Tag Archives: packaging

GREG BALESTRIER, Green Rabbit
Retail Food Safety Forum

Solving Food Safety Challenges in Today’s eCommerce Driven World

By Greg Balestrieri
No Comments
GREG BALESTRIER, Green Rabbit

Think about this number for a second: Consumers spent more than $19 billion on online grocery in 2019. While this is still a small segment of the overall $800 billion U.S. grocery market, more consumers than ever before are turning to eCommerce for the fulfillment and delivery of perishable goods, positioning the grocery delivery market to grow dramatically, especially as companies like Amazon continue to innovate in this area.

Adding to this, a recent survey found that 68% of consumers feel the freshness of perishable items is the number one quality they look for in online grocery retail. This is where things become complicated, as shipping perishables introduces an entirely new set of quality challenges for eCommerce brands. This is hindering the market from reaching its full potential until the biggest problem is solved: Ensuring food safety and freshness in every order.

This is a double-edged sword for retailers, grocers and CPGs: Interest in their service is taking off, but it takes just one package of spoiled meat or wilted vegetables to potentially lose a customer to a competitor—or even worse, get someone sick.

Today, spoilage and food safety issues are primarily driven by breakdowns in the cold chain, and it only takes one mishap to affect the quality of food throughout the rest of the delivery lifecycle. To achieve optimal freshness and keep customers happy, grocers, retailers and their trusted partners need to focus on three primary food freshness factors: Temperature, storage and packaging.

Controlling each of these issues starts at the warehouse.

Freshness Starts at the Warehouse

For most parcels, such as clothing, books and other commonly ordered goods, temperature control is rarely an issue. However, facilities that store perishable foods have a constant component to manage—temperature fluctuation.

According to the NRDC, cooling and refrigeration inconsistency is one of the biggest contributors to food spoilage and waste. This is because every food item has a definable maximum shelf life, and storing them at less than optimal or constantly changing temperatures can exacerbate and drastically shorten its timeline.

Mistakes with heightened temperatures on items like meat and poultry can also lead to bacteria growth and foodborne illnesses. In fact, the CDC estimates that 48 million people get sick, 128,000 are hospitalized and 3,000 die from foodborne diseases each year in the United States, putting a spotlight on how seriously food safety issues need to be taken.

The Need for Proper Rotation Processes

First expiration, first out (FEFO) is a motto all organizations should live by when stocking inventory. In addition, it is a critical process when working to avoid the food spoilage crisis. It may come as a surprise, but not all distribution centers have this type of rotation system in place. This means organizations could send spoiled food to consumers because an item was pushed to the back of a refrigerator during the re-stocking process and unknowingly shipped passed its expiration date. Not only does this create massive amounts of food waste, tarnish a brand and eat into a company’s profits by replacing low margin products, but consuming a spoiled food item can also be detrimental to one’s health.

While it helps to keep these types of costly errors in mind, as warehouse operations grow, there’s no possible way to manually scale this system.

Luckily, breakthroughs in cold chain technology have produced automated solutions that help organizations track everything from expiration dates to potential recalls. These types of technology support the entire cold chain lifecycle and ensure that warehouses and their grocery partners have the visibility they need to ensure freshness from fulfillment to the customer’s doorstep.

However, when the product is ready to leave the warehouse, it’s arguably about to enter the hardest portion of the cold chain lifecycle: Delivery.

Key Considerations for Packaging

For fragile items, packaging is all about keeping the item protected from drops and damage, but for food the focus should be on keeping the item fresh and at optimum temperatures throughout the duration of transit.

Given many grocers outsource delivery, they have little interest in whether food spoils, mainly because they are unaware of the package contents and are more focused on getting the item to the right location fast and effectively.

Yet there are many obstacles that need to be addressed during the last leg of delivery. What is the temperature in the delivery vehicle? If no one is home or at the office, will the package spoil outside in the heat?

For perishables, it is imperative that spoilage rates, delays in shipping schedules and unattended delivery scenarios are important factors in determining the amount of cold pack and protective stuffing that goes into the package. If these factors are not considered, customers could return to spoiled, melted or even crushed perishables.

Getting Food Fast and Fresh

Today, grocers and retailers are bullish on building out omnichannel food initiatives. However, balancing brick and mortar locations while developing profitable and efficient online delivery systems is often more than one organization can take on. While there are trusted partners designed to support eCommerce fulfillment and delivery, few are purpose-built to handle perishable foods.

Either way, in order to see wide-scale adoption of online grocery initiatives, grocers, retailers and ecosystem partners need to start prioritizing the key temperature, storage and packaging considerations and challenges associated shipping perishable foods. Acknowledging these challenges and implementing solutions for them will not only keep your products and deliveries fresh, but they will also keep customers coming back for more.

RS Spectra

Using Raman Spectroscopy to Evaluate Packaging for Frozen Hamburgers

By Gary Johnson, Ph.D.
No Comments
RS Spectra

Raman spectroscopy (RS) can be used to identify layers in polymer food packaging films to better understand the laminated plastic’s chemical composition. A Raman spectrum is obtained by illuminating a sample with a laser and collecting and measuring scattered light with a spectrometer. Coupling the spectrometer to a microscope with a mapping stage allows an accurate way to create a chemical map of a film’s composition and structure. The map provides valuable information to better understand the packaging’s barrier properties, structural integrity and layers.

The RS method can be useful for conducting failure analysis (why did a food package fail to meet standards), supply chain validation (is the plastic what the supplier claims), decision making (which plastic should be used), and evaluating package appearance (why is there discoloring, haze or particle inclusions in the film). It provides important information for design, purchasing, product success and other decisions that food manufacturers and packagers regularly face.

Take for example the packaging used for frozen hamburger patties. The film used must be transparent to display the hamburger patties, but it also needs to provide an oxygen barrier in order to prevent the ground beef from turning brown. As such, a polymer layer with low oxygen permeability must be incorporated into the laminated film, along with other components like nylon for strength and polyethylene for heat sealing and water barrier. The most common polymer used as an oxygen barrier is ethylene-vinyl alcohol copolymer (EVOH).

It is important that the film used to package these hamburger patties includes a good heat seal as well as a proper oxygen barrier layer. The possible absence of either of these could result in the undesired effect of ground beef turning brown. Manufacturers may want to test packaging for an EVOH layer to make a purchasing decision or verify a supplier’s claims. Additionally, if the packaging fails, an analysis can determine if the failure was due to having no EVOH barrier layer in the product or if there is a need to investigate other potential issues with the packaging. Regardless of the reason, RS provides a preferable method for rapidly evaluating the plastic for an EVOH oxygen barrier layer.

The RS method can be used to determine the construction of the laminated film and confirm that it meets specifications. Using the combination of RS with microscopy and mapping allows both identification of the polymers and the evaluator to correlate the composition to the layer structure of the laminated film. This method provides a map showing the composition of each layer in the film. In some cases, the Raman map will show layers that are not resolved in the visible micrograph image. Thus, with RS, one test provides both the structure and composition of each layer of the laminated film.

Laminated film, packaging, Intertek
This sample table illustrates composition and thickness of each layer of a laminated film. Table courtesy of Intertek.

To start, a small section of the film (5 x 10 mm) is cut and mounted with a photocuring resin. A cross section of the mounted film is then cut to expose the layers for analysis. This cross-section is placed on the mapping microscope stage of the Raman instrument. A micrograph image with a 100X objective is obtained and a Raman map of the cross-section with 1 µm2 pixel resolution collected.

A map image is obtained by classical least squares (CLS) fitting example spectra to each of the spectra collected from the cross-section. The example spectra for the CLS fits are averages (mean) of the spectra in the center of each layer with a unique composition as determined by the data (see Figure 1). The final result is a color-coded map that can be superimposed on the micrograph image to show the composition and thickness of each layer in the laminated film. For example, a film with six layers composed of Nylon 6, polyethylene or EVOH would have varying thickness and placement of each layer to achieve the desired result for the product.

RS Spectra
Figure 1. Example spectra used to create the CLS model for map image.

The composition map can confirm the presence of an oxygen barrier layer of EVOH, as well as the overall construction of the laminated film. Knowing the thickness of the barrier layer is important since the gas permeability is a function of the film thickness. Determination of the overall film structure allows the end-user to confirm the film meets the specifications from the supplier. In turn, this can be used to make important purchasing decisions or insights into what caused a packaging failure.

While good, successful results will confirm the presence of an EVOH layer, the RS map may also show only polymers that don’t have the required oxygen barrier properties (see Figure 2). The manufacturer would need to check it against a supplier spec sheet. It may ultimately show that the lack of an EVOH layer is what caused the issue with the packaging. If the test is being used for decision-making purposes, the manufacturer would know not to use the product. If a supply chain validation is being run, after checking the spec sheet, the manufacturer may need to correct the situation.

Raman spectroscopy
Figure 2. Raman map overlaid with image of film cross section. Green = nylon; Red = polyethylene; Yellow = ethylene vinyl alcohol copolymer (EVOH).

What if the analysis confirmed that an EVOH layer was present, but the test was done for a failure analysis, meaning the packaging did fail at some point? If the EVOH later is present but the meat is still turning brown and/or spoiling, other potential problems would need to be evaluated. In this case, the issues would most likely be with the heat seal and additional testing of the heat seal would be necessary. Thanks to the RS analysis, the investigation into the packaging failure can proceed, and the issue with the heat seal identified.

By giving a chemical image of the packaging, RS analysis provides a wealth of information about a film that can be vital to a food manufacturer or processor. Knowing why certain films may not be working, either due to faults in chemical makeup or the need to look elsewhere, such as the heat seal, RS quickly and efficiently provides information and answers to help get products to market and meet consumer demand.

Susanne Kuehne, Decernis
Food Fraud Quick Bites

In That Wine, There Is No Truth

By Susanne Kuehne
No Comments
Susanne Kuehne, Decernis
Wine, Decernis Food Fraud database
Find records of fraud such as those discussed in this column and more in the Food Fraud Database.
Image credit: Susanne Kuehne.

Booze bootleggers are still quite active since there is a lot of money exchanging hands in the high-end wine and liquor business. Fake premium Penfolds wines, which can fetch several hundred dollars per bottle, as well as acclaimed brands of adulterated whisky, were discovered and seized in a liquor store in Cambodia. Besides the fake beverages, the raid also uncovered fake labels and packaging materials.

Resource

  1. Australian Associated Press (November 28, 2019). “Fake Penfolds wine seized in raid on bootlegging operation in Cambodia”.The Guardian.

 

 

Salami, plastic packaging

Using Raman Spectroscopy to Evaluate Laminated Food Packaging Films

By Ellen Link, Gary Johnson, Ph.D.
No Comments
Salami, plastic packaging

Laminated plastics are common and popular food packaging options. They are strong and flexible, making them ideal for both packing and presentation, and can be used for cooking, frozen foods, drink pouches, snack products and even pet food. Yet, unreliable plastics can create a problem for food packaging and the safety of a product.

If a grade of plastic is not what was promised or needed, there can be issues that lead to spoilage, spills and messes, crystallization, mold or other risks. Additionally, there may be concerns about how laminated films will interact with the product itself, as it could impact food safety or lifecycle. For these reasons, it is critical to have accurate information when evaluating the plastics films used in food packaging.

Raman Spectroscopy

Raman spectroscopy (RS) is a powerful method of identifying and characterizing chemical compounds based on light scattering by a sample. It can be used to identify layers in food packaging films to accurately understand the chemical makeup of the laminated plastic. The effect is named for its inventor, C.V. Raman, who was awarded the Nobel prize in physics for its discovery in 1930. It is a non-destructive method that uses an induced-dipole mechanism to probe the vibrations of the chemical bonds in a molecule. The Raman spectrum shows a pattern of molecular vibrations that represents a detailed chemical fingerprint of a material, providing insights into the product composition.

A Raman spectrum is obtained by illuminating the sample with a laser and collecting and measuring the scattered light with a spectrometer. The molecular vibrational modes vary depending on the geometry and electronic structure of the chemical compound present in the sample. By controlling the position of the laser focus point on a sample, a map of the composition can be created. This provides valuable information on the plastic film related to its composition, such as number of layers, thickness of each layer and overall make-up.

In the food packaging and safety industry, this technique can be used to evaluate laminated plastic films by examining polymers, minerals, and/or inorganic fillers and pigments present in the film. Specific food packaging products that can benefit from RS assessments include heat seals, containers, lids, films and wrappers both for durability and performance and for diffusion, permeation or other concerns.

Benefits and Limitations

There are numerous benefits to using the RS method. A major advantage is that there is virtually no sample preparation necessary; spectra can be obtained without direct contact, such as through the sides of glass vials or through windows in reaction cells. As a non-destructive technique, it allows an easy, highly accurate way to take a sample, create a chemical composition map and better understand films’ barrier properties, structural integrity and layers. It has broad applicability and works using conventional microscope optics.

There are, of course, limitations to the approach, as well. Fluorescent components or impurities in a sample can emit a photoluminescent background that overwhelms the Raman scattering. Samples can also be damaged by the laser if too much power is used, or the sample absorbs light at the laser wavelength. Samples that do fluoresce and samples that are photolabile act as common interferences for the RS method. In many cases, these interferences can be overcome with the proper choice of laser and sampling techniques. Additionally, while RS provides an accurate analysis of laminated films, the technique cannot be used on metals or metallic compounds (which can be assessed using scanning electron microscopy or light optical microscopy) or organic pigments or ink layers (which can be assessed with other infrared techniques).

Using RS for Food Packaging

RS can offer a variety of insights for food packaging films:

  • Failure analysis. If a plastic used for a heat seal in a fruit or yogurt cup fails, it could result in a mess for manufacturers, stores or the consumer. Exposure to air or elements could also lead to spoilage, particularly for refrigerated foods. Inconsistent plastic packaging could result in weak points that break, crack or puncture, which could also result in mold, mess or other spoilage concerns. If a manufacturer experiences a failure in a heat seal or packaging leading to leakage or spoilage, RS analysis can help determine why the failure occurred (was in the plastic film or something else) to help prevent future issues.
  • Supply chain validation. It is extremely important that the plastic films coming from suppliers are what they are promising and what the manufacturer needs. RS analysis can be used to determine the chemical make-up and morphology of packaging to confirm a supplier’s claims before proceeding with use of the film in food packaging and products.
  • Simple decision making. If a manufacturer is trying to decide which material to use, RS can provide answers. For example, if there is a need for moisture non-permeating films and there are multiple options available, an RS chemical map can illustrate what to expect with each option, aiding in the decision-making process when combined with other known factors such as cost or timing. If there is an additive in the food product that may diffuse into the film, RS can determine which material might best resist the potential problem.
  • Packaging appearance. If there is a swirl or haze in the packaging, RS can compare the area with the issue to a clear section to determine if the defect in the film is a foreign polymer or an inorganic pigment or filler, identifying the source of the problem.

RS analysis provides a wealth of information in a manner that is non-destructive. Giving a chemical fingerprint to identify composition with extremely good spatial resolution gives manufacturers valuable information that can be used to mitigate issues, correct problems or make important decisions. These actions in turn can help ensure food safety, which builds brand image and manufacturer equity. Ultimately, RS analysis can play an important role in the success of a product, a brand or a company.

Sanitizing Food Manufacturing Equipment a Big Responsibility

By Kathy Avdis
No Comments

How much work you have to do to clean up after you prepare a meal at home depends on how many people you served. The more people you served, the more dishes you have to wash, generally speaking. You may only need to load a couple of dishes into your dishwasher, or you may need to roll up your sleeves and spend some time scrubbing pots and pans at your sink. Now, consider how much work it takes to clean up for the average food manufacturing or packaging facility, which produces enough food to serve hundreds, if not thousands, of people every day. Cleaning up at the end of the day for these manufacturers and packagers is more involved than running a dishwasher or getting out the sponges and brushes.

Sanitizing food manufacturing equipment is a much bigger responsibility than washing up after preparing a meal at home, as well. That’s because manufacturers and packagers have an enormous responsibility to keep their equipment clean. The potential for foodborne illnesses is something that all manufacturers and packagers need to guard against at all times. Meaning, they must follow strict food safety protocols that include cleaning and sanitizing all equipment every night. This is essential not only because it keeps them compliant with food safety regulations, but also because consumers put their faith and trust in them. An outbreak of foodborne illnesses that originates at one of these manufacturers or packagers means that trust is violated, resulting in severe consequences beyond the legal repercussions they may suffer. For these companies, keeping their equipment clean is more than a matter of good hygiene — it’s also good business.

Food manufacturers and packagers must follow a detailed, complicated series of steps to ensure that every component and element of their equipment will be safe to use in the next day’s production cycle. However, because of the complexity of the process, it can be difficult for employees to adhere to the process every time. Sometimes, certain steps may be forgotten or overlooked, which is why it’s necessary to keep a reminder of the proper protocols around at all times.

The following checklist details all of the necessary steps food manufacturers and packagers should follow to stay in compliance with food safety requirements. The responsibility they have is immense, so there’s no margin for error.

The following infographic is courtesy of Meyer Industrial.

magnifying glass

Avoiding Total Recalls: Regulatory Labeling for the Food and Beverage Industry

By Josh Roffman
No Comments
magnifying glass

In recent memory, no time has more effectively demonstrated the challenges facing the food and beverage industry than spring 2018. In addition to a widely publicized recall of romaine lettuce, several other companies have instituted noteworthy product recalls. For example:

While demoralizing for food and beverage manufacturers, these recalls may also be an unavoidable part of doing business. Plants are grown outdoors, livestock lives outdoors, and no method of sterilization or disinfection is perfect. This is why regulations exist, such as FSMA or EU 1169, so that when recalls do occur, companies can efficiently find and eliminate their contaminated products, and then find the point in the supply chain where the contaminants were introduced.

Despite their necessity, food labeling and packaging regulations represent a huge challenge for food and beverage (F&B) manufacturers—and these challenges don’t exist in a vacuum. The labeling and packaging process is already a huge challenge, which includes customer requirements such as branding, cultural and linguistic localization, 2-D barcodes, and more. How can F&B companies enmesh their regulatory requirements with these existing challenges without adding to the complexity and expense of the entire undertaking?

Challenges of the Regulatory Environment

Since 2011, FSMA has been changing the way that F&B manufacturers produce, package, ship and sell food. In a departure with previous tradition, government inspectors no longer form the first line of defense against contaminated or mislabeled food. Rather, food producers and manufacturers themselves must bear the responsibility to implement procedures that prevent foodborne illness.

In short, FSMA will force F&B manufacturers to implement full transparency and traceability within their supply chains. Artwork and product labeling must be used to support these endeavors—ideally, one would be able to scan the barcode on a food package to instantly determine its origin as well as the chain of distributors that it passed through in order to reach your hands. Right now, the industry standard is well below this benchmark.

Right now, a seven-day timeline is the best-case scenario for traceability throughout the F&B supply chain. Although the endpoints of the supply chain—grocery stores and restaurants—may use modern digital records, you’ll find growers and transportation companies still using Excel and paper records.

In the meantime, a new European Union regulation known as EU 1169 went into effect in December 2016. It made a number of changes to food labeling laws, creating a uniform standard for nutritional facts information. Manufacturers must meet minimum standards for legibility, attain a minimum font size, and notify consumers about potential allergens.

Purely by coincidence, a new FDA food labeling law has also recently gone into effect. Announced in May 2016, this rule will update serving sizes found on most food packaging, alert consumers to added sugars, and more. Although these rules were originally slated to take effect in 2018, they’ve been delayed to 2020 for companies with more than $10 million in revenue, and delayed to 2021 for smaller F&B manufacturers.

To encapsulate, F&B manufacturers must now adjust to the following factors:

  • The FDA is becoming much more serious about preventing foodborne illnesses
  • To this extent, it’s begun to demand instant traceability from F&B manufacturers
  • In addition, the EU will force manufacturers to update their nutritional labeling
  • Manufacturers must update their nutritional labels in the United States as well—but differently

Barcodes and labeling already pose a complicated challenge for manufacturers, causing product recalls and packaging write-offs. Putting additional regulation on top of that solves problems in one sense, by making recalls less likely, but also creates problems in another sense—by putting pressure on artwork and labeling departments that are already overworked. After all, regulations alone aren’t the only sources of change and challenge when it comes to labeling and packaging.

Other Stressors on Labeling and Packaging within F&B Manufacturers

Changing consumer tastes, changing marketing methods, and changing technologies all play their role in adding stress to the job of labeling and packaging within the F&B manufacturing industry.

  • New Branding Needs. Packaging drives 36% of purchase decisions, which means that new and eye-catching label designs are always a must. Good design is subjective, however, and tastes change. For example, most Americans are now driven towards brands that are driven towards social and environmental causes. In other words, many F&B manufacturers may soon reorient their product artwork design to reflect this new concern.
  • International Expansion. If EU 1169 is a concern for you, it probably means that you’re selling into countries where English isn’t the only language. It’s easy to make missteps in this realm. For example, it’s possible to accidentally approve poorly translated copy, or to approve copy that’s in the wrong language entirely.
  • New Technologies. In addition to the UPC, many brands are now incorporating 2-D barcodes (such as QR codes), which provide product information when scanned by a smartphone. Although these codes are supposed to provide more information to consumers, only 34% of consumers actually scanned them as of 2014. The challenge for the labeling department is to make these codes more useful and user-friendly.

These new techniques, regions and branding requirements pose challenges. Think about the possibility of approving the right logo for the wrong country, approving out-of-date artwork, or substituting an FDA-compliant label for one that should comply with EU-1199. These things will happen, and they will necessarily lead to recalls. Here’s the question: How do you structure your artwork and labeling departments to minimize these risks?

Minimize Risks with Standardized, Centralized Labeling and Artwork Management

The secret to producing compliant labeling with up-to-date branding and correct localization is to create a system that gives you as little choice as possible. In other words, you should not find yourself wandering through a nest of file folders wondering which asset is the most up-to-date or find yourself developing separate label templates for each separate region you sell into.

Instead, your labeling and packaging artwork should be able to integrate with other business applications and content libraries to ensure your accessing the correct, most up-to-date approved content and assets. In an ideal world, if you start creating a label and select “Spain” as your target market, your labeling solution would immediately retrieve the relevant content for that target market. With the right kind of integrated, dynamic, data-driven solution you can be confident that you’ll only be dealing with complete with approved Spanish-language content for your packaging and your labeling. You would have peace of mind that your solution would generate an EU 1199-compliant nutrition label template, auto-populated with the appropriate nutrition facts. Additionally, if this label is intended for food sold only by a particular supermarket chain, you would feel confident that your solution would retrieve all of the correct content, images and barcodes required for that brand.

Improve Traceability by Replacing Sources of Confusion with Sources of Truth

To ensure accuracy and consistency, your labeling solution should integrate with your “sources of truth,” namely your ERP systems, but also potentially including your manufacturing execution systems, warehouse management systems, and more. You should be able to leverage existing business processes and vital data sources to drive labeling—to avoid replication of data and potential error, and instead automate and streamline your processes.

Recalls may be a fact of life, but using the right labeling and packaging solution will let you narrow their scope—and trace contamination to its source within a much faster window. The fastest solve for this problem involves creating a true “closed loop” for artwork and labeling—a comprehensive, integrated and automated solution to provide accurate and consistent labeling.

Recall

Packaging Process Breakdown Causes Eataly Recall

By Food Safety Tech Staff
No Comments
Recall

Eataly USA has recalled its Eataly Artichoke Spread due to undeclared walnuts. A customer who is allergic to walnuts suffered a “light” allergic reaction after consuming the spread.

“The customer declined to fill out the Eataly incident form and just wanted to bring the seriousness of what happened to our attention.” – FDA

After investigating further, it was discovered that the issue was caused by a temporary breakdown in the packaging process, FDA stated in a safety recall.

The product was distributed at the company’s popular New York City Eataly Flatiron location.

Food Safety Tech
FST Soapbox

3 Ways to Ensure Food Safety for Packaged Foods

By Erica Montes
No Comments
Food Safety Tech

Food safety and hygiene are very important aspects of food production, processing and consumption. In the absence of proper hygiene and safety protocols, the entire food chain right from the farmer who grows the food till the consumer who eats it is compromised. Food safety lapses like contamination and spoiling of food pose major health risks.

There are many ways in which a perfectly safe food product can turn hazardous. Cross contamination from animal matter, lack of hygiene among workers in processing plants, poor sanitation procedures, inadequate preservation techniques and low-quality packaging can all adversely affect the shelf life of a food product. Raw food spoils much faster than processed food, so fresh vegetables and fruits used in food processing must be washed properly and stored at optimal temperatures before they are processed.

The following are a few critical factors that affect the safety, shelf life and hygiene of food products.

1. Hygiene in Processing Plants

Personal hygiene and excellent sanitation policies are essential to maintaining food safety. Processing facilities potentially have several points of food contact equipment and food contact surfaces. There must be well developed and written standard cleaning practices or sanitation procedures for all such high-touch areas in a food processing plant. All equipment, vessels and surfaces must be monitored for bioburden or presence of microbial matter.

The workers must also be aware of good personal hygiene practices. This will help prevent cross contamination and possible spread of foodborne diseases from humans. Workers suffering from contagious diseases should refrain from coming to work and regular employee health checkups must be carried out by doctors. All staff must be trained in food and personal hygiene, and strictly follow recommended methods of hand washing and drying. Proper usage of hygiene gear including masks, caps, gloves, overalls and footwear must be ensured.

Floors, walls, drainage facilities, narrow cat-walks and all surfaces in the processing area must be cleaned thoroughly using high quality cleaning materials. The standard cleaning practices must be diligently met each time and the supervisors should ensure that the crew is doing their job properly. Quality and consistent employee training, and effective instant monitoring methods like ATP testing will help achieve these goals.

2. Good Packaging Is Crucial

The quality and suitability of packaging are also very important in determining the safety, longevity and hygiene of food products.

Evolving consumer habits, growth of online marketplaces, increased consumption of high-protein foods, popular demand for smaller portions due to shrinking family size and the rise in new global distribution channels have all impacted packaging requirements.

Sustainable and responsibly sourced packaging materials are the hallmark of advanced packaging technology. They are environmentally friendly and do not deplete natural resources. Clean label packaging focuses on using recycled materials, high-pressure packaging technology, digital packaging and 3-D printing techniques, and outsourcing of more activities to save money, time and resources.

The need for reducing food waste has been an important objective of all recent packaging innovations. According to a recent report by The Guardian, almost half of all U.S. food produce is thrown away. Global food waste can be reduced by extending the shelf life of packaged foods, thereby avoiding early disposal and excessive purchasing. Latest innovations include in-built freshness sensors in packaging that alert customers when food goes bad, vacuum skin innovations, barrier bags and modified-atmosphere packaging.

3. Consumer Awareness Is Key

The end user or the customer who buys the food product for consumption also needs to be aware of good food use, preparation and storage methods.

Fresh veggies and fruits should be washed thoroughly, chopped, diced, and sliced, and stored in clear, airtight containers in the fridge. Prepare and cook raw foods like fish, poultry and meat to extend their storage life. Cooked food can be safely frozen for a long time. In addition, many food items like casseroles, soups, sauces, stir-fries and baked foods stay safe for cooking and consumption even beyond their typically assumed use-by date.

As responsible consumers, we must be aware of the difference between use-by, sell-by, best-before and expiration dates. This will prevent us from throwing away a whole lot of perfectly edible food items from our pantries.

Conclusion

Food safety is a matter of global concern and affects the well being of billions of people all over the world. Ensuring safety, hygiene, freshness and long shelf life of food items will help reduce food waste, hunger and starvation in the world. It will also reduce the burden on limited natural resources and will help ensure a sustainable and efficient food chain.

Gears

Three Practices for Supply Chain Management in the Food Industry

By Kevin Hill
1 Comment
Gears

While building an effective logistics strategy, the end goal of supply chain management (SCM) needs to be kept in mind (i.e., allowing each member of the supply chain to achieve efficient inventory management as well as reach its customer service goals). To this end, it’s important to share information that will help each member achieve success. This includes data relating to demand forecasts, anticipated lead times and safety stock quantities. Let’s look at SCM best practices for food manufacturing and supply, and how this information plays a role.

Effective SCM: Best Practices for the Food Industry

Here’s an overview of SCM best practices in food supply and manufacturing:

Learn more about managing your supply chain at the Best Practices in Food Safety Supply Chain conference | June 5–6, 2017 | LEARN MOREDemand Forecasts. This is generally based on demand, sales or usage patterns in the past. However, future demand can be affected by changing situations such as:

  • Gaining/losing customers
  • Increased/decreased product popularity
  • Introduction of new products
  • Short-term increase in demand through promotions, etc.

Better estimates can be achieved with an effective derived demand or a CPFR (collaborative planning, forecasting and replenishment) system. This can be done through automated data collection, or by the following process:

  • Identifying customers who can predict future demand (i.e., what they may use or sell in the future)
  • Collecting demand forecasts about specific products from them
  • Comparing these forecasts against their actual purchases on a monthly basis
  • Helping them improve future predictions by sharing this data with them

Customers may overestimate demand, but you might consider offering a discount based on accurate forecasts to encourage better results. In addition, you should also consider these five elements:

  • Usage patterns in the past, not including CPFR data
  • Increasing/decreasing product popularity trends
  • Higher/lower seasonal usage or demand
  • Events/promotions in the near future
  • Market and industry data from sources such as management, sales, etc.
Eva Almenar, MSU

Packaging Technique Could Help Produce Last Longer

By Food Safety Tech Staff
No Comments
Eva Almenar, MSU
Eva Almenar, MSU
Eva Almenar and a team of researchers at Michigan State University may have found a way to make packaged produce last longer. (Image courtesy of University of Michigan)

Michigan State University (MSU) may have come up with a way to make packaged vegetables last much longer. After conducting an extensive evaluation of current techniques, researchers at MSU found that combining a package’s atmosphere of elevated carbon dioxide and reduced oxygen with a sanitizing treatment of sodium hydrochlorite could help ready-to-use onions last two weeks in a package (meaning that they were acceptable for purchase at this point). The results of the research, which was partially funded by USDA, were featured in an issue of the International Journal of Food Microbiology.

“We focused on ready-to-use onions, which have grown to become one of the five most commonly sold vegetables in the last decade,” said Eva Almenar, MSU AgBioResearch scientist in a news release. “Of all the variations that we tested, this one reduced microbial growth, respiration and discoloration, and preserved the desired aroma.”

The packaging technique could have potential use with other vegetables as well. Almenar is also investigating gas composition packaging and containers made from renewable sources.