Tag Archives: Listeria

Kevin Smedley, High Performance Systems
FST Soapbox

Importance of Flooring for Food Processing Plant Hygiene

By Kevin Smedley
No Comments
Kevin Smedley, High Performance Systems

Food processing is a multi-trillion dollar industry that encompasses facilities such as bakeries, meat and poultry plants, bottling lines, dairies, canneries and breweries. For all of these food processing plants a commercial flooring system is essential for maintaining a hygienic environment. Few areas of a plant provide as much opportunity for the spread of bacteria, mold, fungi and dust as the floor. Hazardous materials from a contaminated floor can easily be spread from worker’s shoes and mobile equipment. Food processing plants present a unique set of challenges that require careful consideration of floor properties and installation.

Food processing plants floors are subjected to constant, high concentrations of salt, alkaline and oil compounds that substantially degrade the floor and thereby risk food contamination and facility shutdown. These compounds can come from common food production by-products like oils, fats, dairy products, sugar solutions, blood, and natural acids or from harsh cleaners and disinfectants. Even with frequent and thorough cleaning these substances can—and will—result in microbial growth and the spread of bacteria in untreated concrete or poorly installed resinous flooring.

Food processing plant hygiene, flooring
A commercial flooring system is critical to maintaining a hygienic environment in a food processing plant. (Image courtesy of High Performance Systems)

Cleaning floors is an essential part of maintaining food processing operations to keep up with government standards. A proper floor coating is a necessity for dealing with the vigorous, harsh cleaning procedures that typically include very hot water and aggressive cleaning chemicals. Depending on the exposure to corrosive, temperature and moisture conditions a thin film coating may suffice; however, in most cases, a thick, durable floor coating is needed to endure the cleaning operations. If too thin of a coating is used the repeated barrage of high pressure, high-temperature hot water and steam will strip the floor coating. Only an experienced flooring professional can determine the proper floor coating for a facility.

In addition to the properties of the floor coating, proper installation is essential for maintaining a hygienic, safe facility. If a floor is not seamless even the best floor coatings are vulnerable to germ buildup within gaps and cracks. To prevent harmful substance accumulation, a seamless coving transition from the floor to the wall is needed. Not only does that make the floors unsanitary, but it also can spread to other parts of the facility, equipment and product. Coving also aids in the cleaning process by allowing for hosing around the sides and corners of the room where germ buildup is most common.

An often-overlooked—yet critical—aspect of floor installation is having the proper pitch to promote water drainage. Having pools of water is not only dangerous for workers but for product safety. Such an examples of this issue is the Listeria outbreak at cantaloupe producer Jensen Farms, which led to 33 fatalities, 143 hospitalized victims, and ultimately, the end of their business. In the 2011 FDA released a report that focused on “Factors Potentially Contributing to the Contamination of Fresh, Whole Cantaloupe Implicated in the Multi-State Listeria monocytogenes Foodborne Illness Outbreak”. The conclusion was reached that the leading cause of Listeria spreading was due to a poorly constructed packing facility floor that was difficult to clean and allowed water to pool. The best way to prevent a similar situation at your plant is to make sure you get an experienced flooring expert, who understands your facility’s needs, to choose a floor with the right properties and to properly install it.

Recall

Almark Foods Expands Hard Boiled Egg Recall As Listeria Outbreak Continues

By Food Safety Tech Staff
No Comments
Recall

Today FDA provided an update about its outbreak investigation of Listeria monocytogenes linked to hard-boiled eggs manufactured by Almark Foods’ facility in Gainesville, Georgia. On December 23, Almark expanded its recall to include all eggs manufactured at the Gainesville plant. In addition, the company is not producing products at this facility.

Thus far, four companies have recalled products containing the eggs from Almark Foods, as they have the potential to be contaminated with Listeria monocytogenes:

As of December 17, seven infections were reported, with four hospitalizations and one death across five states. The hard-boiled eggs were sold both in bulk pails to food processors, restaurants and retailers, as well as directly to consumers at the retail level, and have “Best If Used By Dates” through March 2, 2020.

FDA used whole genome sequencing to find a genetic match in the outbreak strain from samples collected at Almark’s facility during agency inspections in February and December of this year.

The agency investigation is ongoing.

Dairy

Q3 Hazard Beat: Milk & Dairy Products

By Food Safety Tech Staff
No Comments
Dairy

The following infographic is a snapshot of the hazard trends in milk and dairy from Q3 2019. The information has been pulled from the HorizonScan quarterly report, which summarizes recent global adulteration trends using data gathered from more than 120 reliable sources worldwide. For the past several weeks, Food Safety Tech has provided readers with hazard trends from various food categories included in this report. Next week will conclude this series.

Mailk dairy hazards, HorizonScan
2019 Data from HorizonScan by FeraScience, Ltd.

View last week’s hazards in fruits and vegetables.

Allison Kopf, Artemis

How Technologies for Cultivation Management Help Growers Avoid Food Safety Issues

By Maria Fontanazza
No Comments
Allison Kopf, Artemis

Visibility, accountability and traceability are paramount in the agriculture industry, says Allison Kopf, founder and CEO of Artemis. In a Q&A with Food Safety Tech, Kopf explains how growers can take advantage of cultivation management platforms to better arm them with the tools they need to help prevent food safety issues within their operations and maintain compliance.

Food Safety Tech: What are the key challenges and risks that growers face in managing their operations?

Allison Kopf: One of the easiest challenges for growers to overcome is how they collect and utilize data. I’ve spent my entire career in agriculture, and it’s been painful to watch operations track all of their farm data on clipboards and spreadsheets. By not digitizing processes, growers become bogged down by the process of logging information and sifting through old notebooks for usable insights—if they even choose to do that.

Allison Kopf, Artemis
Allison Kopf is the founder and CEO of Artemis, a cultivation management platform serving the fruit, vegetable, floriculture, cannabis, and hemp industries. She is also is an investment partner at XFactor Ventures and serves on the boards of Cornell University’s Controlled Environment Agriculture program and Santa Clara University’s College of Arts and Sciences.

I was visiting a farm the other day and the grower pulled out a big binder. The binder contained all of his standard operating procedures and growing specifications for the varieties he’s grown over the past 20 years. Then he pulled out a pile of black notebooks. If you’ve ever worked on a farm, you’d recognize grower notebooks anywhere. They’re used to log data points such as yield, quality and notes on production. These notebooks sit in filing cabinets with the hopeful promise of becoming useful at some point in the future—to stop production from falling into the same pitfalls or to mirror successful outcomes. However, in reality, the notebooks never see the light of day again. The grower talked about the pain of this process—when he goes on vacation, no one can fill his shoes; when he retires, so does the information in his head; when auditors come in, they’ll have to duplicate work to create proper documentation; and worse, it’s impossible to determine what resources are needed proactively based on anything other than gut. Here’s the bigger issue: All of the solutions are there; they’re just filed away in notebooks sitting in the filing cabinet.

Labor is the number one expense for commercial growing operations. Unless you’re a data analyst and don’t have the full-time responsibilities of managing a complex growing operation, spreadsheets and notebooks won’t give you the details needed to figure out when and where you’re over- or under-staffing. Guessing labor needs day-to-day is horribly inefficient and expensive.

Another challenge is managing food safety and compliance. Food contamination remains a huge issue within the agriculture industry. E. coli, Listeria and other outbreaks (usually linked to leafy greens, berries and other specialty crops) happen regularly. If crops are not tracked, it can take months to follow the contamination up the chain to its source. Once identified, growers might have to destroy entire batches of crops rather than the specific culprit if they don’t have appropriate tracking methods in place. This is a time-consuming and expensive waste.

Existing solutions that growers use like ERPs are great for tracking payroll, billing, inventory, logistics, etc., but the downside is that they’re expensive, difficult to implement, and most importantly aren’t specific to the agriculture industry. The result is that growers can manage some data digitally, but not everything, and certainly not in one place. This is where a cultivation management platform (CMP) comes into play.

FST: How are technologies helping address these issues?

Kopf: More and more solutions are coming online to enable commercial growers to detect, prevent and trace food safety issues, and stay compliant with regulations. The key is making sure growers are not just tracking data but also ensuring the data becomes accessible and functional. A CMP can offer growers what ERPs and other farm management software can’t: Detailed and complete visibility of operations, labor accountability and crop traceability.

A CMP enables better product safety by keeping crop data easily traceable across the supply chain. Rather than having to destroy entire batches in the event of contamination, growers can simply trace it to the source and pinpoint the problem. A CMP greatly decreases the time it takes to log food safety data, which also helps growers’ bottom line.

CMPs also help growers manage regulatory compliance. This is true within the food industry as well as the cannabis industry. Regulations surrounding legal pesticides are changing all the time. It’s difficult keeping up with constantly shifting regulatory environment. In cannabis this is especially true. By keeping crops easily traceable, growers can seamlessly manage standard operating procedures across the operation (GAP, HACCP, SQF, FSMA, etc.) and streamline audits of all their permits, licenses, records and logs, which can be digitized and organized in one place.

FST: Where is the future headed regarding the use of technology that generates actionable data for growers? How is this changing the game in sustainability?

Kopf: Technology such as artificial intelligence and the internet of things are changing just about every industry. This is true of agriculture as well. Some of these changes are already happening: Farmers use autonomous tractors, drones to monitor crops, and AI to optimize water usage.

As the agriculture industry becomes more connected, the more growers will be able to access meaningful and actionable information. Plugging into this data will be the key for growers who want to stay profitable. These technologies will give them up-to-the-second information about the health of their crops, but will also drive their pest, labor, and risk & compliance management strategies, all of which affect food safety.

When growers optimize their operations and production for profitability, naturally they are able to optimize for sustainability as well. More gain from fewer resources. It costs its customers less money, time and hassle to run their farms and it costs the planet less of its resources.

Technology innovation, including CMPs, enable cultivation that will provide food for a growing population despite decreasing resources. Technology that works both with outdoor and greenhouse growing operations will help fight food scarcity by keeping crops growing in areas where they might not be able to grow naturally. It also keeps production efficient, driving productivity as higher yields will be necessary.

Beyond scarcity, traceability capabilities enforce food security which is arguable the largest public health concern across the agricultural supply chain. More than 3,000 people die every year due to foodborne illness. By making a safer, traceable supply chain, new technology that enables growers to leverage their data will protect human life.

Seafood

Q3 Hazard Beat: Seafood

By Food Safety Tech Staff
No Comments
Seafood

The following infographic is a snapshot of the hazard trends in seafood from Q3 2019. The information has been pulled from the HorizonScan quarterly report, which summarizes recent global adulteration trends using data gathered from more than 120 reliable sources worldwide. Over the past and next few weeks, Food Safety Tech is providing readers with hazard trends from various food categories included in this report.

hazards, seafood, HorizonScan
2019 Data from HorizonScan by FeraScience, Ltd.

View last week’s hazards in herbs and spices.

Spices, Paprika, Curry

Q3 Hazard Beat: Herbs and Spices

By Food Safety Tech Staff
No Comments
Spices, Paprika, Curry

The following infographic is a snapshot of the hazard trends in herbs and spices from Q3 2019. The information has been pulled from the HorizonScan quarterly report, which summarizes recent global adulteration trends using data gathered from more than 120 reliable sources worldwide. Over the next several weeks, Food Safety Tech will provide readers with hazard trends from various food categories included in this report.

Hazards, Herbs, Spices
2019 Data from HorizonScan by FeraScience, Ltd.

View last week’s hazards in meat and meat products.

Alert

Q3 Hazard Beat: Meat and Meat Products Trends

By Food Safety Tech Staff
No Comments
Alert

The following infographic is a snapshot of the hazard trends in meat and meat products from Q3 2019. The information has been pulled from the HorizonScan quarterly report, which summarizes recent global adulteration trends using data gathered from more than 120 reliable sources worldwide. Over the next several weeks, Food Safety Tech will provide readers with hazard trends from various food categories included in this report.

HorizonScan, Meat hazards
2019 Data from HorizonScan by FeraScience, Ltd.

View last week’s hazards in poultry.

Poultry

Q3 Hazard Beat: Poultry and Poultry Products Trends

By Food Safety Tech Staff
No Comments
Poultry

The following infographic is a snapshot of the hazard trends in poultry and poultry products from Q3 2019. The information has been pulled from the HorizonScan quarterly report, which summarizes recent global adulteration trends using data gathered from more than 120 reliable sources worldwide. Over the next several weeks, Food Safety Tech will provide readers with hazard trends from various food categories included in this report.

Hazard Trend Report, Poultry & Poultry Products
2019 Data from HorizonScan by FeraScience, Ltd.
Brett Madden, Aviaway
Bug Bytes

Bird Problems and Control Methods for Food Production Facilities

By R. Brett Madden
No Comments
Brett Madden, Aviaway

Various types of pest birds can impact food plant structures and facility surroundings. Even a single bird that finds its way into a food plant can trigger a host of concerns such as, failed audits, product contamination, plant closure, production stoppage, lost revenues, fines, structural damage, health hazards to occupants and fire hazards.

In most cases, a food plant operation has a bulletproof pest control plan; however, in most cases, birds are always an afterthought in most pest management plans. After inspecting and consulting numerous food plants, I hear the same story over and over: “I have a person in the warehouse that can chase them out” or, “are birds really a big deal?” or, “why do I have to be concerned about birds?” and on and on. Despite what you may think, birds are a big deal, and you should take them seriously!

Pest management, pigeon droppings HVAC
Larger birds, such as pigeons, can cause more problems around the exterior of a facility on HVAC units as seen here. (Image courtesy of Aviaway Bird Control Services & Consulting)

Since food processing plants contain areas that have very sensitive environments, birds can introduce various adulterants and harmful contaminants. Birds can cause potential harm to humans due to foodborne illness.

Pest Bird Species

There are four main pest birds: Pigeon, Starling, Sparrow and Seagull. Each one of these birds can cause a host of concerns and issues for food processing facilities. Just one bird can cause catastrophic damage. In most cases, small pest birds such as Sparrows and Starlings can gain access into a facility through a variety of ways:

  • Damaged bumpers around truck bay loading dock doors.
  • Open doors (seems obvious, but I always find doors wide open during audits).
  • General building deficiencies.

Larger birds, such as Pigeons and Seagulls, typically cause more problems around the exterior of a facility on ledges, rooftops, HVAC units, loading docks and related areas.

In either case, these various types of pest birds can cause significant problems on the interior and exterior of food plants.

Conducive Conditions

In most cases, facilities want to reduce as many conducive conditions as they can around and within the facility in a timely fashion. A conducive condition is one whereby due to a building condition, structural design, equipment operation, food or water source, or surrounding conditions (i.e., near a public landfill, raw materials mill or body of water) can attract pest birds to a facility. With each of these conditions, great care must be taken to reduce as many conducive conditions as possible.

Examples of Conducive Conditions

Structural Conditions

  • Loading docks/canopies with open beams and rafters
  • HVAC equipment
  • Pooling water (roof and landscaping)
  • Structural overhangs and ledges
  • Open access points
  • Landscaping (types of plantings)
  • Damaged truck bay bumpers
  • Gaps and opening around the structure
  • Doors with improper sealing

Human Conditions

  • Open dumpsters
  • Overflowing dumpsters
  • Dirty dumpsters
  • Product spillage
  • Employees feeding birds
  • Doors left open

All these conducive conditions, if left unresolved, can lead to significant bird problems. Reducing as many conducive conditions as possible will be the first step of any bird management program.

Bird Control Methods

From the start, your facility should have a bird management plan of action. For the most part, bird problems should not be left to be handled internally, unless your staff has been properly trained and has a bird management plan in place.
Most birds are protected by the Federal Migratory Bird Treaty Act of 1918. However, Pigeons, Sparrows, and Starlings are considered non-migratory birds and are not protected under this Act. Even though these three bird species are not protected, control methods still need to be humane. More specifically, your bird control program must also comply with is the American Veterinary Medical Association (“AVMA”) Guidelines for the Euthanasia of Animals if this is the control method selected. The AVMA considers the House Sparrows, Feral Pigeon, and the Common Starling “Free-Ranging Wildlife.” And Free-Ranging Wildlife may only be humanely euthanized by specifically proscribed methodology.

In addition to the above-mentioned regulations, various regulations regarding the relocation of birds/nests may also apply. I also always recommend checking with local and state agencies to ensure that there are no local regulations that may apply. Bottom line: Don’t rely on untrained internal practices; one misstep could result in heavy financial fines and penalties.

Bird Management Strategies

First Line Defense

  • Stop any bird feeding around the facility immediately
    • Any bird management plan should have a clear policy prohibiting employees from feeding birds. Once birds have been accustomed to routine feeding, the birds will continue to return.
  • Eliminate Standing Water Sources
    • All standing or pooled water needs to be eliminated. Thus, routine roof inspections need to be conducted to ensure drains are working properly.
    • Landscape irrigation needs to be calibrated to ensure no puddling of water in areas of low sun exposure.
  • Proper Sanitation Practices
    • Ensure that dumpster lids are closed when not in use.
    • Trash removal frequency adequate.
    • Routine cleaning of trash receptacles.
    • Immediate removal of spilled food.
  • Eliminate Entry Points
  • Survey the facility to ensure that all holes are properly sealed.
    • Around truck bay bumpers and doors
  • Exhaust vents are properly screened.
  • Windows are closed and have screens when in use.

The most appropriate bird control strategy will be determined based on the severity of the bird pressure. For example, if the bird pressure is high (birds have nested), then in most cases, you will only be able to use bird exclusion methods. Whereas, if the bird pressure is light to moderate (birds have not nested), bird deterrent methods can be used. This is an important distinction. Bird exclusion is physically changing the area to permanently exclude said pest birds. Whereas, bird deterrent devices inhibit birds from landing on treated areas.

Bird Deterrent Methods

After the previously mentioned first-line strategies have been implemented, the next step would be to install bird deterrent products (birds have not nested).

  • Bird Spikes
  • Bird Wire
  • Electrified Shock Track
  • Bird Gel
  • Sonic & Ultra Sonic Devices
  • Lasers and Optical Deterrents
  • Hazing & Misting Devices
  • Pyrotechnics
  • Live Capture

Bird Exclusion Methods

If the birds have nested in or around the facility, the next step would be to install bird exclusion products (birds have nested).

  • Bird Netting
  • Ledge Exclusion (AviAngle)
  • Architectural modifying structural
  • Aggressive Harvesting (Targeting)

Prevention Strategies

The best prevention strategy is planning and knowledge. Conduct a bird audit and develop a bird management plan before birds get near or inside the facility. The key is to act quickly, as soon as an incident occurs. I find countless times when I am called in to consult or service a food plant, that the birds got into the facility and no one knew what to do, and as a result, the birds remained within the facility for an extended period, thus increasing the risk of exposure. It is always much easier to remove a bird when they are unfamiliar with their surroundings. Whereas, it is much more difficult to remove birds from a facility that has had a long-standing bird problem.

Once you have a plan, who oversees the bird management plan? Are thresholds determined and set for various areas of the facility? For example, a zero threshold in production areas? Threshold levels will be set based upon by location and sensitivity of the said location. What steps are going to be taken to remove the bird? For how long is each step conducted? These questions need to be answered and developed to stay ahead of bird problems.

Reduce as many conducive conditions as possible. The longer a conducive condition stays active, the more likely birds, as well as other wildlife or rodents, will be attracted to the site and find a way into the facility.

Pathogen Contamination & Hazards

Birds present a host of problems, whether they are inside or outside of a facility. Birds can roost by air vents, and the accumulation of bird feces can enter the facility air system. Bird droppings on walkways and related areas allow for the possibility of vectoring of said dropping when employees step on droppings. Thus, spreading fecal matter/spores and other contaminants to areas throughout the facility.

If birds are within the facility, droppings can spread on product lines, raw materials, stored products, equipment and more, thus, causing contamination. Because of a bird’s ability to fly, they are perfect creatures to spread various diseases, pathogens, ectoparasites and fungal materials. Diseases such as Histoplasmosis, Salmonella, Encephalitis, E-coli, Listeria, and more. Birds have been known to transmit more than 60 infectious diseases!

Besides the spread of potentially harmful contaminants throughout the facility, bird droppings and nesting materials can also create a host of additional problems:

  • The acidity in bird droppings can damage building finishes, façade signs, lighting and more.
  • Wet bird droppings can create a slip and fall hazard.
  • Bird nesting materials can create a fire hazard around façade signs, exit signs and light fixtures.
  • Bird nesting and debris can clog roof drains and cause roof leaks from standing water.
  • Introduction of ectoparasites into the facility such as bird mites, lice, fleas, ticks and more.

Conclusion

In summary, taking a proactive approach to bird control is the best practice. Reduce food, water and shelter sources (aka conducive conditions) promptly. Pest management programs need to implement a more in-depth section of the program for bird control. Like integrated pest management, bird control should be based upon an integrated method. Each facility will have its unique challenges. As such, each bird management plan needs to be tailored to the specific site. A well designed and balanced, integrated bird management program will provide long-term and cost-efficient bird control.

The next article in this series takes a closer look at how to prepare an integrated bird management audit program.

sad face

Notable Outbreaks and Recalls of 2018

By Maria Fontanazza
No Comments
sad face

As stated by CDC’s John Besser, Ph.D. last month at the Food Safety Consortium, “It’s been quite a year for outbreaks.” Here’s a not-so-fond look back at some of the noteworthy outbreaks and recalls of 2018.

Romaine Lettuce –E.coli O157:H7

2018 was not a good year for romaine lettuce. In the spring, a deadly multistate outbreak of E.coli O157:H7 was linked to romaine lettuce that came from the Yuma, Arizona growing region. “We knew right away that this was going to get bad and that it would get bad quickly,” said Matthew Wise, deputy branch chief for outbreak response at the Outbreak Response and Prevention Branch of the CDC at the 2018 Food Safety Consortium. Although the CDC declared the outbreak over at the end of June, the total number of illnesses had reached 210, with five deaths.

Then in November it was revealed that contaminated lettuce was coming from growing regions in northern and central California. According to the latest update from FDA, there have been 59 reported illnesses, with 23 hospitalizations, across 16 states. No deaths have been reported. Earlier this month Adam Bros Farming, Inc. recalled red leaf lettuce, green leaf lettuce and cauliflower, because it may have come into contact with water from the reservoir where the E. coli outbreak strain was found.

Raw Beef Products – Salmonella

At the beginning of the month, JBS Tolleson, Inc. expanded a recall of its non-intact raw beef products due to concerns of contamination with Salmonella Newport. More than 12 million pounds of product have been recalled. The latest CDC update put the reported case count at 333, with 91 hospitalizations across 28 states.

Shell Eggs – Salmonella

In April, Rose Acre Farms recalled more than 206 million eggs after FDA testing determined that eggs produced from the company’s farm were connected to 22 cases of Salmonella Braenderup infections. A total of 45 cases were reported across 10 states, with 11 hospitalizations, according to the CDC.

Pre-cut Melon – Salmonella

In June Caito Foods recalled its pre-cut melon products after a multi-state outbreak of Salmonella Adelaide infections were traced back to the products. A total of 77 cases across nine states, with 36 hospitalizations, were reported.

Vegetable Trays – Cyclospora

In July, Del Monte recalled its vegetable trays that contained broccoli, cauliflower, carrots and dill dip following confirmed cases of cyclosporiasis in people who consumed the products. The CDC declared the outbreak over in September, with a final case count at 250 people across four states.

Salad Mix – Cyclospora

Fresh Express salad mix served at McDonalds was linked to a multistate outbreak of cyclosporiasus. The outbreak was declared over in September, with the final illness count at 511, and 24 hospitalizations.

Raw Turkey – Salmonella

Just before Thanksgiving an outbreak of Salmonella linked to raw turkey products was announced. Jennie-O Turkey Store Sales recalled more than 255,000 pounds of raw ground turkey products, however the CDC has not identified a single, common supplier that can account for this outbreak. As of the agency’s latest update on December 21, 216 cases have been reported across 38 states. The outbreak is responsible for 84 hospitalizations and one death.

Honey Smacks Cereal – Salmonella

The early summer outbreak of Salmonella Mbandaka linked to Kellogg’s Honey Smacks cereal got a lot of press, and it didn’t help that even though the company recalled the product, many retailers continued to keep the cereal on their shelves. The last illness onset was reported at the end of August. A total of 135 people were reported ill, with 34 hospitalizations.

Duncan Hines Cake Mix – Salmonella

The company recalled four varieties of its cake mixes after a retail sample tested positive for Salmonella Agbeni.

Johnston County Hams – Listeria monocytogenes

The company recalled more than 89,000 pounds of RTE deli loaf ham products over concerns of adulteration with Listeria monocytogenes.

Other outbreaks involving Salmonella this year included dried and frozen coconut, pasta salad, chicken salad and raw sprouts.