosing industry-standard or food-safe materials can help prevent contamination. Investing in the right kind of stainless steel can both improve operating costs and help reduce the risk of food exposed to hazards.

Preventive maintenance plans for food safety equipment can also reduce the risk of contamination by ensuring the proper functioning of site equipment.

4. Provide Employee Support and Encourage Buy-In

Training programs are an essential component of any HACCP. If your employees don’t know how to handle food properly or aren’t aware of HACCP documentation or the CCPs in the food processing pipeline, they won’t be able to execute the plan and prevent contamination.

While training programs are crucial, they don’t necessarily guarantee compliance. Common pitfalls exist that can discourage employees from following the plan. To encourage employee buy-in, training should begin by discussing the importance of food safety and the potential risks of contamination.

The training should also be robust enough that employees feel confident when executing the HACCP. Training staff should be sure to provide visual demonstrations and opportunities for employees to practice before they become responsible for food safety. Tests or evaluations both during and after training can be useful tools in determining how well your employees understand your business’s HACCP strategy. Regular follow-ups on training can also ensure compliance and reduce the risk of contamination.

Improving Food Safety Management Systems

For any business that works with food, safety programs are essential in ensuring the safest and highest quality product possible. Existing food safety management systems can often improve with the right methods. For example, automated monitoring systems can reduce the risk of deviating from CCP limits. Employee training and regular audits can also ensure that a plant’s food safety practices line up with the documented plan.

Lab grown meat

How Plant-Based Foods Are Changing the Supply Chain

By Maria Fontanazza
No Comments
Lab grown meat

The plant-based meat market is anticipated to be worth more than $320 million in the next five years, according to a report released last summer by Global Market Insights. As the popularity of meat-alternative products continues to rise, new challenges are being introduced to supply chain management. Joe Scioscia, vice president of sales at VAI explains some of these hurdles and proposes how technology can help.

Food Safety Tech: Is the growing popularity of plant-based foods introducing hazards or challenges to the supply chain?

Joe Scioscia, VAI
“The growing popularity of plant-based foods has presented a new set of challenges for the supply chain,” says Joe Scioscia of VAI.

Joe Scioscia: The growing popularity of plant-based foods has presented a new set of challenges for the supply chain, especially considering many of these organic items are being introduced by traditionally non-organic retailers. Impossible Foods received FDA approval for its plant-based burger in 2019, showing just how new the plant-based movement is to the industry.

Obviously, the organic supply chain and produce suppliers have long followed regulations for handling produce, such as temperature controls, cargo tracking, and supply and demand planning software, so the produce could be tracked from farm to table and in the case of a recall, be traced back to the source. But for meat alternatives that are combining multiple plant-based ingredients, organizations in the supply chain who are handling these products
have new food safety concerns. Considerations on how to store and process meat alternatives, how to treat each ingredient in the product and, most importantly, how to determine temperature controls or the source of contamination are all discussions the food industry is currently having.

FST: How are plant-based foods changing the dynamic of the supply chain from a food safety perspective?

Scioscia: The food supply chain has changed dramatically in recent years to become more complex, with food items traveling farther than ever before, containing more ingredients and required to follow stricter regulations. Many of the changes to the supply chain are for the better—organic and plant-based alternatives offer health benefits for consumers and are a move towards a more sustainable future. But the reality is that the supply chain isn’t quite there yet. Suppliers, retailers and producers at every part of the supply chain need to work together to ensure transparency and food safety compliance—including for plant-based products. Foodborne illnesses are still a real threat to the safety of consumers, and these same consumers are demanding transparency into the source of their food and sustainable practices from brands. All of these considerations are what’s making this next era of the food industry more complicated than ever before.

Because food safety compliance is always top of mind in the food industry to keep consumers safe, this new and complex supply chain has required companies to rely heavily on technology solutions to ensure plant-based products are equally as safe to consume as non-organic alternatives. These same solutions are also helping supply chains become more transparent for customers and streamline food processes to build a more sustainable future.

FST: What technologies can food companies and retailers use to better manage the supply chain risk while supporting the increased consumer demand for meat alternatives?

Scioscia: Utilizing a centralized software system is one tool many food suppliers and distributors can use to better visualize, trace and process products in the supply chain—including for plant-based alternatives. Having access to a central platform for business data to track assets and ensure food safety regulations are being met allows for companies to optimize processes and cut unnecessary costs along the way.

Heading into 2020, many organizations in the food supply chain are also looking at new applications like IoT, automation, and blockchain as ways to curb food safety issues. The FDA has taken steps to pilot blockchain and AI programs to better track drugs and food products, in conjunction with major food brands and technology companies. Other organizations are following suit with their own programs and many are looking at these solutions to improve their food tracking efforts. It’s clear technology has the most potential to make it easier on the industry to comply with food safety regulations while meeting customer demands for plant-based alternatives and organic options—all the while building a sustainable supply chain for the future.