Tag Archives: manufacturing

Jason Chester, InfinityQS
FST Soapbox

Digital Revolution: Empowering the Remote Workforce and Resilience Post-COVID-19

By Jason Chester
No Comments
Jason Chester, InfinityQS

Around the world, countries are beginning to take tentative steps toward a return to normalcy following months of stay-at-home mandates and other restrictions in light of COVID-19. Slowly, we’re starting to see employees return to their offices, retail stores open their doors, and restaurants welcome back patrons. However, many will find themselves in a world dramatically different from the one they left before quarantine.

Namely, on top of social distancing and disinfection measures to control further spread of the virus, entire industries are re-examining their legacy processes and systems—especially ones that presented operational challenges at the pandemic’s outbreak—the food manufacturing industry included.

In truth, food manufacturers have gone to great lengths to maintain productivity and output to meet demand throughout the pandemic. But they have done so in the face of unprecedented circumstances, with many plants operating with limited workforces and key employees like quality professionals and plant managers shifted to remote work. Lacking connectivity between those on the plant floor and at home due to long-held manual processes, a growing number of manufacturers must now take a hard look at their quality and safety programs and embrace digital tools.

A Wake-Up Call for Digital Transformation

Most technological investments in food manufacturing over the past several decades have centered on electro-mechanical automation designed to scale up the physical production process. Fewer investments, however, have been made on the equally important data-driven, decision-making process necessary for ensuring optimal performance, food quality and safety.

Even in the most heavily automated plants, it’s not uncommon to find manufacturers managing quality through manually updated spreadsheets, which are often only reviewed after the fact, when it’s too late for remedial correction. There are unfortunately also those who still rely on paper checklists, making it practically impossible to take proactive action on collected process data—much less get the information in front of remote quality professionals and managers. Meanwhile, others have gone as far as adopting software solutions for quality data management and process control, but these tend to be on-premises systems that employees can’t access outside of the four walls of the plant.

We have also seen many examples where, due to workforce restrictions and availability, employees from other parts of the manufacturing business (e.g., R&D, IT, and back-office teams) have been brought in to perform plant-floor activities like quality and food safety checks. The goal has been to prevent impediments to production output, just when demand has increased substantially. But ensuring that these employees perform the checks on time and in the correct way—with little time for training or coaching—has left many plant leaders in a precarious position.

The challenges seen with these capabilities and enabling geographically dispersed teams to work together through the pandemic have been a wake-up call of sorts for digital transformation. Manufacturers are coming to the realization that they’ll need data accessibility, actionability and adaptability along the road to recovery and in the post-COVID-19 world. And with social distancing and other workplace precautions expected to continue for the foreseeable future, the imperative is all the more urgent.

The Solution Lies in the Cloud

To digitally transform quality and safety programs today, food manufacturers should prioritize investment in the cloud. Notably, cloud-based quality management systems offer a way to standardize and centralize critical process information, as well as tools to empower employees at all levels of the enterprise.

For plant-floor operators struggling to keep up on account of reduced workforce sizes, such solutions can automate routine yet important activities for quality assurance, including data collection, process monitoring and reporting. If a team member needs to cover a different shift or unfamiliar task, role-based dashboards can help them to see required actions, while process workflows can provide guidance to ensure proper steps are taken even with a limited workforce. Further, automated alerts can provide timely notifications of any issues—whether it be a missed data collection or an actual food quality or safety concern present in the data.

Perhaps most importantly during the pandemic and for the post-COVID-19 world, the cloud makes critical quality data instantly and easily accessible from anywhere, at any time. Quality professionals, plant managers, and other decision-makers can continue to monitor and analyze real-time process data, as well as observe performance trends to prevent issues from escalating—all safely from home.

The scalability of cloud-based solutions also streamlines deployment so organizations can rapidly implement and standardize on a single system across multiple lines and sites. In doing so, it becomes possible to run cross-plant analyses to identify opportunities for widescale process improvement and align best practices for optimal quality control at all sites. This ability to understand what’s happening in production—through real-time data—to enact agile, real-world change is a hallmark of successful digital transformation.

An Investment for Whatever the Future Holds

Ultimately, investments in secure cloud-based quality management and the broader digital transformation of manufacturing operations are investments in not only perseverance during the pandemic, but also resilience for the future. Food producers and manufacturers who can readily access and make informed decisions from their data will be the ones best equipped to pivot and adjust operations in times of disruption and uncertainty. And while it’s unclear what the future holds for the world, the food industry, and COVID-19, it’s safe to say we likely won’t see a full return to normalcy but the emergence of a new—and in many ways better—normal, born out of digital solutions and smarter ways of thinking about quality data collection and monitoring.

Bob Bentley, Crisp
FST Soapbox

Predictions: Planning for Increased Demand with Limited Supply

By Bob Bentley
No Comments
Bob Bentley, Crisp

We are seeing the beginning of a limited supply of certain products as containment of the COVID-19 pandemic keeps manufacturers, processing plants, and other suppliers in global stasis. But what does that mean for these manufacturers and other members of the supply chain? It means continued planning of master resources such as demand management, sales and operations planning and production scheduling, but with a greater focus on efficiency.

This process of master resource planning results in a detailed blueprint for manufacturing products to meet anticipated demand, accounting for various constraints such as limited supply of raw materials and purchase parts.

So what should manufacturers do if they run into serious shortages of raw materials or purchase parts? What can retailers do to cover operating expenses if they don’t have enough products to sell? We’ll take a look at these anticipated complications and possible methods for solving them.

Limited Supply

The current COVID-19 crisis has led to mandatory business closures that have already caused a shortage of supply. So far, we’ve gotten by with inventories that had already been sitting in various places up and down supply chains prior to the shutdowns, not just on warehouse and retail store shelves. Once all inventories within supply chains are depleted, we will start to notice more stockouts.

Some businesses can endure long-term production cessations without stockouts. For example, manufacturers in critical industries such as pharmaceuticals have a policy of stockpiling inventory in case of unforeseen events. Most businesses, however, cannot afford to miss months of production time because the lean manufacturing principles they adhere to include keeping minimal inventory.

For instance, automobile manufacturers and retailers do not hold excess inventory due to the expected annual product line changes from the previous year’s models, which are typically sold at a large profit reduction at the turn of the year. Clothing and other fashion-related businesses also keep inventory minimal due to a yearly change in styles.

Another source of upcoming shortages will be the sell-off of supplier facilities due to the downturn in revenue caused by emergency closures. Food is a particularly interesting case. Farmers are reconstructing the way their supply chains work to better serve their new target consumers—grocery retail. Some farmers may run into issues with transporting livestock or may need to repurpose crops that are nearing their harvest. Many of those that are pushing to endure and come out of the pandemic disruption with minimal casualties are starting to get creative by creating small farmers’ markets (pop-ups) or marketing directly to the consumer via direct subscription boxes.

It will take some time to re-establish farms, manufacturing plants, and other suppliers who were hit hardest during the months without revenue. However, refocusing on demand planning and forecasting could aid in spurring a regeneration of these industries.

Demand Management

Demand management is the first of three steps taken during the master resources planning process. Demand management includes demand forecasting, distribution channel planning and customer demand management.

Both suppliers and retailers need to know what demand they can expect, especially during uncertain times. After COVID-19, consumer demand will be high, supplies will be limited, and accurate demand forecasting will be especially important to getting businesses back on their feet.

Inaccurate forecasting will cause waste when businesses overestimate future demand for items that have a short shelf life. For instance, a grocery store that overestimates how much produce they will be able to sell within a certain time frame will end up throwing some of that produce away due to spoilage.

Consumer behavior during a crisis can complicate demand forecasting, though. In an earlier phase of the COVID-19 pandemic, worried customers over-purchased toilet paper and paper towels. This caused a shortage for everyone else, and the demand for those items was much higher than anticipated/forecasted. More recently, the same buyers bought up meat when they heard about the disruption in the food supply chain, and they expected the prices for meat to go up. Demand spikes like these cause lost sales for stores that don’t anticipate them.

Demand forecasting will remain tricky in the short-term for both suppliers and retailers whenever a retailer re-opens to the public with the imposed 25% capacity constraint. Overhead expenses will likely remain relatively the same, but 25% of the normal revenue may not cover expenses. Whether a full 25% of a retailer’s former customer base would return during a pandemic is also an unknown factor.

Companies will see high demand when the world opens their doors for business. The most efficient way for companies to plan during these times is by utilizing high-performance, demand forecasting software that will offer the best information available to deal with volatile demands, given the various known and predicted factors.

Sales and Operations Planning

After demand management is performed, manufacturers go through a sales and operations planning process that integrates sourcing, manufacturing, sales, marketing and financial plans, and resource planning. This process results in the creation of an approved production plan (at the product family level), purchase plan, sales plan and backlog plan that satisfies the anticipated level of demand within supply constraints.

In the early days following the end of the pandemic, some manufacturers won’t have the initial supply to meet the high demand for their goods. Some may find contingencies for creating their goods and products, while others may run into supplier issues when it comes to recreating their products and goods post-closure.

Getting manufacturers back up to speed will depend on building up the supplies of raw materials and purchase parts. Sometimes out-of-the-box solutions such as part designs can eliminate the need for some unavailable purchase parts and dependency on some suppliers. Additionally, accurate demand planning information will enable manufacturers to accommodate their retailer customers as much as possible without overpromising incoming goods.

Master Scheduling

In the master scheduling phase, the production and purchasing plans are taken from the family level into a specific product level. This process involves a computer repeatedly simulating production and purchasing as planned during the S & OP step until optimal bills of materials are created. This process includes testing of the plans against constraints of critical resources (rough-cut capacity planning) until a master production schedule is derived.

Fortunately for the retailers, manufacturers who have done accurate demand planning and have taken their production plans through the master scheduling stage will know the maximum number of goods they can ensure without overreaching.

Conclusion

The current COVID-19 pandemic required many business closures to help contain the spread of the virus. As a result, many consumer goods are in limited supply. When the crisis ends, the demand may very well overtake the supply. Businesses will need to practice patience while supplies build back up. Thinking outside the box, using accurate demand forecasting, preventing waste, and executing good demand planning will be crucial steps in reinstating a synergistic supply chain model.

Angela Fernandez, GS1

COVID-19 Puts More Emphasis on Supply Chain Visibility and Data Quality: A Conversation with Angela Fernandez of GS1 US

By Maria Fontanazza
No Comments
Angela Fernandez, GS1

The food industry is adapting in completely new ways as a result of the coronavirus pandemic. Retailers are scrambling to keep certain items on store shelves and manufacturers are adjusting their production strategies based on realistic and ever-shifting needs. In a recent discussion with Food Safety Tech, Angela Fernandez, VP of community engagement at GS1 US and FST editorial advisory board member, talks about how companies can improve relationships with trading partners in the face of COVID-19.

Food Safety Tech: What issues do you see happening in the supply chain right now?

Angela Fernandez: Our food supply chain is experiencing overwhelming demand. As an organization that collaborates with both the retail grocery and foodservice sectors to solve supply chain challenges, we’re working with industry on how we can make our supply chain more efficient in the short term, and make it more resilient in the long term.

Consumers are frustrated by empty shelves and the demand created by the pandemic is changing the movement of products. Right now, products are not always accounted for in transit, there are production issues depending on category, and food produced for foodservice outlets like restaurants, schools, and hotels can’t always be easily diverted to a supermarket. The U.S. Food and Drug Administration is lifting restrictions on the sale of food so that it is possible for items that may have been produced for foodservice “sale” to be sold in a supermarket.

FST: In what particular areas are you seeing inventory shortages that are impacting retailers and suppliers?

Fernandez: We’re seeing a couple of different dynamics. For suppliers that produce products for both retail and foodservice channels, we see a shift in reducing production on foodservice items and an increasing manufacturing on their retail product lines. We’re also seeing foodservice suppliers that have not serviced the retail channel previously are now looking to establish new relationships with retailers and recession-proof their businesses. This is not happening as fast as consumer demand for perimeter products like dairy and produce, so we see shortages and products expiring before they can be sold to these new retail customers.

Additionally, food product variation and customization is decreasing. If you think about your own experience going to the grocery store today, or arranging for a delivery, you’re seeing fewer flavors of a product available and fewer brand names you’re familiar with. Suppliers are continuing to shift back to mainstream production of their core product lines just to keep store shelves stocked. I think that’s what we’re going to continue to see—the reduction of customized and specialty items.

For retailers, they have a prioritized the focus on ramping up their e-commerce strategy to relieve the pressure on their stores and service more consumers online. This poses a particular challenge when retailers have limited IT resources and a need to set up a new item supplied from a new foodservice manufacturer that is trying to divert their products to the retail channel to support the demand. And in some cases unfortunately, foodservice suppliers maybe unable to redirect some of their products due to the fact they are not marked for individual sale with the traditional U.P.C. and other retailer requirements.

FST: Is there a better way that food companies, retailers and suppliers can work together during this pandemic?

Fernandez: Food companies can improve the way they work together if they focus on supply chain visibility and data quality. Visibility is key as suppliers are ramping up production on those mainstream products and trying to get them to the proper locations when retailers need them. That’s where I would look at GS1 Standards such as the Global Trade Item Number (GTIN) for product identification and the advance ship notice (ASN) transaction, which lets a partner know when something is ready and being shipped. Global data standards enable the visibility to what delivery a retailer can expect and when, and being able to account for that inventory once it’s inside the DC [distribution center] location so that they can update an online platform. This can help ensure that a retailer has accurate information for the consumer and ability minimize the substitutions that can occur.

The second piece is the data quality aspect—making sure we have the right information around those core items that we are trying to keep stocked on the shelves for consumers who are purchasing those items today. The retail grocery and foodservice industries have been working on making product data more complete and accurate for a number of years, but we’ve seen a heightened focus on it now, knowing that consumers are relying on digital information to be correct since they cannot see the product in person right now. Expanding the data set for the consumer is critical.

FST: What is GS1 US doing right now to help customers better navigate today’s environment?

Fernandez: GS1 US is helping trading partners work with the capabilities they have to implement greater supply chain visibility, improve data quality and ramp up e-commerce operations. Depending on what was already implemented by the manufacturer or retailer, we’re looking at how we can leverage existing capabilities to help partners work together more efficiently to meet demand. How we can help connect the physical product and the digital data, knowing how important that is online right now, not only for trading partners but also for consumers?

One example of how GS1 Standards can be extended is if a retailer is looking to shorten their supply chain and purchase from a local farm. Standards provide a blueprint for supply chain partners to work together in a consistent way. We want to help these companies leverage and extend the standards instead of proprietary systems and abandoning useful processes for item setup, data exchange and point of sale checkout. Those are the types of discussions that we’re having—how GS1 US members can extend the standards that lead to operational efficiency and more easily bring in new partners to help fulfill demand.

Maria Fontanazza, Food Safety Tech
From the Editor’s Desk

COVID-19 in the Food Industry: So Many Questions

By Maria Fontanazza
1 Comment
Maria Fontanazza, Food Safety Tech

Industries across the global are reeling from the COVID-19 crisis. Although we are clearly not in a state of “business as usual”, the food industry is essential. And as this entire industry must continue to move forward in its duty to provide safe, quality food products, so many questions remain. These questions include: Should I test my employees for fever before allowing them into the manufacturing facility? What do we do if an employee tests positive for COVID-19? How can the company continue safe production? Should we sanitize between shifts on the production line? Should employees on the production floor wear face masks and shields? At what temperature can the virus be killed? The list truly goes on. We saw it ourselves during the first Food Safety Tech webinar last week, “COVID-19 in the Food Industry: Protecting Your Employees and Consumers” (you can register and listen to the recording here). Amidst their incredibly busy schedules, we were lucky to be graced with the presence and expertise of Shawn Stevens (food safety lawyer, Food Industry Counsel, LLC), April Bishop (senior director of food safety, TreeHouse Foods, Inc. and Jennifer McEntire, Ph.D. (vice president of food safety, United Fresh Produce Association) for this virtual event.

From a manufacturing point of view, we learned about the important ways companies can protect their employees—via thorough cleaning of high-touch areas, vigilance with CDC-recommended sanitizers, conducting risk assessments related to social distancing and employees in the production environment—along with the “what if’s” related to employees who test positive for COVID-19. Although FDA has made it clear that there is currently no indication of human transmission of the SARS-CoV-2 virus through food or food packaging, some folks are concerned about this issue as well.

“The U.S. food supply remains safe for both people and animals. There is no evidence of human or animal food or food packaging being associated with transmission of the coronavirus that causes COVID-19,” said Frank Yiannas, FDA deputy commissioner for food policy and response in the agency’s blog last week. “Unlike foodborne gastrointestinal viruses like norovirus and hepatitis A that make people ill through contaminated food, SARS-CoV-2, which causes COVID-19, is a virus that causes respiratory illness. This virus is thought to spread mainly from person to person. Foodborne exposure to this virus is not known to be a route of transmission.”

As the industry continues to adjust to this new and uncertain environment, we at Food Safety Tech are working to keep you in touch with experts who can share best practices and answer your questions. I encourage you to join us on Thursday, April 2 for our second webinar in this series that I referenced earlier, COVID-19 in the Food Industry: Enterprise Risk Management and the Supply Chain. We will be joined by Melanie Neumann, executive vice president & general counsel for Matrix Sciences International, Inc. and Martin Wiedmann, Ph.D., Gellert Family Professor in Food Safety at Cornell University, and the event promises to reveal more important information about how we can work through this crisis together.

We hear it often in our industry: “Food safety is not a competitive advantage.” This phrase has never been more true.

Stay safe, stay well, and thank you for all that you do.

Crop spraying, Ellutia

From Farm to Fork: The Importance of Nitrosamine Testing in Food Safety

By Andrew James
No Comments
Crop spraying, Ellutia

N-nitroso compounds (NOCs), or nitrosamines, have once again made headline news as their occurrence in some pharmaceuticals has led to high profile product recalls in the United States.1 Nitrosamines can be carcinogenic and genotoxic and, in the food industry, can compromise a food product’s quality and safety. One nitrosamine in particular, N-nitrosodimethylamine (NDMA), is a highly potent carcinogen, traces of which are commonly detected in foods and may be used as an indicator compound for the presence of nitrosamines.2

NOCs can potentially make their way into the food chain in a number of ways, including (but not limited to): Via the crop protection products used to maximize agricultural yields; via the sodium and/or potassium salt added to preserve certain meats from bacterial contamination; as a result of the direct-fire drying process in certain foods; and via consumption of nitrates in the diet (present in many vegetables due to natural mineral deposits in the soil), which react with bacteria and acids in the stomach to form nitrosamines.3

The crop protection and food manufacturing industries are focused on ensuring that levels of nitrosamines present in foods are minimal and safe. Detection technology for quantitating the amount of nitrosamines (ppm levels) in a sample had not advanced in nearly 40 years—until recently. Now, a thermal energy analyzer (TEA) —a sensitive and specific detector—is being relied on to provide fast and sensitive analysis for players throughout the food supply chain.

Regulatory Landscape

Both NDMA and the nitrosamine N-nitrososodiethylamine (NDEA) have been classified by national and international regulatory authorities as ‘probable human carcinogens’.3 NDMA in particular is by far the most commonly encountered member of this group of compounds.7

In the United States there are limits for NDMA or total nitrosamines in bacon, barley malt, ham and malt beverages, yet there are currently no regulatory limits for N-nitroso compounds (NOC) in foods in the EU.7

Developers of crop protection products are required to verify the absence of nitrosamines or quantify the amount at ppm levels to ensure they are within the accepted guidelines.

Crop Protection

The presence of nitrosamines must be traced and risk-managed along the food’s journey from farm to fork. The issue affects testing from the very beginning – particularly at the crop protection stage, which is one of the most highly regulated industries in the world. Without crop protection, food and drink expenditures could increase by up to £70 million per year and 40% of the world’s food would not exist.7

Development of a new crop protection product (herbicide, fungicide, insecticide or seed treatment) involves several steps: Discovery and formulation of the product, trials and field development, toxicology, environmental impacts and final registration. New product registration requires demonstration of safety for all aspects of the environment, the workers, the crops that are being protected and the food that is consumed. This involves comprehensive risk assessments being carried out, based on data from numerous safety studies and an understanding of Good Agricultural Practice (GAP).

One global producer of agrochemicals uses a custom version of the TEA to verify the absence of nitrosamines or quantitate the amount of nitrosamines (ppm levels) in its active ingredients. The LC-TEA enables high selectivity for nitro, nitroso and nitrogen (when operating in nitrogen mode), which allows only the compounds of interest to be seen. Additionally, it provides very high sensitivity (<2pg N/sec Signal to Noise 3:1), meaning it is able to detect compounds of interest at extremely low levels. To gain this high sensitivity and specificity, it relies on a selective thermal cleavage of N-NO bond and detection of the liberated NO radical by the chemiluminescent signal generated by its reaction with ozone.

The customized system also uses a different interface with a furnace, rather than the standard pyrolyser, to allow for the additional energy required and larger diameter tubing for working with a liquid sample rather than gas.

The system allows a company to run five to six times more samples with increased automation. As a direct result, significant productivity gains, reduced maintenance costs and more accurate results can be realized.

Food Analysis

Since nitrite was introduced in food preservation in the 1960s, its safety has been debated. The debate continues today, largely because of the benefits of nitrite in food products, particularly processed meats.6 In pork products, such as bacon and cured ham, nitrite is mostly present in the sodium and/or potassium salt added to preserve the meat from bacterial contamination. Although the meat curing process was designed to support preservation without refrigeration, a number of other benefits, such as enhancing color and taste, have since been recognized.

Analytical methods for the determination of N-nitrosamines in foods can differ between volatile and non-volatile compounds. Following extraction, volatile N-nitrosamines can be readily separated by GC using a capillary column and then detected by a TEA detector. The introduction of the TEA offered a new way to determine nitrosamine levels at a time when GC-MS could do so only with difficulty.

To identify and determine constituent amounts of NOCs in foods formed as a direct result of manufacturing and processing, the Food Standards Agency (FSA) approached Premier Analytical Services (PAS) to develop a screening method to identify and determine constituent amounts of NOCs in foods formed as a direct result of manufacturing and processing.

A rapid and selective apparent total nitrosamine content (ATNC) food screening method has been developed with a TEA. This has also been validated for the known dietary NOCs of concern. This method, however, is reliant on semi-selective chemical denitrosation reactions and can give false positives. The results can only be considered as a potential indicator rather than definitive proof of NOC presence.

In tests, approximately half (36 out of 63) samples returned a positive ATNC result. Further analysis of these samples by GC-MS/MS detected volatile nitrosamine contamination in two of 25 samples.

A key role of the TEA in this study was to validate the alternative analytical method of GC-MS/MS. After validation of the technique by TEA, GC-MS/MS has been proven to be highly sensitive and selective for this type of testing.

The Future of Nitrosamine Testing

Many countries have published data showing that toxicological risk from preformed NOCs was no longer considered an area for concern. Possible risks may come from the unintentional addition or contamination of foods with NOCs precursors such as nitrite and from endogenous formation of NOCs and more research is being done in this area.

Research and innovation are the foundations of a competitive food industry. Research in the plant protection industry is driven by farming and the food chain’s demand for greater efficiency and safer products. Because the amount of nitrosamines in food that results in health effects in humans is still unknown, there is scope for research into the chemical formation and transportation of nitrosamines, their occurrence and their impact on our health. Newer chromatographic techniques are only just being applied in this area and could greatly benefit the quantification of nitrosamines. It is essential that these new approaches to quality and validation are applied throughout the food chain.

References

  1. Christensen, J. (2020). More popular heartburn medications recalled due to impurity. CNN.
  2. Hamlet, C, Liang, L. (2017). An investigation to establish the types and levels of N-nitroso compounds (NOC) in UK consumed foods. Premier Analytical Services, 1-79.
  3. Woodcock, J. (2019). Statement alerting patients and health care professionals of NDMA found in samples of ranitidine. Center for Drug Evaluation and Research.
  4. Scanlan, RA. (1983). Formation and occurrence of nitrosamines in food. Cancer res, 43(5) 2435-2440.
  5.  Dowden, A. (2019). The truth about nitrates in your food. BBC Future.
  6.  Park, E. (2015). Distribution of Seven N-nitrosamines in Food. Toxicological research, 31(3) 279-288, doi: 10.5487/TR.2015.31.3.279.
  7.  Crews, C. (2019). The determination of N-nitrosamines in food. Quality Assurance and Safety of Crops & Foods, 1-11, doi: 10.1111/j.1757-837X.2010.00049.x
  8. (1989) Toxicological profile for n-Nitrosodimethylamine., Agency for Toxic substances and disease registry.
  9. Rickard, S. (2010). The value of crop protection, Crop Protection Association.
April Kates, EAS Consulting
Retail Food Safety Forum

Labeling Impact of FDA’s Nutrition Innovation Strategy

By April Kates
No Comments
April Kates, EAS Consulting

On March 29, 2018, FDA announced the Nutrition Innovation Strategy, which signaled their intention to take a fresh look at what can be done to “reduce the burden of chronic disease through improved public nutrition.” The agency wants to facilitate consumers making better food choices to improve their health. At the same time, FDA has acknowledged that in many cases, changes in food processing technology has rendered outdated certain provisions of the regulations once written to both inform and protect the public. Therefore, FDA has developed a plan to move ahead to update its policy toolkit.

This multi-pronged approach includes modernizing food labeling, including food standards, health claims policy, ingredient labeling requirements and continuing implementation of the updated nutrition facts label, menu labeling, and reducing sodium in processed food products.

In particular, in trying to gather information to help determine the best approach to revising food standards of identity, FDA held a public meeting on September 27, 2019. FDA is attempting to provide room in the regulations for industry to be able to use modern and hopefully more healthful manufacturing methods while at the same time retaining the traditional characteristics and nutritional value of standardized food products.

During the public meeting, consumer advocacy groups, food industry trade groups and medical associations expressed many points of view as to what FDA should do to make the more than 250 food standards of identity more applicable to the modern food supply. FDA also took comments on updating food ingredient labeling requirements, including simplifying terms for ingredients such as vitamins. Because each food standard of identity is a regulation, it will be no small effort for the agency to update, remove or add standards of identity as needed. This meeting was a way to get input to help guide their decisions and priority—making for food standards and ingredient labeling revisions.

Obviously, with such a broad-based effort, the revisions and changes will be incremental. But the thing to keep in mind is that it all points to an effort to improve public health through the food supply as well as an effort to impactfully modernize the regulations. What follows is a very brief summary of some of FDA’s recent actions in this regard.

On December 30, 2019, FDA announced the final guidance on Serving Sizes, Dual-Column Labeling, which provided additional information about when dual column labeling for nutrition is required and what exemptions are in place to provide relief for certain products or package sizes.

On December 27, 2019, FDA reopened the comment period on the use of ultrafiltered (UF) milk in certain cheeses. When the proposed rule for UF milk in cheeses originally published in 2005, FDA received many comments. Essentially, ultrafiltration was a means to enhance the speed of cheese production, and the standard of identity cheeses were written before this technology was common and did not permit this type of process. FDA seeks to modernize the cheese standards while keeping intact the nature of these cheeses, and so the agency is eager to learn about what can be done to accommodate the new technology without losing the essence of the standards that consumers have come to expect. Because of the time lapse since the previous comment period, FDA is seeking more information to inform their rulemaking.

On October 25, 2019, FDA released a final rule revising the type size for calorie declarations on front of pack labeling for glass-front vending machines. The 2014 rule establishing calorie labeling for products sold from vending machines had provisions that were difficult for certain products to meet. This new rule recognizes those challenges and was an attempt by the agency to provide a middle ground for the industry to meet the requirements of visible calorie labeling on small packages sold in vending machines.

On August 15, 2019, FDA announced final guidance on converting units of measure for Folate, Niacin, and Vitamins A, D and E on the nutrition and supplement facts labels. The guidance provides help to the industry in meeting the requirements of the revised nutrition facts label.

Regarding updating the “healthy” claim on food products, when this term was originally defined by the agency, saturated fat was the nutrient of focus for these claims. However, since then, there are new focuses on health, such as added sugar and calories. In September 2016, FDA sought to modernize the claim, and provided an interim policy to guide its use.

In May 2019, FDA published a draft guidance to provide enforcement discretion for the use of the term “potassium chloride salt” on ingredient statements. In addition, in April 2019, FDA provided a draft guidance for the calculation of calories from a newer sweetener, Allulose.

As you can see, there are a lot of moving parts to FDA’s effort. What will be the impact on the food industry? Changes will most likely be gradual. Over time, there will be modifications to food standards of identity, and potentially claims, and both of these will cause label revisions. And, typically, there may be enforcement discretion by FDA to allow the industry time to revise their products and /or labeling as needed.

You will see FDA requests for information from the public and the industry on various related topics to the Nutrition Innovation Strategy, and guidance documents will be updated.

Checklist

2020 Priorities: Sanitation, Automation and Brand Transparency in Supply Chain

By Maria Fontanazza
No Comments
Checklist

In a Q&A with Food Safety Tech, Eddie Hall, business development director and food safety expert at Vital Vio looks ahead to 2020 and how technology will be impacting food safety, the additional measures that the industry will be taking to protect consumers, and the critical emphasis on sanitation.

Food Safety Tech: What are some of the touch points for food safety innovation in the supply chain in 2020?

Eddie Hall, Vital Vio
Eddie Hall, business development director and food safety expert at Vital Vio

Eddie Hall: When we think of the supply chain, we often imagine food traveling during transportation—by road, rail and air. During transit, our food comes into contact with countless surfaces, hands, tools and bacteria that travels from the farm to the table. However, transit isn’t the only place for germ spread and bacteria growth. When food reaches the factory for processing and packaging, there are opportunities for contact with debris, mold and dust, along with un-sanitized machinery and employees. Not only does this negatively affect the health of our workers, but also the cleanliness and safety of the food that consumers are buying off the shelves. In food manufacturing plants, Zones 1 and 2 are the most obvious for safety innovation in the supply chain, given food is bound to come into contact with tools, conveyor belts, etc. However, processors must consider the touch points in Zones 3 and 4 as well—such as employee break rooms, bathrooms and offices around the plant that foster bacteria. If these areas are not cleaned, food manufacturers have a significantly higher chance of breeding bacteria in food production areas, even if the right protocols are put in place in those zones.

FST: How will the retail sector step up to the consumer demand for safer food?

Hall: Consumers are increasingly demanding transparency around how food ends up on their plate, and prioritizing purchasing from brands that they trust to be safe. Food suppliers are being careful to remove harmful chemicals from the manufacturing process, along with displaying ingredients and supply chain information. For example, Bumble Bee Foods is using blockchain technology for its tuna fish, allowing consumers to access detailed information around the tuna’s origin, authenticity, freshness and sustainability by scanning the QR code on its packaging. Panera Bread has been consistent in offering customers ingredient transparency [by] providing calorie counts on menu items and removing antibiotic-treated animal proteins, as well as vocalizing recent efforts to perform safety audits throughout its supply chain. Not only does tracking technology and clarity meet consumers’ demands, but [it] also helps retailers pinpoint locations of outbreaks, foodborne illness and mislabeling. We’re already seeing retailers step up to meet the growing demand for safer food, but in 2020 we will see an uptick in brand transparency around supply chain information, safety programs and ingredient clarity within restaurants, fast food chains, processing companies and grocery stores.

FST: How will automation play a role in advancing food safety?

Hall: Food processing companies and retailers are implementing remote monitoring technologies that track data and help measure protocol, temperature controls, sanitation, record-keeping and food traceability. Automation can also help advance food safety through methods such as enhance sanitation and sterilization efforts. It is critical for food industry employees to maintain clean environments, but continuously cleaning every hour of every day can become labor-intensive, and sometimes fall off the to-do list. Automated technologies can take on some of these tedious tasks and work in our favor to heighten food safety. For example, Stop and Shop’s new robot, Marty, patrols the aisles to detect food on the floor, torn packaging, empty shelves and more. However, robots aren’t the only place we’re seeing automation in action. Vital Vio has found a way to automate killing bacteria through antimicrobial LED lighting technology, which continuously kills pathogens with the flick of a switch. Automated tech isn’t meant to replace workers, but to enhance their work around cleaning, sanitizing and meeting safety requirements. In 2020, automation is expected to explode and it’s important for leaders in the food and beverage industry to take advantage of safety tech innovations to advance food safety in 2020 and beyond.

FST: How will food companies continue to work towards reducing contamination issues and recalls?

Hall: The U.S. government has stepped in to tackle issues in the food industry by implementing new regulations, such as FSMA. This regulation urges food companies to shift from reactively responding to safety and contamination issues, to proactively working to prevent them. In an effort to reduce recalls, retail giant Walmart recently employed blockchain to track its lettuce supply chains all the way back to the grower. For food companies to reduce contamination, they must also implement more automated sanitation technologies along the supply chain. The most common food contaminants are usually invisible to the naked eye, such as mold, Listeria, Salmonella and E. coli. Sanitation automation tech—such as antimicrobial LED lighting—can continuously kill microscopic bacteria and prevent regrowth, ensuring clean food and equipment. Not only will food companies begin implementing more sanitization technologies, but also focus on other ways, like blockchain traceability, to prevent food recalls and bacteria growth that pose serious health risks to their customers.

FST: Any additional comments?

Hall: Our Dirty Truth report reveals disturbing stats around Americans’ cleaning habits, such as 1 in 4 (27%) do not sanitize their hands after traveling on public transportation. This means that factory or grocery employees that commute to work via bus, train, etc. are bringing bacteria and other germs with them. What’s worse, 1 in 6 Americans get sick and 3,000 die each year from consuming contaminated foods or beverages. This alarming rate can only be improved if we see effort from all sides of the industry—including food processors, manufacturers, workers throughout the supply chain and retailers. Continuous cleaning and sanitation measures can be labor-intensive and sometimes impossible to tackle throughout the day. Luckily, automated technology exists and is expected to address this growing issue of contamination, the spread of bacteria, recalls, and consumer demand for safety and transparency.

Megan Nichols
FST Soapbox

How Will AR and VR Improve Safety in the Food Industry?

By Megan Ray Nichols
No Comments
Megan Nichols

The food and beverage sector is a huge presence in the U.S. economy. As of 2017, the industry employed 1.46 million people across 27,000 different establishments. Total food and beverage sales stand at around $1.4 trillion and add $164 billion in value to the economy as a whole.1 This presents significant opportunities and risks alike. Companies that trade in food products are held to some of the highest regulatory standards. With globalization ongoing and a higher demand than ever for variety and niche products, companies find they need to expand the mobility of their services. They must also broaden their product choices without missing a beat when it comes to quality.

Augmented reality (AR) and virtual reality (VR) have emerged as unlikely allies in that quest. These technologies are already having a positive impact on food and worker safety in the industry.

Improves New Employee Training

Onboarding and training new employees is a costly and time-consuming endeavor in any industry. Moreover, failure by companies to impart the necessary skills, and failure by employees to retain them, can have ghastly consequences. Errors on assembly lines may result in faulty products, recalls, worker and customer injuries, and worse.

The stakes in the food and beverage sector are just as high as they are in other labor- and detail-oriented industries. VR provides an entirely new kind of training experience for employees, whether they’re working on mastering their pizza cutting technique or brewing the perfect cappuccino. Other times, “getting it right” is about much more than aesthetic appeal and immediate customer satisfaction.

Animal slaughtering and processing facilities represent some of the more extreme examples of potentially dangerous workplaces in the larger food and beverage industry. Between 2011 and 2015, this U.S. sector experienced 73 fatal workplace injuries. Excepting poultry processing, 2015 saw 9,800 recordable incidents in animal processing, or 7.2 cases for every 100 full-time employees.

Some adopters of VR-based employee training claim that virtual reality yields up to an 80% retention rate one year after an employee has been trained. This compares extremely favorably to the estimated 20% retention rate of traditional training techniques.

Training via VR headset can help companies get new hires up to speed faster in a safe, detailed and immersive environment. Food processing and service are high-turnover employment sectors. The right training technology can help workers feel better prepared and more engaged with their work, potentially reducing employee churn.

Helps Eliminate Errors in Food Processing

Augmented reality is already demonstrating great promise in manufacturing, maintenance and other sectors. For instance, an AR headset can give an assembly line worker in an automotive plant detailed, step-by-step breakdowns of their task in their peripheral vision through a digital overlay.

The same goes for food and beverage manufacturing. AR headsets can superimpose a list of inspection or processing tasks for workers to follow as they prepare food items in a manufacturing or distribution facility.

In 2018, there was an estimated 382 recalls involving food products. Augmented reality alone won’t bring that number down to zero. However, it does help reduce instances of line workers and inspectors missing critical steps in processing or packaging that might result in contamination or spoilage.

Eases the Learning Curve in Food Preparation

There are lots of food products in the culinary world that are downright dangerous if they’re not prepared properly and by following specific steps. Elderberries, various species of fish, multiple root vegetables, and even cashews and kidney beans can all induce illness and even death if the right steps aren’t taken to make them fit for consumption.

In early 2019, inspectors descended on a Michelin-starred and highly respected restaurant in Valencia, Spain. The problem? A total of 30 patrons reported falling ill after eating at El País, one of whom lost her life. Everyone reported symptoms similar to food poisoning.

The common element in each case appeared to be morel mushrooms. These are considered a luxury food item, but failure to cook them properly can result in gastric problems and worse. Augmented reality could greatly reduce the likelihood of incidents like this in the future by providing ongoing guidance and reminders to new and veteran chefs alike, without taking the bulk of their attention away from work.

Brings New Efficiencies to Warehousing and Pick-and-Pack

Consumers around the globe are getting used to ordering even highly perishable foodstuffs over the internet—and there’s no putting that genie back in the bottle. Amazon’s takeover of Whole Foods is an indicator of what’s to come: Hundreds of freezer-equipped and climate-controlled warehouses located within a stone’s throw from a majority of the American population.

Ensuring smooth operations in perishable food and beverage supply chains is a major and ongoing struggle. It’s not just a practical headache for companies—it’s something of a moral imperative, too. The World Health Organization finds that around 600 million individuals worldwide fall ill each year due to foodborne illnesses.

Augmented reality won’t completely solve this problem, but it may greatly reduce a major source of potential spoilage and contamination: Inefficiencies in picking and packing operations. Order pickers equipped with AR headsets can:

  • Receive visual prompts to quickly find their way to designated stow locations in refrigerated warehouses after receiving refrigerated freight.
  • Locate pick locations more efficiently while retrieving single items or when they already have a partial order of perishable goods picked.

In both cases, the visual cues provided by AR help employees navigate warehousing locations much more quickly and efficiently. This substantially lowers the likelihood that food products are stuck in limbo in unrefrigerated areas, potentially coming into contact with noncompliant temperatures or pathogens. The FDA recognizes mispackaged and mislabeled food products as a major public health risk.

For food and beverage companies, AR should be a welcome development and a worthy investment. FSMA recognized that 48 million Americans get sick each year from compromised foods. The act required these entities to be much more proactive in drawing up prevention plans for known sources of contamination and to be more deliberate in standardizing their processes for safety’s sake.

AR and VR Boost Food, Worker and Customer Safety

Augmented and virtual reality may seem like an unusual ally in an industry where most consumers are primarily focused on the aesthetic and sensory aspects of the experience. However, there’s a whole world that lives and dies according to the speed and attention to detail of employees and decision-makers alike. Augmented realities, and entirely new ones, point the way forward.

Reference

  1. Committee for Economic Development of The Conference Board. (March 2017). “Economic Contribution of the Food and Beverage Industry. Retrieved from https://www.ced.org/pdf/Economic_Contribution_of_the_Food_and_Beverage_Industry.pdf.
Jill Ellsworth, Willow Industries
FST Soapbox

Modeling Cannabis Safety from Food and Beverage Quality Regulations

By Jill Ellsworth
1 Comment
Jill Ellsworth, Willow Industries

There’s a reason you can eat or drink pretty much anything you want from American grocery stores and not get sick. Food manufacturing is highly regulated and subject to rigorous quality control.

Before food and beverages hit store shelves, the manufacturer must have a Hazard Analysis Critical Control Point (HACCP) system in place. The HACCP system requires that potential hazards—biological, chemical and physical— be identified and controlled at specific points in the manufacturing process. In addition, fresh foods undergo a kill-step. This is the point in the manufacturing or packaging process where food is treated to minimize and remove deadly pathogens like bacteria, mold, fungus and E. coli.

Generally speaking, when cannabis hits dispensary shelves, a less stringent set of rules apply, despite the fact that cannabis is ingested, inhaled and used as medicine. Cultivators are required to test every batch, but each state differs in what is required for mandated testing. Compared to the way food is regulated, the cannabis industry still has a long way to go when it comes to consumer safety—and that poses a considerable public health risk. In the early stages of legalization, the handful of legal states did not have rigid cannabis testing measures in place, which led to inconsistent safety standards across the country. State governments have had a reactionary approach to updating testing guidelines, by and large implementing stricter standards in response to product recalls and customer safety complaints. While local regulators have had the best intentions in prioritizing consumer safety, it is still difficult to align uniform cannabis testing standards with existing food safety standards while cannabis is a Schedule I substance.

The stark differences in safety measures and quality controls were first obvious to me when I moved from the food and beverage industry into the cannabis industry. For five years, I operated an organic, cold-pressed juice company and a natural beverage distribution company and had to adhere to very strict HACCP guidelines. When a friend asked me for advice on how to get rid of mold on cannabis flower, a light bulb went off: Why was there no kill step in cannabis? And what other food safety procedures were not being followed?

What to know more about all things quality, regulatory and compliance in the cannabis industry? Check out Cannabis Industry Journal and sign up for the weekly newsletterThe current patchwork of regulations and lack of food safety standards could have dire effects. It not only puts consumer health in jeopardy, but without healthy crops, growers, dispensaries and the entire cannabis supply chain can suffer. When a batch of cannabis fails microbial testing, it cannot be sold as raw flower unless it goes through an approved process to eliminate the contamination. This has severe impacts on everyone, starting with the cultivator. There are delays in harvesting and delivery, and sometimes producers are forced to extract their flower into concentrates, which really cuts into profits. And in the worst cases, entire crop harvests may have to be destroyed.

So, what do cannabis cultivators and manufacturers have to fear the most? Mold. Out of all the pathogens, mold is the most problematic for cannabis crops, perhaps because it is so resilient. Mold can withstand extreme heat, leaving many decontamination treatments ineffective. And most importantly, mold can proliferate and continue to grow. This is commonplace when the cannabis is stored for any length of time. Inhaling mold spores can have serious adverse health effects, including respiratory illness, and can even be deadly for immunocompromised consumers using it for medical reasons.

What the industry needs is a true kill step. It’s the only way to kill mold spores and other pathogens to ensure that they will not continue to grow while being stored. States that mandate microbial testing will benefit from the kill step because more cultivators will be in compliance earlier in the process. In states that don’t require comprehensive microbial testing, like Washington and Oregon, the kill step is a critical way to provide consumers with a preemptive layer of protection. Microbial testing and preventative decontamination measures encourage customer brand loyalty and prevents negative press coverage.

Adopting a HACCP system would also build additional safeguards into the system. These procedures provide businesses with a step-by-step system that controls food safety, from ingredients right through to production, storage and distribution, to sale of the product and service for the final consumer. The process of creating HACCP-based procedures provides a roadmap for food safety management that ultimately aligns your staff around the goal of keeping consumers safe.

It’s high time for the cannabis industry to adopt FDA-like standards and proactively promote safety measures. Cannabis growers must implement these quality controls to ensure that their products are as safe to consume as any other food or drink on the market. Let’s be proactive and show our consumers that we are serious about their safety.

Technology Helps Your Food Safety Employees Work Smarter, Not Harder

By Maria Fontanazza
No Comments

As the use of technology in manufacturing and quality continues to expand, there are many opportunities to help food companies streamline operations and enhance efficiencies. During a brief chat with Food Safety Tech, Melody Ge, head of compliance at Corvium, Inc. talks about the benefits of using technology in manufacturing and why some companies may be hesitant to take the leap.

Food Safety Tech: Your recent Food Safety Tech article, “Changes in the Food Safety Industry: Face Them or Ignore Them”, highlighted the role of technology in improving efficiency. What are the top areas in which companies are challenged to streamline processes?

Melody Ge, Corvium
Melody Ge, head of compliance at Corvium, Inc.

Melody Ge: When talking about a company’s production process, the challenge usually comes from where to start. A company may have difficulty figuring out which areas in the processing line can either be automated or how they can use technology as an advantage.

The challenge could also come from the fact that only parts of the process can be automated with the current technology. For example, with hazard analysis or risk assessment—those processes still need the human brain. So within a process, part of it can be automated, and part of it can’t—that could be another challenge.

FST: What technologies can food companies use to better help them manage risk in manufacturing?

Ge: It depends on what’s out there and what products a company is producing. From a manufacturing perspective, they can use supply chain management software or document management software to help them manage their approved supplier program. Using technology can make it easier and more efficient for companies to manage the risks from incoming goods and suppliers as it centralizes their documentation to make it easy to access.

Technology also helps companies use online software to centralize training documents on one corporate site and deploy it to all employees at different levels.

And from a HACCP and Preventive Controls perspective, companies can use digital technology to document temperature, pH Value, humidity, pathogen testing results, etc.—all the types of data that help execute a HACCP plan can be automated and help manage risk. After all the information is centralized and digitalized, you can see the data and easily translate that to help manage risk.

FST: What are the current technology adoption hurdles, and how are you helping companies understand the value of technology versus a paper-based system?

Ge: I think some hurdles come from fear: What’s going to happen as a result of technology is unknown, and especially at this stage, how FDA will respond is unknown. FDA already announced that this smarter food safety era is coming, but no one knows whether there will be new requirements as a result. Will requirements change because manufacturers are using new technology? Those unknowns make manufacturers fearful about what’s going to happen.

Another fear factor is job loss. For example, if processes are automated, or AI is used to capture data, or record keeping is automated, then what am I going to do? Does the company still need me as a QA professional or supervisor? I think those can stand in the way of making changes. However, [companies or employees] shouldn’t think that way. Technology is not replacing QA professionals, but [rather it] helps them do higher-level jobs. For example, in the time saved by technology, QA professionals can read and digest the data results, and study the trends and recommend best practices to continuously improve their food safety management system. It makes their time more valuable to the company.

Another hurdle is understanding which steps in processes can be automated. There are so many technologies out there that have pros and cons, and whether it will fit with the manufacturer or the facility—there’s an overwhelming amount of information, and the QA technician needs time to digest and understand the process at the facility as well as the technology out there to then select the most suitable technology for a process.

As far as helping companies understand the ROI of technology, there are four areas where I think technology can add value:

  1. It provides increased efficiencies and accuracy of daily operations and data collection. It reduces human error. Let the technology help the food safety professionals document daily operational data.
  2. It streamlines the food safety management system for continuous improvement. Because technology helps the food safety professional do the job of daily data collection, the time saved can be used wisely to study the data and outcomes, and truly understand how they can bring their food safety management system to another level.
  3. It centralizes all the documents and records for management. Using technology, the food safety professional can see their SOPs, records and any related documents in one place. They don’t have to physically go to several places to see what’s happening operationally. This can also help increase efficiency during the audit process.
  4. Centralized data helps the food safety professional more easily see where the deficiencies are located.

Ultimately, the ROI is that advanced technology can help the food safety professional increase operational efficiency, reduce product waste and production downtime.

FST: Any additional comments about the role of technology in food manufacturing?

Ge: In echoing on FDA’s announcement, although the smarter food safety era comes with using advanced technology, the mentality has not changed as all—it’s always FSMA based and people led. We need people to use the technology, and that foundation isn’t changing. We are protecting our consumers from any potential food safety risk. We’re just using a more efficient way to help all of us achieve this goal. I believe in the future, all food facilities will use at least one technology out there to help them automate one or more processing steps. And if you start with one step at a time, it will generally take over the entire production process.

Visit Corvium at next week’s Food Safety Supply Chain Conference at USP in Rockville, MD. Unable to travel? Attend the program virtually!