Tag Archives: ingredients

Susanne Kuehne, Decernis
Food Fraud Quick Bites

Seed Of Thistle May Not Always Produce Thistle

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Milk thistle
Find records of fraud such as those discussed in this column and more in the Food Fraud Database. Image credit: Susanne Kuehne

Silymarin, a complex mixture of flavonolignans, is the main pharmacologically active ingredient of milk thistle, usually used in an extracted form. Milk thistle is often used to treat liver problems, and sales of supplements containing silymarin remain strong. In an estimated 30–50% of milk thistle products, the label claims of active ingredients do not hold up in the actual product, when analyzed with methods such as HPLC-UV. In some investigated samples, the active ingredient content did not even reach the minimum standard. This does not pose a direct threat to consumers’ health, however, the expected therapeutical benefits are not given in products with low content of silymarin.

Resource

  1. McCutcheon, A. (October 16, 2020) “Botanical Adulterants Prevention Bulletin: Adulteration of Milk Thistle (Silybum marianum)”. Botanical Adulterants Prevention Program. American Botanical Council.
Susanne Kuehne, Decernis
Food Fraud Quick Bites

Hot on Food Fraudsters’ Heels

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Microscope, pepper
Find records of fraud such as those discussed in this column and more in the Food Fraud Database. Image credit Susanne Kuehne.

The Institute of Global Food Security at Queen’s University Belfast successfully identifies food fraud in the ever more complex food supply chain by developing and applying reliable analytical tests. Chris Elliott, professor of food safety and founder of the Institute, points out a two-tier approach of untargeted analysis and targeted analysis. Tier One is low cost and easy-to-use with 80–90% reliability. The second tier of highly sophisticated analytical methods, like mass spectrometry, gas chromatography and others, can identify a food item with a 99.999% certainty. These analytical methods combined with correct data are able to identify even details like type of fish, country of origin of a food item, added ingredients, and much more.

Resource

  1. Professor Chris Elliott. (August 13, 2020). “Reliable targeted analysis solutions to fight food fraud.” The Scientists’ Channel.
Susanne Kuehne, Decernis
Food Fraud Quick Bites

Inspector Meerkat: Fraudulent Coconut Oil

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis

Inspector Meerkat checking in with this week’s food fraud investigation: While scanning the Food Fraud Database, I found that coconut oil was recently added to the site. There have been six reported incidents of fraud in coconut oil since 2013, with the most recent incident reported May 2019. Five of the incidents involved coconut oils produced in India, and one incident involved products from the Philippines. Reasons for adulteration include fraudulent labeling claims, dilution or substitution with an alternate ingredient, and misrepresentation of botanical origin.

Resource

  1. Technology-Enabled Risk Management”. Food Fraud Database.

Find records of fraud such as those discussed in this column and more in the Food Fraud Database.

Susanne Kuehne, Decernis
Food Fraud Quick Bites

The Very Mellow Yellow

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Adulteration
Find records of fraud such as those discussed in this column and more in the Food Fraud Database. Image credit Susanne Kuehne.

Lead chromate, flour, curcuma, Metanil Yellow or Sudan Dye, anyone? These are just some of the possibly hazardous adulterants that may make their appearance in turmeric, a popular and pricey spice and ingredient in dietary supplements. The American Botanical Council published a laboratory guidance document to determine the proper methods for the analysis of a number of adulterants. The document gives lists of the methods with their pros and cons, grouped by type of adulterant.

Resource

  1. Cardellina II, J.H., Ph.D. (2020). “Turmeric Raw Material and Products Laboratory Guidance Document”. American Botanical Council.
Karen Everstine, Decernis
Food Fraud Quick Bites

Adulteration of Botanical Ingredients

By Karen Everstine, Ph.D.
No Comments
Karen Everstine, Decernis

Botanical ingredients are important to the food and beverage industries as well as the dietary supplements industry. Botanicals are plants or specific plant parts (leaves, roots, bark, berries, etc.) that are used for particular properties. These properties can be therapeutic or related to color, flavor or other attributes. Botanicals include extracts such as Ginkgo biloba, saw palmetto, and elderberry as well as herbs and spices used in cooking, essential oils, pomegranate juice and extracts, and olive oil. There is a substantial overlap between botanical products used in the herb and supplement industries and those used in foods and beverages. Many “conventional” foods and beverages include botanical extracts or other ingredients to advertise a therapeutic effect.

In 2014, FDA issued a final guidance for industry related to labeling of liquid dietary supplements (vs. beverages). FDA noted, in their rationale for the guidance, two trends:

“First, we have seen an increase in the marketing of beverages as dietary supplements, in spite of the fact that the packaging and labeling of many liquid products represent the products as conventional foods. Products that are represented as conventional foods do not meet the statutory definition of a dietary supplement…and must meet the regulatory requirements that apply to conventional foods.

Second, FDA has seen a growth in the marketplace of beverages and other conventional foods that contain novel ingredients, such as added botanical ingredients or their extracts. Some of these ingredients have not previously been used in conventional foods and may be unapproved food additives. In addition, ingredients that have been present in the food supply for many years are now being added to beverages and other conventional foods at levels in excess of their traditional use levels or in new beverages or other conventional foods. This trend raises questions regarding whether these ingredients are unapproved food additives when used at higher levels or under other new conditions of use. Some foods with novel ingredients also bear claims that misbrand the product or otherwise violate the FFDCA.”

The American Botanical Council (ABC) has been publishing information on the safe, responsible and effective use of botanicals since 1988, including the quarterly journal HerbalGram and a book of herb monographs The ABC Clinical Guide to Herbs. In order to help combat the increasing problem of adulteration in the industry, the Botanical Adulterants Prevention Program (BAPP) was launched in 2010 by ABC along with the American Herbal Pharmacopeia and the University of Mississippi National Center for Natural Products Research. The goal of BAPP is to educate members of the herbal and dietary supplement industry about ingredient and product adulteration through the publication of documents such as adulteration bulletins and laboratory guidance documents. The information in these documents helps ensure the identity, authenticity and safety of botanicals along the supply chain.

Karen Everstine will be discussing food fraud during the 2020 Food Safety Consortium Virtual Conference Series | An example of the Botanical Adulterants Prevention Bulletin for cranberry is seen in Figure 1. It includes a description of the species that can be labeled as cranberry in the United States, a brief description of the marketplace, information on potential adulterants in cranberry fruit extract and other cranberry products, and guidance on analytical methods to test cranberry products for adulteration.

Cranberry adulteration, Botanical Adulterants Bulletin
Figure 1 courtesy of Decernis and the Botanical Adulterants Bulletin.

Decernis has been working with the Botanical Adulterants Prevention Program (BAPP) to integrate links to their expert content into the Food Fraud Database (FFD). This will ensure our users can better develop ingredient specifications, manage risk, and protect their consumers by leveraging this content for food fraud and herbal ingredient fraud prevention. We are currently incorporating three types of BAPP documents into FFD:

  • Adulterants Bulletins. Information and links to these documents will be entered as Inference records in FFD. We are extracting ingredient and adulterant names (including Latin names as synonyms) from the document, assigning “Reasons for Adulteration,” and providing a link to the full document on the BAPP website.
  • Adulteration Reports. Information and links to these documents will also be entered as Inference records in FFD. We are extracting ingredient and adulterant names from the document, assigning “Reasons for Adulteration,” and providing a link to the full document on the BAPP website.
  • Laboratory Guidance documents. Information and links to these documents will be entered as both method record and inference records in FFD. We are extracting ingredient and adulterant names from the document, assigning “Reasons for Adulteration,” and providing a link to the full document on the BAPP website.

Decernis analysts are currently integrating this content into FFD, which will be uploaded to the system between now and early September.

LIMS, Laboratory information management system, food safety

How Advanced LIMS Brings Control, Consistency and Compliance to Food Safety

By Ed Ingalls
No Comments
LIMS, Laboratory information management system, food safety

Recent food scandals around the world have generated strong public concerns about the safety of the foods being consumed. Severe threats to food safety exist at all stages of the supply chain in the form of physical, chemical and biological contaminants. The current pandemic has escalated the public’s concern about cross contamination between people and food products and packaging. To eliminate food risks, manufacturers need robust technologies that allow for reliable monitoring of key contaminants, while also facilitating compliance with the ISO 17025 standard to prove the technical competence of food testing laboratories.

Without effective data and process management, manufacturers risk erroneous information, compromised product quality and regulatory noncompliance. In this article, we discuss how implementing a LIMS platform enables food manufacturers to meet regulatory requirements and ensure consumer confidence in their products.

Safeguarding Food Quality to Meet Industry Standards

Food testing laboratories are continually updated about foodborne illnesses making headlines. In addition to bacterial contamination in perishable foods and ingredient adulteration for economic gains, chemical contamination is also on the rise due to increased pesticide use. Whether it is Salmonella-contaminated peanut butter or undeclared horsemeat inside beef, each food-related scandal is a strong reminder of the importance of safeguarding food quality.

Food safety requires both preventive activities as well as food quality testing against set quality standards. Establishing standardized systems that address both food safety and quality makes it easier for manufacturers to comply with regulatory requirements, ultimately ensuring the food is safe for public consumption.

In response to food safety concerns, governing bodies have strengthened regulations. Food manufacturers are now required to ensure bacteria, drug residues and contaminant levels fall within published acceptable limits. In 2017, the ISO 17025 standard was updated to provide a risk-based approach, with an increased focus on information technology, such as the use of software systems and maintaining electronic records.

The FDA issued a notice that by February 2022, food testing, in certain circumstances, must be conducted in compliance with the ISO 17025 standard. This means that laboratories performing food safety testing will need to implement processes and systems to achieve and maintain compliance with the standard, confirming the competence, impartiality and consistent operation of the laboratory.

To meet the ISO 17025 standard, food testing laboratories will need a powerful LIMS platform that integrates into existing workflows and is built to drive and demonstrate compliance.

From Hazard Analysis to Record-Keeping: A Data-Led Approach

Incorporating LIMS into the entire workflow at a food manufacturing facility enables the standardization of processes across its laboratories. Laboratories can seamlessly integrate analytical and quality control workflows. Modern LIMS platforms provide out-of-the-box compliance options to set up food safety and quality control requirements as a preconfigured workflow.

The requirements set by the ISO 17025 standard build upon the critical points for food safety outlined in the Hazard Analysis and Critical Control Points (HACCP) methodology. HACCP, a risk-based safety management procedure, requires food manufacturers to identify, evaluate and address all risks associated with food safety.

LIMS, laboratory information management system
LIMS can be used to visualize control points for HACCP analysis according to set limits. Graphic courtesy of Thermo Fisher Scientific.

The systematic HACCP approach involves seven core principles to control food safety hazards. Each of the following seven principles can be directly addressed using LIMS:

  • Principle 1. Conduct a hazard analysis: Using current and previous data, food safety risks are thoroughly assessed.
  • Principle 2. Determine the critical control points (CCPs): Each CCP can be entered into LIMS with contamination grades assigned.
  • Principle 3. Establish critical limits: Based on each CCP specification, analytical critical limits can be set in LIMS.
  • Principle 4. Establish monitoring procedures: By defining sampling schedules in LIMS and setting other parameters, such as frequency and data visualization, procedures can be closely monitored.
  • Principle 5. Establish corrective actions: LIMS identifies and reports incidents to drive corrective action. It also enables traceability of contamination and maintains audit trails to review the process.
  • Principle 6. Establish verification procedures: LIMS verifies procedures and preventive measures at the defined CCPs.
  • Principle 7. Establish record-keeping and documentation procedures: All data, processes, instrument reports and user details remain secured in LIMS. This information can never be lost or misplaced.

As food manufacturers enforce the safety standards set by HACCP, the process can generate thousands of data points per day. The collected data is only as useful as the system that manages it. Having LIMS manage the laboratory data automates the flow of quality data and simplifies product release.

How LIMS Enable Clear Compliance and Optimal Control

Modern LIMS platforms are built to comply with ISO 17025. Preconfigured processes include instrument and equipment calibration and maintenance management, traceability, record-keeping, validation and reporting, and enable laboratories to achieve compliance, standardize workflows and streamline data management.

The workflow-based functionality in LIMS allows researchers to map laboratory processes, automate decisions and actions based on set criteria, and reduce user intervention. LIMS validate protocols and maintain traceable data records with a clear audit history to remain compliant. Data workflows in LIMS preserve data integrity and provide records, according to the ALCOA+ principles. This framework ensures the data is Attributable, Legible, Contemporaneous, Original and Accurate (ALCOA) as well as complete, consistent and enduring. While the FDA created ALCOA+ for pharmaceutical drug manufacturers, these same principles can be applied to food manufacturers.

Environmental monitoring and quality control (QC) samples can be managed using LIMS and associated with the final product. To plan environmental monitoring, CCPs can be set up in the LIMS for specific locations, such as plants, rooms and laboratories, and the related samples can then be added to the test schedule. Each sample entering the LIMS is associated with the CCP test limits defined in the specification.

Near real-time data visualization and reporting tools can simplify hazard analysis. Managers can display information in different formats to monitor critical points in a process, flag unexpected or out-of-trend numbers, and immediately take corrective action to mitigate the error, meeting the requirements of Principles 4 and 5 of HACCP. LIMS dashboards can be optimized by product and facility to provide visibility into the complete process.

Rules that control sampling procedures are preconfigured in the LIMS along with specific testing rules based on the supplier. If a process is trending out of control, the system will notify laboratory personnel before the product fails specification. If required, incidents can be raised in the LIMS software to track the investigation of the issue while key performance indicators are used to track the overall laboratory performance.

Tasks that were once performed manually, such as maintaining staff training records or equipment calibration schedules, can now be managed directly in LIMS. Using LIMS, analysts can manage instrument maintenance down to its individual component parts. System alerts also ensure timely recalibration and regular servicing to maintain compliance without system downtime or unplanned interruptions. The system can prevent users from executing tests without the proper training records or if the instrument is due for calibration or maintenance work. Operators can approve and sign documents electronically, maintaining a permanent record, according to Principle 7 of HACCP.

LIMS allow seamless collaboration between teams spread across different locations. For instance, users from any facility or even internationally can securely use system dashboards and generate reports. When final testing is complete, Certificates of Analysis (CoAs) can be autogenerated with final results and showing that the product met specifications. All activities in the system are tracked and stored in the audit trail.

With features designed to address the HACCP principles and meet the ISO 17025 compliance requirements, modern LIMS enable manufacturers to optimize workflows and maintain traceability from individual batches of raw materials all the way through to the finished product.

Conclusion

To maintain the highest food quality and safeguard consumer health, laboratories need reliable data management systems. By complying with the ISO 17025 standard before the upcoming mandate by the FDA, food testing laboratories can ensure data integrity and effective process management. LIMS platforms provide laboratories with integrated workflows, automated procedures and electronic record-keeping, making the whole process more efficient and productive.

With even the slightest oversight, food manufacturers not only risk product recalls and lost revenue, but also losing the consumers’ trust. By upholding data integrity, LIMS play an important role in ensuring food safety and quality.

Susanne Kuehne, Decernis
Food Fraud Quick Bites

Botanicals Yes, Glycerol No

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Food fraud, gin, ingredients, botanicals
Find records of fraud such as those discussed in this column and more in the Food Fraud Database. Image credit: Susanne Kuehne.

Gin usually consists of re-distillation or addition of a myriad of botanical ingredients to alcohol, but should certainly not contain glycerol and hydrogen peroxide like in this mislabeling case in Australia. This product poses a health risk for consumers, and is under recall for a full refund.

Resource

  1. Apollo Bay Distillery P/L recall (June 8, 2020) “Apollo Bay Distillery SS Casino Dry Gin”. Food Standards Australia New Zealand.
Susanne Kuehne, Decernis
Food Fraud Quick Bites

Fraud Is the Spice Of Life

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Food Fraud, cumin
Find records of fraud such as those discussed in this column and more in the Food Fraud Database. Image credit: Susanne Kuehne.

The high value of spices makes them one of the most popular targets for intentional adulteration. Researchers in Brazil developed an efficient method for fraud detection: Near-infrared spectrometer (NIR) associated with chemometrics. This method is able to detect adulterants like corn flour and cassava in spice samples, revealing a high rate of adulteration, between 62% for commercial black pepper and 79% for cumin samples.

Resource

  1. Amanda Beatriz Sales de Lima et al. (January 2020). “Fast quantitative detection of black pepper and cumin adulterations by near-infrared spectroscopy and multivariate modeling”. Food Control. Vol. 107.
Recall

Undeclared Allergens, Bacterial Contamination Top Q1 2020 Recalls

By Food Safety Tech Staff
No Comments
Recall

The COVID-19 crisis has led to supply chain management challenges for food manufacturers and processors, ingredient suppliers and vendors, and regulators. In its Q1 2020 Recall Index, experts from Stericycle advise that companies use this time to take a closer look at their supply chain processes and reevaluate their recall plan.

Watch two complimentary on-demand webinars: COVID-19 in the Food Industry: Enterprise Risk Management and the Supply Chain |
COVID-19 in the Food Industry: Mitigating and Preparing for Supply Chain Disruptions
“Companies in the food industry have their work cut out for them during this outbreak and for months after,” the report states. “But the key is to focus intensely on the basics. It’s too easy to assume food safety protocols and quality controls are followed as strictly and uniformly as they always are. Use this time wisely to recheck your supply chain, review your food-safety processes and update your recall plan.”

FDA Recalls: Notable Numbers (Q1 2020)

  • 141 recalls affecting more than 8.8 units
  • Undeclared allergens: 39.7% of recalls. The top cause of recalls for the 11th consecutive quarter
  • Bacterial contamination: 58.1% of recalls by number of impacted units
  • Nearly 20% of fresh and processed food recalls impacted products distributed nationwide

USDA Recalls: Notable Numbers (Q1 2020)

  • 6 recalls impacting 22,500 pounds of product
    • More than half of recalled pounds were a result of lack of inspection
  • Recalls dropped nearly 79%
  • Undeclared allergens: 4 recalls
Wendy Stanley, Radley Corp.
FST Soapbox

The Future of Food Production: IoT and Blockchain

By Wendy Stanley
1 Comment
Wendy Stanley, Radley Corp.

Since the early 20th century, food safety has been a paramount concern for consumers in the United States. Upton Sinclair’s The Jungle, which painted a bleak, brutal, and downright disgusting picture of turn-of-the-century food processing facilities led to the creation of some of the country’s first food safety laws. Today, federal agencies and statutes make up a comprehensive food safety system to ensure that the growth, distribution and consumption of foods are safe from start to finish.

While food safety has significantly improved in the century since Sinclair’s time, stories of major outbreaks of foodborne illnesses continue to pop up across the country. Over the past few years, a significant number of outbreaks as a result of pathogens have made the headlines. To mitigate the threat of public health crises and ensure food production and distribution is safe and secure, companies must rely on modern technology to trace the movement of food across the entire supply chain.

How Technology Is Changing the Food Industry

Technology is a powerful, innovative force that has changed the way even well established companies must do business in order to stay relevant. From easier access to nutritional information to digital solutions that make food manufacturing and distribution more efficient, greater consumer awareness driven by technology empowers consumers to make decisions that can greatly affect the food industry’s bottom line.

Technology-driven accountability is playing one outsized role in allowing consumers to make better choices about the foods they consume and purchase. Social media and smartphone apps connect consumers to a wealth of resources concerning the harmful effects of certain ingredients in their food, the source of products, and how particular items are made and produced. In 2015, for example, The Campbell Soup Company removed 13 ingredients from its traditional soup recipes as a result of a greater public demand to understand food sources. Neither food giants nor small producers should expect to remain immune from greater public scrutiny over food health and safety.

Nutritional research is also helping change the conversation around food, granting nutritionists and consumers alike greater access to food-related data. Through easily accessible scholarly journals, apps that provide real-time nutrition information, and meal tracking apps that help users log and understand what they’re eating, consumers can gain a better understanding of nutrition to make more informed choices about their daily food intake. Researchers can also use food-tracking apps to make discoveries about consumer behavior and foods that are eaten.

Technology is also being used to tackle food waste, one of the most pervasive problems facing the food industry. One-third of the total amount of food produced globally, amounting to nearly $1.2 trillion, goes to waste every year. Solving this pervasive crisis has become an industry imperative that is being tackled through a variety of innovative technologies to improve shelf-life, dynamically adjust pricing based on sell-by dates, and allow restaurants to automatically monitor their daily waste.

In the food manufacturing sector, digitally-connected supply chain systems are providing greater visibility into the production of foods and beverages. Supplier management technology delivers data that can be used to optimize processes and improve quality in real-time, making it easy to adjust to consumer demands, respond to logistics challenges, and boost government compliance. The enhanced operational benefits offered through improved supply chain visibility allows manufacturers to produce products faster, safer, and with greater transparency.

Online ordering has also ushered in a new era of food industry behavior. The growing assortment of online ordering apps has just given the consumer more control over quickly ordering their next meal. The trend in online ordering has also allowed restaurants to experiment with new business models like virtual kitchens that offer menus that are only available online.

Connected Factory, manufacturing
The IoT adds a layer of technology to the food manufacturing process. (All photos licensed through Adobe Stock)

IoT: The Future of Food Safety

From the farm to the carryout bag, the impact of technology on the greater food industry is already evident in daily practice. Through enhanced access to data, food producers can run an efficient supply chain that reduces waste, boosts productivity, and meets consumer demand in real-time. Using a variety of online resources, consumers are empowered to quickly make well-informed food purchases that are healthier, more convenient and more sustainable than ever before.

The Internet-of-Things (IoT) adds a layer of technology to the food manufacturing process to ensure greater food safety. A broad series of networked sensors, monitors, and other Internet-connected devices, IoT technology can oversee the entire food manufacturing and distribution process from the warehouse to the point of sale. Boosting transparency across the board, intelligent sensors and cameras can transform any food manufacturing operation into a highly visible, data-backed process that allows for better decision-making and improved real-time knowledge.

While IoT technology is a powerful tool that can improve the efficiency of restaurants and provide enhanced customer experiences, some of its greatest potential lies in its ability to safely monitor food preparation and production. Live data from IoT devices makes it possible to closely monitor food safety data points, allowing manufacturers and restaurants to reduce the risks of foodborne illness outbreaks through enhanced data collection and automated reporting.

Domino’s Pizza, for instance, embraced IoT technology to enhance management processes and monitor the food safety of its products. In the past, restaurants have relied on workers to record food temperatures, a practice that was occasionally overlooked and could lead to issues with health inspectors. Using IoT devices for real-time temperature monitoring, Domino’s automatically records and displays temperature levels of a store’s production, refrigeration, and exhaust systems, allowing employees to view conditions from a live dashboard.

In addition to boosting food safety, the comprehensive monitoring offered by IoT technology can help food companies reduce waste, keep more effective records, and analyze more data for improved operations.

IoT isn’t just a safe solution for improving food safety: It’s a smart solution.

Blockchain: The Future of Food Traceability

The ubiquity of QR codes has made it easy for consumers to quickly gain access to information by scanning an image with their smartphone. From accessing product manuals to downloading songs, QR codes make it simple to provide detailed and relevant content to users in a timely manner.

Blockchain enhances the safety of the business of food production itself.

Blockchain technology provides a powerful opportunity to provide consumers with similar information about food safety. Able to instantaneously trace the lifecycle of food products, blockchain can report a food’s every point of contact throughout its journey from farm to table. By scanning a QR code, for instance, users can quickly access relevant information about a food product’s source, such as an animal’s health, and welfare. Shoppers at Carrefour, Europe’s largest retailer, area already using blockchain traceability to track the stage of production of free-range chickens across France.

Walmart piloted a blockchain implementation by tracing a package of sliced mangoes across every destination until it hit store shelves, from its origin at a farm in Mexico to intermittent stops at a hot-water treatment plant, U.S processing plant, and cold storage facility. Real-time product tracing can be conducted in just two seconds, enabling Walmart and other vendors to provide consumers with access to food safety information that could easily be updated should an outbreak or contamination occur.

Blockchain’s inherent transparency not only makes it possible to identify the safety of food production; it also enhances the safety of the business of food production itself. Because blockchain is based upon an immutable, anonymous ledger, record keeping and accounting can be made more secure and less prone to human error. Payments to farmers and other food suppliers can also become more transparent and equitable.

The High Tech Future of Food

Unlike the days of Sinclair’s The Jungle, food transparency is the name of today’s game. As consumers continue to demand greater access to better food on-demand, food producers must continue to find innovative ways of providing safe, healthy, and ethical solutions.

IoT devices and blockchain present food manufacturers with powerful technological solutions to solve complex problems. Brands choosing to rely on these innovations, such as Domino’s and Walmart, are helping ensure that food is produced, prepared and distributed with a foremost emphasis on health and safety. As these technologies continue to become more intelligent, well-connected, and embraced by leading food producers, consumers should rest assured that they’ll always be able to know exactly what they’re eating, where it’s from, and whether it’s safe.