Tag Archives: mold

Kevin Smedley, High Performance Systems
FST Soapbox

Importance of Flooring for Food Processing Plant Hygiene

By Kevin Smedley
No Comments
Kevin Smedley, High Performance Systems

Food processing is a multi-trillion dollar industry that encompasses facilities such as bakeries, meat and poultry plants, bottling lines, dairies, canneries and breweries. For all of these food processing plants a commercial flooring system is essential for maintaining a hygienic environment. Few areas of a plant provide as much opportunity for the spread of bacteria, mold, fungi and dust as the floor. Hazardous materials from a contaminated floor can easily be spread from worker’s shoes and mobile equipment. Food processing plants present a unique set of challenges that require careful consideration of floor properties and installation.

Food processing plants floors are subjected to constant, high concentrations of salt, alkaline and oil compounds that substantially degrade the floor and thereby risk food contamination and facility shutdown. These compounds can come from common food production by-products like oils, fats, dairy products, sugar solutions, blood, and natural acids or from harsh cleaners and disinfectants. Even with frequent and thorough cleaning these substances can—and will—result in microbial growth and the spread of bacteria in untreated concrete or poorly installed resinous flooring.

Food processing plant hygiene, flooring
A commercial flooring system is critical to maintaining a hygienic environment in a food processing plant. (Image courtesy of High Performance Systems)

Cleaning floors is an essential part of maintaining food processing operations to keep up with government standards. A proper floor coating is a necessity for dealing with the vigorous, harsh cleaning procedures that typically include very hot water and aggressive cleaning chemicals. Depending on the exposure to corrosive, temperature and moisture conditions a thin film coating may suffice; however, in most cases, a thick, durable floor coating is needed to endure the cleaning operations. If too thin of a coating is used the repeated barrage of high pressure, high-temperature hot water and steam will strip the floor coating. Only an experienced flooring professional can determine the proper floor coating for a facility.

In addition to the properties of the floor coating, proper installation is essential for maintaining a hygienic, safe facility. If a floor is not seamless even the best floor coatings are vulnerable to germ buildup within gaps and cracks. To prevent harmful substance accumulation, a seamless coving transition from the floor to the wall is needed. Not only does that make the floors unsanitary, but it also can spread to other parts of the facility, equipment and product. Coving also aids in the cleaning process by allowing for hosing around the sides and corners of the room where germ buildup is most common.

An often-overlooked—yet critical—aspect of floor installation is having the proper pitch to promote water drainage. Having pools of water is not only dangerous for workers but for product safety. Such an examples of this issue is the Listeria outbreak at cantaloupe producer Jensen Farms, which led to 33 fatalities, 143 hospitalized victims, and ultimately, the end of their business. In the 2011 FDA released a report that focused on “Factors Potentially Contributing to the Contamination of Fresh, Whole Cantaloupe Implicated in the Multi-State Listeria monocytogenes Foodborne Illness Outbreak”. The conclusion was reached that the leading cause of Listeria spreading was due to a poorly constructed packing facility floor that was difficult to clean and allowed water to pool. The best way to prevent a similar situation at your plant is to make sure you get an experienced flooring expert, who understands your facility’s needs, to choose a floor with the right properties and to properly install it.

Jill Ellsworth, Willow Industries
FST Soapbox

Modeling Cannabis Safety from Food and Beverage Quality Regulations

By Jill Ellsworth
1 Comment
Jill Ellsworth, Willow Industries

There’s a reason you can eat or drink pretty much anything you want from American grocery stores and not get sick. Food manufacturing is highly regulated and subject to rigorous quality control.

Before food and beverages hit store shelves, the manufacturer must have a Hazard Analysis Critical Control Point (HACCP) system in place. The HACCP system requires that potential hazards—biological, chemical and physical— be identified and controlled at specific points in the manufacturing process. In addition, fresh foods undergo a kill-step. This is the point in the manufacturing or packaging process where food is treated to minimize and remove deadly pathogens like bacteria, mold, fungus and E. coli.

Generally speaking, when cannabis hits dispensary shelves, a less stringent set of rules apply, despite the fact that cannabis is ingested, inhaled and used as medicine. Cultivators are required to test every batch, but each state differs in what is required for mandated testing. Compared to the way food is regulated, the cannabis industry still has a long way to go when it comes to consumer safety—and that poses a considerable public health risk. In the early stages of legalization, the handful of legal states did not have rigid cannabis testing measures in place, which led to inconsistent safety standards across the country. State governments have had a reactionary approach to updating testing guidelines, by and large implementing stricter standards in response to product recalls and customer safety complaints. While local regulators have had the best intentions in prioritizing consumer safety, it is still difficult to align uniform cannabis testing standards with existing food safety standards while cannabis is a Schedule I substance.

The stark differences in safety measures and quality controls were first obvious to me when I moved from the food and beverage industry into the cannabis industry. For five years, I operated an organic, cold-pressed juice company and a natural beverage distribution company and had to adhere to very strict HACCP guidelines. When a friend asked me for advice on how to get rid of mold on cannabis flower, a light bulb went off: Why was there no kill step in cannabis? And what other food safety procedures were not being followed?

What to know more about all things quality, regulatory and compliance in the cannabis industry? Check out Cannabis Industry Journal and sign up for the weekly newsletterThe current patchwork of regulations and lack of food safety standards could have dire effects. It not only puts consumer health in jeopardy, but without healthy crops, growers, dispensaries and the entire cannabis supply chain can suffer. When a batch of cannabis fails microbial testing, it cannot be sold as raw flower unless it goes through an approved process to eliminate the contamination. This has severe impacts on everyone, starting with the cultivator. There are delays in harvesting and delivery, and sometimes producers are forced to extract their flower into concentrates, which really cuts into profits. And in the worst cases, entire crop harvests may have to be destroyed.

So, what do cannabis cultivators and manufacturers have to fear the most? Mold. Out of all the pathogens, mold is the most problematic for cannabis crops, perhaps because it is so resilient. Mold can withstand extreme heat, leaving many decontamination treatments ineffective. And most importantly, mold can proliferate and continue to grow. This is commonplace when the cannabis is stored for any length of time. Inhaling mold spores can have serious adverse health effects, including respiratory illness, and can even be deadly for immunocompromised consumers using it for medical reasons.

What the industry needs is a true kill step. It’s the only way to kill mold spores and other pathogens to ensure that they will not continue to grow while being stored. States that mandate microbial testing will benefit from the kill step because more cultivators will be in compliance earlier in the process. In states that don’t require comprehensive microbial testing, like Washington and Oregon, the kill step is a critical way to provide consumers with a preemptive layer of protection. Microbial testing and preventative decontamination measures encourage customer brand loyalty and prevents negative press coverage.

Adopting a HACCP system would also build additional safeguards into the system. These procedures provide businesses with a step-by-step system that controls food safety, from ingredients right through to production, storage and distribution, to sale of the product and service for the final consumer. The process of creating HACCP-based procedures provides a roadmap for food safety management that ultimately aligns your staff around the goal of keeping consumers safe.

It’s high time for the cannabis industry to adopt FDA-like standards and proactively promote safety measures. Cannabis growers must implement these quality controls to ensure that their products are as safe to consume as any other food or drink on the market. Let’s be proactive and show our consumers that we are serious about their safety.

Aaron Riley, CannaSafe
In the Food Lab

How To Ensure Cannabis and CBD Edibles And Beverages Are Safe

By Aaron Riley
No Comments
Aaron Riley, CannaSafe

As cannabis and CBD edibles and beverages gain in popularity among consumers, the rush to cash-in on market opportunities has resulted in an influx of unregulated and untested products. Recently the FDA increased its scrutiny of cannabis and CBD company websites and social media accounts to make sure they were not making unverified or misleading marketing statements about their products.

To exacerbate the problem of unregulated products, recent scares around vape-related hospitalizations have flooded the news, and the public is looking to the cannabis industry for answers about what it will do to ensure CBD and cannabis products are safe for consumption.

The first step the cannabis business community can take is educating the public on the two types of edibles— tetrahydrocannabinol (THC) and cannabidiol (CBD). THC is heavily regulated. Every batch must be tested before it is released to retail ensuring labeling and dosages are consistent.

Since CBD does not have psychoactive properties, most products do not go through the same testing standards and are far less regulated. An estimated 75% of CBD-only companies do not test their products. Even worse, independent testing has shown that CBD labels are often incorrect or inconsistent with its dosage and ingredient labels.

Both cannabis and CBD companies must advocate for a more regulated and legitimate market. Stricter regulations and testing standards will eventually weed out the bad players who are hoping to make a quick buck from those that intend to manufacture quality products that can benefit the health of consumers.

Short Cuts To Boost Profits

The current vape pen crisis underscores the lack of regulation and inconsistency in the CBD market. CBD-exclusive vapes are more likely to use cutting agents, whereas licensed THC vape companies are more likely to use pure cannabis oils and are required to undergo quality control testing.

Using cutting agents may lower operating costs, but often results in an inferior or dangerous product. Cutting agents also inhibit crystallization in CBD oils and increase the shelf life of a product. The cost of production for pure THC or CBD oil is $5–6 per gram, but a cutting agent can reduce the cost down to $0.10–$2 per gram.

With edibles, untested CBD products can introduce Salmonella or E.coli into the supply chain. This oversight could severely hurt the reputation of growers and manufacturers if a serious outbreak occurred.

Learn more about important regulatory & quality issues in the cannabis space from Cannabis Industry JournalThe Solution Is in Testing

Unlike food manufacturing, where quality controls are in place at the plant, the quality measures for edibles happens in a lab, after a product is manufactured.

Labs test edibles for potency. Both THC and CBD are used for medicinal purposes, and potency testing is critical for accurate dosing. A patient under or over dosing, or taking a poor quality CBD product with additives could detrimentally affect their long-term health.

They will also test for product contamination. Both CBD and THC cannabis can become contaminated with microbes (i.e., mold, mildew, bacteria and yeast), pesticides and heavy metals throughout the process of growing, cultivation and processing. Contamination is especially concerning because many medical marijuana patients are immunosuppressed and cannot fight off potentially dangerous infections and illnesses arising from these contaminants.

But even for the general population, cannabis and CBD contamination can cause serious health issues. Molds and bacteria such as aspergillus, Salmonella and E. coli present safety risks, and toxicity from sustained exposure to heavy metals can lead to high blood pressure, heart issues and kidney failure, among other issues. Fortunately for consumers, cannabis products sold in licensed dispensaries must all undergo contamination and quality control testing per state regulations.

However, because quality control measures are not required for edible manufacturers, there is no oversight that food-grade ingredients are used or that practices to avoid cross-contamination are used.

What Companies Can Do To Win Back Trust

Customers around the country are rightfully concerned about the safety and quality of their cannabis and CBD products in light of recent news surrounding vape-related illnesses. This is the perfect opportunity for manufacturers and consumer brands to seize on the subject and educate consumers about cannabinoids so they aren’t turned off from incorporating CBD into their lifestyles.

  1. First and foremost, test all products. At a minimum, companies should be adhering to state cannabis market regulations, even if they are just producing CBD. As the FDA rolls out more concrete regulations for CBD, which was only federally legalized last year, it is in the best interest of all CBD companies to meet FDA guidelines preemptively so products can pass inspection at a later date.
  2. Find a good credible lab to help with formulations and inputs. With edibles and beverages, there is more room to introduce contaminants within that scope.
  3. Hire food safety experts to help elevate safety standards and meet FDA regulations. Some forward-thinking companies are starting to hire quality experts from food manufacturing to get ready for broader federal acceptance.
  4. Help educate consumers on why the brand is better, based on inputs and testing.

Consumers should also conduct their own research regarding individual CBD companies’ supply chains and manufacturing standards. Transparent companies will do this proactively, providing cultivation information and lab results for their customers.

In the end, the safest place to buy cannabis and CBD products is a licensed dispensary. It is the responsibility of growers, distributors, manufacturers and retailers to keep the legal market safe and free from contaminants that could threaten the industry. The regulated cannabis space has advanced significantly in the past few years, and companies must set the highest manufacturing standards to maintain this forward momentum. Education and testing are the best solutions to ensure a safe and trusted cannabis marketplace.

Phil Coombs, Ph.D., Weber Scientific
In the Food Lab

Rapid Detection of Spoilage Organisms: The Forgotten Bad Guys?

By Phil Coombs, Ph.D.
No Comments
Phil Coombs, Ph.D., Weber Scientific

As rapid microbiology methods have been increasingly adopted by the food industry during the past 30 years, much emphasis has been placed on the detection of foodborne pathogens and  reducing test times as much as possible. Novel methods such as PCR, along with other molecular approaches, have done much to find these organisms more quickly and identify the source of an outbreak. Quite rightly so: We all have to eat, and we all prefer to eat safe food.

What is often forgotten, however, and what has been less fashionable in the development of novel methods, is the impact of spoilage organisms on the economics of food production and the lack of more sophisticated methods to detect them.  While media headlines may scream “Salmonella outbreak affects hundreds!”, the same outlets are less likely to report how much food is thrown away on any given day because of mold growth. “Penicillium spoils bread” is hardly an attention grabber on the 6 o’clock news.

A closely–related issue is that of food wastage, which together with spoilage accounts for billions of dollars of food that is thrown away. Estimates are in the region of $29–35 billion per year, and that doesn’t take into account the billions of dollars of wasted produce because of cosmetic imperfections—the so-called “ugly” fruit and vegetables that are still safe and nutritious to eat. In other estimates, it is suggested that in U.S. landfills, 21% of the contents are comprised of wasted food.

Another source of the problem is the confusion created by date labels–“best by”, “use by”, “sell by”.  What do they really mean? This has become such an issue that Walmart is leading an effort, spearheaded by Walmart’s VP of Food Safety, Frank Yiannas, to rationalize date labels so that consumers are far less likely to throw away perfectly wholesome food. In this aspect, he has worked closely with the Institute of Food Technologists, the Grocery Manufacturers Association and the Food Marketing Institute to address the problem.

The amount of waste and spoilage has reached almost scandalous proportions and the issue must be addressed, as the planet’s human population is estimated to grow to 9–10 billion by the year 2050. Improved agricultural practices and biotechnology will help to improve yields and increase the food supply, but greater efforts must be made to reduce wasting the food that is produced.

Weber Scientific
The PCR Yeast and Mold Qualitative test is distributed by Weber Scientific in North America.

In the overall context of facing these challenges, new technologies are being developed. One such technology is a four-hour PCR Yeast and Mold Qualitative test, manufactured by Germany-based Biotecon, for use in dairy products. Genetic methods are typically associated with identifying bacterial and viral pathogens. But the same approach may be taken with groups of microbes responsible for spoilage, if there is a unique gene sequence common to the target organisms.

Typical test times for yeast/molds are historically five days, although more recently incubation times have been reduced to three days with some new “rapid” plating media. Still, this is a relatively long time compared to four hours. And it is worth noting that the PCR Yeast and Mold test is a “true” four-hour test, as it does not require any pre-enrichment.

The protocol follows a standard PCR protocol for DNA extraction and amplification with an important inclusion—a treatment step that allows discrimination between viable and non-viable organisms. Another important aspect is the inclusion of UNG (Uracil-N-Glycosylase), which greatly reduces the chance of cross-contamination between one sample and the next.

The method is remarkably robust. 100% specificity has been demonstrated with more than 300 strains of yeasts and molds representing 260 species covering all the phylogenetic groups. Conversely, 100% exclusivity has been shown against 60 strains of non-targets—comprised of microbes typically found in similar ecological niches; plant DNA; and animal DNA from human, mouse and canine sources. Sensitivity of the method for yeasts/molds is 101 – 102 cfu/g.

The method is also quantitative, and PCR cycle threshold times can be very closely correlated with plate counts on agar media. Thus, once a standard curve is generated, subsequent samples need only be tested by this new PCR method. Equivalent counts are then determined from the standard curve.

The rapid detection of yeast and molds is a much-needed analytical technique for the dairy industry. For producers of yogurt and similar fermented milk product with a typical shelf-life of 60 days, having the ability to release product to market four days earlier will help with operational efficiency. More importantly, knowing early on of any possibility of product spoilage will help deliver superior product to consumers. The method won the Institute for Food Technologists’ Innovation Award, with one of the judges commenting, “a four-test versus five days for spoilage organisms is a major breakthrough.”

In view of the level of wastage and spoilage that currently occurs, this new PCR method is a step along the way to using more sophisticated methods for the detection of the organisms responsible. Guardians of the food supply should see this as an important development.