Tag Archives: pathogens

Eddie Hall, Vital Vio
FST Soapbox

How Automated Technology is Transforming Sanitation in Plant Operations

By Eddie Hall
No Comments
Eddie Hall, Vital Vio

Food safety remains a top-of-mind concern for food manufacturers, especially considering some of the top recalls in 2019 were caused by bacteria contamination—including Listeria and E. coli. Every aspect of the plant operation, from maintenance to executives, to junior staff and quality control, holds both responsibility and concern in producing safe food. Unfortunately, there’s a lot at stake when plant operations’ sanitation programs run into issues, which can cause health threats.

While the rapid explosion of new innovations complements our daily lives in efficiency and convenience, plant operations may find difficulty in keeping up-to-speed with new technology such as robotics, drones and automated applications. When facilities’ equipment becomes more and more outdated, it poses food safety challenges around cleaning, maintenance and upgrades.

Luckily, in some cases, innovation is becoming much easier to deploy. Opportunities abound for food processing plants to integrate new technologies into their operations to deliver significant returns on investment while simultaneously enhancing sanitation, safety and production efficiency on the plant floor.

The Dangers with Today’s Practices

There are many pitfalls with older, more traditional cleaning techniques. In a place where cleanliness is critical to food safety and public health around the world, the industry understands sanitation means more than just scrubbing, mopping and wiping. While these are important daily practices to be done around the processing plant, there are still concerns on whether this kind of intermittent cleaning is truly enough to keep surfaces completely sanitized—knowing that continuous cleaning around the clock seems impractical in any facilities.

Unfortunately, there are many areas, some very hard to reach, for bacteria and other pathogens to live and spread around a processing plant. Zone 1, which holds the conveyor belt and other common high-touch points, consistently comes into contact with food, chemicals and humans. However, for processors to reduce the likelihood of contaminated food, they must consider areas outside of Zone 1 as well—including employee break rooms, hallways and bathrooms—to implement automated sanitation technologies. Additionally, the most common food contaminants, such as Listeria, Salmonella and E. coli, are usually invisible to the naked eye. Therefore, plants need to employ automated technology to continuously kill microscopic bacteria, mold and fungi to prevent regrowth and ensure clean food and equipment.

Looking to New Tech to Fight Germs

When looking to upgrade a plant operation facility, automated technology should be top-of-mind. Automated food production technologies solve two main problems: Food safety and sanitation efficiency. Wash-down robotic systems work to prevent food contamination, while other automated robots complete tasks on the production floor such as packaging, transporting and lifting. With the CDC estimating that roughly one in six Americans suffer from foodborne illnesses, the need for improved sanitation design is integral.

In today’s age, there are several ways to achieve heightened cleanliness by incorporating automation and robotics into production lines. Slicers, dicers and cutters are manufactured with hygienic design in mind. Smart cleaning equipment can automatically store various cleaning steps. Data tracking applications can monitor sanitation steps and ensure all boxes are checked throughout the cleaning program.

Incorporating antimicrobial LED lighting ensures sanitation is truly integrated into the facility’s design—working continually 24/7 to kill and prevent bacteria, and its growth while also serving a dual purpose of both antimicrobial protection and a proper source of illumination. As is the case with this type of technology, once these lights are installed, it becomes an easy, hands-free way of reducing labor, chemicals and, in many cases, work stoppages.

According to Meticulous Research, the global food automation market is expected to be worth $14.3 billion by 2025. With automation set to explode, it’s important for leaders in the food and beverage industry to take advantage of safety tech innovations to advance sanitation around the processing plant. Facility upgrades to improve, enhance and automate sanitation could impact food manufacturers in the long-term by decreasing costs, preventing recalls, improving brand value, gaining consumer trust, minimizing risk and impacting the bottom line.

Steven Sklare, Food Safety Academy
Retail Food Safety Forum

Ring, Ring, Ring: COVID-19? Beware Your Filthy Cell Phone

By Steven Sklare
2 Comments
Steven Sklare, Food Safety Academy

During the COVID-19 pandemic, the rest of the world has embraced one of the well-known mantras of the food safety profession: Wash your hands, wash your hands, wash your hands. It is equally urgent that we expand that call to arms (or hands) a bit to include: Sanitize your cell phone, sanitize your cell phone, sanitize your cell phone.

A typical cell phone has approximately 25,000 germs per square inch compared to a toilet seat, which has approximately 1200 germs per square inch, a pet bowl with approximately 2100 germs per square inch, a doorknob with 8600 germs per square inch and a check-out screen with approximately 4500 germs per square inch.

Back in the day, when restaurants were still open for a sit-down, dining room meal, during a visit to an upscale Chicago restaurant I had the need to use the restroom. As I left the restroom, an employee, in kitchen whites, walked into the restroom with his cell phone in his hand. It hit me like a bolt of gastrointestinal pain. Even if the employee properly washed his hands, that cell phone with its 25,000 germs per square (and some new fecal material added for good measure) would soon be back in the kitchen. Today, we can add COVID-19 to the long list of potentially dangerous microbes on that cell phone, if the owner of the phone is COVID-19 positive. We also know that the virus can be transferred through the air if someone is COVID-19 positive or has come in close proximity to the surface of a cell phone. As we know, many kitchens are still operating, if only to provide carryout or delivery service. Even though we are not treating COVID-19 as a foodborne illness, great concern remains regarding the transfer of pathogens to the face of the cell phone user, whether it is the owner of the cell phone or someone else who is using it. Just as there are individuals that are asymptomatic carriers of foodborne illness (i.e., Typhoid Mary), we know that there are COVID-19 positive individuals that are either asymptomatic or presenting as a cold or mild flu. These individuals are still highly contagious and the people that may pick-up the virus from them may have a more severe response to the illness.

A recent study from the UK found that 92% of mobile phones had bacterial contamination and one in six had fecal matter. This study was conducted, of course, before the current COVID-19 pandemic. However, consider that the primary form of transfer of the COVID-19 pathogen is from sneezing or coughing. This makes the placement of the virus on the cell phone easier to accomplish than the fecal-oral route because even if the individual recently washed their hands, if they sneeze or cough on their phone, their clean hands are irrelevant.

I also know there is no widely established protocol, for the foodservice industry, food manufacturing industry, sanitizing/cleaning industry, housekeeping, etc., for cleaning and sanitizing a cell phone while on the job. For example, if you examine a dozen foodservice industry standard lists of “when you should wash your hands” you will always see included in the list, “after using the phone”. However, that is usually referring to a wall mounted or desktop land line phone. What about the mobile phone that goes into the food handler’s pocket, loaded with potentially disease-causing germs? I have certainly witnessed a food handler set a cell phone down on a counter, then carefully wash his/her hands at a hand sink, dry their hands and then pick-up their filthy cell phone and either put it in their pocket, make a call or send a text message. What applies to the “food handler” also applies to those individuals on the job cleaning and sanitizing food contact surfaces, and other surfaces that many people will come in direct contact with such as handrails, doorknobs sink handles, and so on.

How can the pathogen count for a cell phone be so high compared to other items you would assume would be loaded with germs? The high number cited for a cell phone is accumulative. How often do you clean your cell phone (or for that matter your keyboard or touch screen)? I’ll bet not very often, if ever. In addition, a frequently used cell phone remains warm and with just a small amount of food debris (even if not visible to the naked eye) creates an ideal breeding environment for bacteria. Unlike bacteria, we know that viruses do not reproduce outside of a cell. The cell phone still presents an excellent staging area for the COVID-19 virus while it waits to be transferred to someone’s face or nose.

While there have been some studies conducted on mobile phone contamination and the food industry, most of the statistics we have come from studies conducted in the healthcare industry involving healthcare workers. If anything, we would hope the hygiene practices in the healthcare environment to be better (or at least as good) as the foodservice industry. It is not a pretty picture. In reviewing various studies, I consistently saw results of the following: 100% contamination of mobile phone surfaces; 94.5% of phones demonstrated evidence of bacterial contamination with different types of bacteria; 82% and so on.

Let’s state the obvious: A mobile phone, contaminated with 1000’s of potentially disease causing germs, acts as a reservoir of pathogens available to be transferred from the surface of the phone to a food contact surface or directly to food and must be considered a viable source of foodborne illness. As we stated earlier, we are not treating COVID-19 as a foodborne illness, but we cannot ignore the role that a cell phone could play in transferring and keeping in play this dangerous pathogen.

What do we do about it? Fortunately we can look to the healthcare industry for some guidance and adapt to the foodservice industry, some of the recommendations that have come from healthcare industry studies.

Some steps would include the following:

  1. Education and training to increase awareness about the potential risks associated with mobile phones contaminated with pathogens.
  2. Establish clear protocols that specifically apply to the use of and presence of mobile phones in the foodservice operation.
  3. Establish that items, inclusive of mobile phones, that cannot be properly cleaned and sanitized should not be used or present where the contamination of food can occur or …
  4. If an item, inclusive of a mobile phone, cannot be properly cleaned and sanitized, it must be encased in a “cover” that can be cleaned and sanitized.
  5. The “user” of the mobile phone must be held accountable for the proper cleaning and sanitizing of the device (or its acceptable cover).

It’s safe to assume the mobile phone is not going to go away. We must make sure that it remains a tool to help us better manage our lives and communication, and does not become a vehicle for the transfer of foodborne illness causing pathogens or COVID-19.

Peter Jardine, Bayer
Bug Bytes

Sanitation and IPM Inspection

By Peter Jardine
No Comments
Peter Jardine, Bayer

Register to attend the complimentary webinar: New Technology’s Impact on Pest Management in a FSMA Regulated World | March 5, 2020 | 12 pm ETMillions of pounds of food are lost every year due to pest activity. A lot of those lost food products could have been prevented through a quality sanitation program. One of the best ways to protect your facility from the potential damage and pathogen spread caused pests like rodents is to maintain a quality sanitation program.

Every sanitation program should take into consideration conditions that are conducive to attracting and supporting unwanted visitors. As rodents are incredibly agile and intelligent creatures, one of the best ways to keep them out of a facility is to give them no reason to be interested in coming in. This means eliminating access to each of their basic needs: Food, water and harborage—in any amount. Remember, they are small, scrappy creatures and only need crumbs and droplets of water to survive. Once you change your perspective from that of a human being to that of a rodent you may be surprised by the bountiful conditions that are at your feet.

Alec Senese, Bayer Crop Science, Digital Pest Management
Bug Bytes

Did You Know a Cockroach Could Survive for a Month without Its Head?

By Alec Senese
No Comments
Alec Senese, Bayer Crop Science, Digital Pest Management

Like most insects, cockroaches have multiple nervous centers. When they lose their head, the rest of the body will continue to operate separately. In fact, a roach could live indefinitely without its heads if it didn’t need its mouth to eat and drink.

Register now for the complimentary webinar: New Technology’s Impact on Pest Management in the FSMA Regulated World | March 5, 2020 | 12 pm ETIn case you were curious, the following are five fun roach facts to keep in your back pocket for the holiday parties you’ll be attending this year. However, you may want to wait until after dinner has been served to bring these up in conversation…

  1. Roaches are incredibly fast little creatures, running about three miles per hour, or 50 times the distance of their bodies, in a single second. They are also the fastest in the animal kingdom at turning their body. They can make 25 turns per second!
  2. Cockroaches have been known to survive without important resources for much longer than most organisms. They can survive up to three months without food, a month without water, up to 45 minutes without air and can handle radiation levels up to 15 times higher than a human.
  3.  Not only do roaches spread multiple diseases that are dangerous to humans through their feces like Salmonella, shigellosis and hepatitis, they produce allergens that can trigger asthma attacks.
  4.  There’s a sci-fi like relationship between the cockroach and the jewel wasp. A jewel wasps sting can paralyze a cockroach long enough to administer a sting in the roach’s brain. This will give the wasp control over the roach’s escape reflex. The wasp then proceeds to drag the roach back to its nest, lay her eggs in the roach’s body and then allows her hatchlings to feed off the roach and build cocoons inside its body. Yikes. If there was ever a time to feel sorry for a roach, this is it.
  5. Ever heard of Louisiana’s cockroach tea? Cockroaches have been used for healing purposes in many areas of the world. They have been utilized for tetanus remedies in Louisiana, burn treatment and gastroenteritis alleviation in China.

The cockroach is currently being studied for potential uses in prosthetics, antibiotics and more.
The cockroach is an amazing creature, but they are less admirable when they inhabit areas where their presence can present risks to health and business.

Resources

  1. Smirnova, E. An Illustrated Guide to Cockroaches.
  2. How cockroaches could save lives”. (November 3, 2015). BBC News. Retrieved from https://www.bbc.com/news/magazine-34517443
Michele Pfannenstiel, Dirigo Food Safety
FST Soapbox

Quality Assurance and Food Safety in Cannabis-Infused Products

By Michele Pfannenstiel, DVM
No Comments
Michele Pfannenstiel, Dirigo Food Safety

The legal cannabis-infused products industry is growing with impressive and predictable rapidity. But because the rollout of new regulations occurs in an awkward and piecemeal fashion, with stark differences from one state to another, and sometimes even one county to another, uncertainty reigns.1 Many entrepreneurs are diving headlong into the nascent industry, hoping to take advantage of an uncertain regulatory environment where government audits and inspections are rare. These business owners will see quality assurance and product safety as burdens—costs to be avoided to the greatest extent possible.

I have seen this time and time again, even in the comparatively well-regulated food industry, and it is always a mistake.

If you find yourself thinking about quality assurance or food safety as a prohibitive cost, annoyance or distraction, I encourage you to change your thinking on this issue. The most successful businesses realize that product safety and quality assurance are inextricably linked with profitability. They are best thought of not as distractions, but as critical elements of an efficient and optimized process. Proper QA and safety are not costs, they are value.

Food safety and quality assurance should be seen as important elements of the process that you undertake to enforce the high standards and consistency that will win you repeat customers. The fact that they guard against costly recalls or satisfy meddlesome auditors is only a bonus. Realizing this will make your business smarter, faster and more profitable.

Learn more about the science, technology, regulatory compliance and quality management issues surrounding cannabis at the Food Labs / Cannabis Labs Conference | June 2–4, 2020If today you cannot clearly communicate your product standards to your employees and to your customers, then you have some work to do. That’s because quality assurance always begins with precise product specifications. (A good definition of “quality” is “conformance to specifications.”) How can you assess quality if you don’t have a definitive standard with which to evaluate it? My consulting firm works with food businesses both small and large, and this is where we begin every relationship. You might be surprised how often even a well-established business has a difficult time naming and describing every one of its products, let alone articulating objective standards for them.

This may be doubly difficult for fledgling businesses in the cannabis world. Because the market is so new, there are fewer agreed-upon standards to fall back on.

When we help businesses create specifications, we always look at the relevant regulations while keeping in mind customer expectations. In cannabis, the regulations just aren’t as comprehensive as they are for conventional food and agriculture. Laws and guidelines are still in flux, and different third-party standards are still competing for market dominance. Different states have entirely different standards, and don’t even agree, for example, whether cannabis edibles should be considered pharmaceuticals or food. To some extent, it’s the wild west of regulation, and as long as the federal government remains reluctant to impose national guidelines, it’s likely to remain so.

The wild west may be a good place for the unscrupulous, but it’s not good for business owners that care about the health of their customers and the long-term health of their brand. Don’t take advantage of confusing quality and safety standards by doing the least possible to get by. At some point there will be a scandal in this country when a novel cannabis product makes dozens of customers sick, or worse. You don’t want it to be yours.

With cannabis-infused products, there is a unique additional factor at play: The strength of THC and other psychoactive compounds. Again, there are few agreed-upon standards for potency testing, and relatively little oversight of the laboratories themselves. This allows labs to get sloppy, and even creates an incentive for them to return inflated THC counts; at the very least, results may hugely differ from one lab to another even for identical products.2 Some labs are ISO 17025 accredited, and some are not. Using an unaccredited laboratory may prevent your efforts to create consistent and homogeneous products.

Even in comparatively well-regulated states, such as Colorado, it is ultimately your responsibility to create products that are safe and consistent. And in the states where the politicians haven’t even figured out which department is regulating cannabis products, your standards should be tougher than whatever is officially required.

And so we look to the more established world of conventional food and agriculture as a guide for the best practices in the cannabis industry.

Hazards

The most constructive way to look at food safety, and the way your (eventual) auditors and regulators will view it, is to look at your product and process from the perspective of the potential hazards.

Some day, when regulation finally gets sorted out, you are likely to be asked to implement a Hazard Analysis and Critical Control Points (HACCP) safety system. HACCP framework recognizes three broad categories of hazards:

  • Physical hazards: Foreign material that is large enough to cause harm, such as glass or metal fragments.
  • Chemical hazards: Pesticides and herbicides, heavy metals, solvents and cleaning solutions.
  • Biological hazards: The pathogens that cause foodborne illness in your customers, such as E. coli, and other biological hazards, such as mycotoxins from molds.

All of these hazards are highly relevant to cannabis-infused product businesses.

The HACCP framework asks us to consider what steps in our process offer us the chance to definitively and objectively eliminate the risk of relevant hazards. In a cannabis cookie, for example, this might be a cooking step, a baking process that kills the Salmonella that could be lurking in your flour, eggs, chocolate or (just as likely!) the cannabis extracts themselves.

A good HACCP system is merely the capstone resting atop a larger foundational system of safety programs, including standard operating procedures, good manufacturing practices, and good agricultural practices. It’s important to use these agreed-upon practices and procedures in your own facility and to ensure that your suppliers and shippers are doing the same. Does your cultivator have a culture of safety and professionalism? Do they understand their own risks of hazards?

HACCP offers a rigorous perspective with which to look at a process, and to examine all of the places where it can go wrong. The safety system ultimately holds everything together because of its emphasis on scrupulous documentation. Every important step is written down, every time, and is always double-checked by a supervisor. It sounds like a lot of paperwork, but it is better viewed as an opportunity to enforce consistency and precision.

When you thoroughly document your process you’ll create a safer product, run a more efficient business, and make more money.

References

  1. Rough, L. (2016, March 4). Leafly’s State-by-State Guide to Cannabis Regulations. Retrieved from https://www.leafly.com/news/industry/leaflys-state-by-state-guide-to-cannabis-testing-regulations
  2. Jikomes, N. & Zoorob, M. (2018, March 14). The Cannabinoid Content of Legal Cannabis in Washington State Varies Systematically Across Testing Facilities and Popular Consumer Products. Retrieved from https://www.nature.com/articles/s41598-018-22755-2
Alec Senese, Bayer Crop Science, Digital Pest Management
Bug Bytes

Did You Know Some Rats Can Jump Up to Four Feet?

By Alec Senese
No Comments
Alec Senese, Bayer Crop Science, Digital Pest Management

Given this fact, you may need to look up as well as down. Did you know that a rodent’s teeth is strong enough to gnaw through cinderblock? Or that they are smart enough to memorize floor plans and solve puzzles, enabling them to find multiple entrances into a facility? Did you know that a female mouse starts reproducing at only six weeks of age and can have up to 180 babies a year? That means there are 180 opportunities per mouse in your facility or home to reproduce, contaminate, and damage your products and property.

Rodent trivia can range from fun and interesting to downright shocking. The fact of the matter is that rodents are strong, agile and smart animals. The intelligence of rats is often ranked among some of the smartest in the animal kingdom. Since rodents can carry over 35 different diseases that are harmful to humans, it is a good reminder for those in food safety that these small skilled creatures require vigilance in order to keep them from spreading pathogens across your facility.

Resources

  1. Carolina Pest Management. (October 14, 2016). “10 Fascinating (but Scary!) Facts About Rodents. Retrieved from https://www.carolinapest.com/10-fascinating-scary-facts-rodents/
  2. debugged. (December 20, 2011). “10 Amazing Facts about Rats”. Retrieved from https://www.rentokil.ie/blog/10-rat-facts/
Kevin Smedley, High Performance Systems
FST Soapbox

Importance of Flooring for Food Processing Plant Hygiene

By Kevin Smedley
No Comments
Kevin Smedley, High Performance Systems

Food processing is a multi-trillion dollar industry that encompasses facilities such as bakeries, meat and poultry plants, bottling lines, dairies, canneries and breweries. For all of these food processing plants a commercial flooring system is essential for maintaining a hygienic environment. Few areas of a plant provide as much opportunity for the spread of bacteria, mold, fungi and dust as the floor. Hazardous materials from a contaminated floor can easily be spread from worker’s shoes and mobile equipment. Food processing plants present a unique set of challenges that require careful consideration of floor properties and installation.

Food processing plants floors are subjected to constant, high concentrations of salt, alkaline and oil compounds that substantially degrade the floor and thereby risk food contamination and facility shutdown. These compounds can come from common food production by-products like oils, fats, dairy products, sugar solutions, blood, and natural acids or from harsh cleaners and disinfectants. Even with frequent and thorough cleaning these substances can—and will—result in microbial growth and the spread of bacteria in untreated concrete or poorly installed resinous flooring.

Food processing plant hygiene, flooring
A commercial flooring system is critical to maintaining a hygienic environment in a food processing plant. (Image courtesy of High Performance Systems)

Cleaning floors is an essential part of maintaining food processing operations to keep up with government standards. A proper floor coating is a necessity for dealing with the vigorous, harsh cleaning procedures that typically include very hot water and aggressive cleaning chemicals. Depending on the exposure to corrosive, temperature and moisture conditions a thin film coating may suffice; however, in most cases, a thick, durable floor coating is needed to endure the cleaning operations. If too thin of a coating is used the repeated barrage of high pressure, high-temperature hot water and steam will strip the floor coating. Only an experienced flooring professional can determine the proper floor coating for a facility.

In addition to the properties of the floor coating, proper installation is essential for maintaining a hygienic, safe facility. If a floor is not seamless even the best floor coatings are vulnerable to germ buildup within gaps and cracks. To prevent harmful substance accumulation, a seamless coving transition from the floor to the wall is needed. Not only does that make the floors unsanitary, but it also can spread to other parts of the facility, equipment and product. Coving also aids in the cleaning process by allowing for hosing around the sides and corners of the room where germ buildup is most common.

An often-overlooked—yet critical—aspect of floor installation is having the proper pitch to promote water drainage. Having pools of water is not only dangerous for workers but for product safety. Such an examples of this issue is the Listeria outbreak at cantaloupe producer Jensen Farms, which led to 33 fatalities, 143 hospitalized victims, and ultimately, the end of their business. In the 2011 FDA released a report that focused on “Factors Potentially Contributing to the Contamination of Fresh, Whole Cantaloupe Implicated in the Multi-State Listeria monocytogenes Foodborne Illness Outbreak”. The conclusion was reached that the leading cause of Listeria spreading was due to a poorly constructed packing facility floor that was difficult to clean and allowed water to pool. The best way to prevent a similar situation at your plant is to make sure you get an experienced flooring expert, who understands your facility’s needs, to choose a floor with the right properties and to properly install it.

Colleen Costello, VitalVio
FST Soapbox

Prevention Takes Center Stage to Address Food Recalls

By Colleen Costello
No Comments
Colleen Costello, VitalVio

In the complex food supply chain, a single product travels a long journey before reaching consumers’ plates. It’s no wonder that it has become so difficult to control the quality and safety of food. As food moves from trucks to conveyor belts and through grocery store shelves and shopping carts, the risk for harmful bacteria to contaminate products rises immensely. What’s worse is pinpointing the source of contamination can be nearly impossible, leaving food manufacturers scrambling to “fix” the error without even knowing the cause.

In recent recalls, processing plants completely shut down operations in an effort to resolve the issue and thoroughly sanitize their entire facilities. While this is good news for consumers, this type of reactive response will undoubtedly have a long-term, irreversible impact on the business—both financially and potentially for the brand’s reputation. Consumers remember the name of the company they heard on the evening news that had to pull thousands of pounds of products from shelves in their city or region. Then, when they make their weekly trip to the grocery store, they likely make sure to avoid that company’s products in fear of potential quality issues that could make them and their families sick. It’s a deadly cycle for consumers and public health, as well as business livelihood.

Product and consumer safety must continue to be the top priority for the food industry. The success of these companies literally depends on it. With so much on the line, the food industry must come together to spark a shift in how they operate to prevent food recalls rather than having to respond to them.

Stopping Recalls to Save Lives and Businesses

To move in the direction of mitigating pathogens from ever coming into contact with food and therefore preventing recalls altogether, processors must develop and deploy new strategies that keep facilities consistently clean. The U.S. government is stepping in with regulations such as FSMA that urge companies to shift from reactively responding to safety issues, to proactively working to prevent them. This is the fundamental shift that is needed across the food supply chain in order to protect consumers and food producing businesses.

Important new technologies have emerged in recent years that can add new layers of meaningful protection to continuously combat contamination across the supply chain. When coupled with existing disinfection and cleaning practices, these new technologies can help mitigate the introduction of harmful pathogens as food moves from point A to point B, with all the stops made in between.

One example is the advent of a new class of technology that incorporates antimicrobial LED lighting, which enables food processors to take an “always on” approach to keeping surfaces free of harmful pathogens. Since these lights meet international standards for unrestricted and continuous use around people, they’re able to irradiate large places and the smallest of spaces, all while workers are present.

However, simply deploying these new technologies isn’t enough. For new prevention strategies to be truly successful, food processors should consider the bigger picture. A large percentage of food processors focus primarily on bolstering their sanitation approaches in the areas that have the highest likelihood of coming into contact with food products. This is logical, as Zone 1 and Zone 2 are typically the highest risk for contracting and spreading harmful pathogens.

Environmental Safety Zones
Environmental safety zones. Figure courtesy of Vital Vio.

However, processors are leaving holes in their sanitation strategies by not taking measures to keep areas, such as Zone 3 and Zone 4, also well protected. To ensure food remains free of contaminants, plant managers must ensure the entire environment is fully protected, including the belts and vessels that the food touches, as well as the break rooms where employees rest and offices where management holds meetings. If these areas aren’t kept equally as clean, facilities are risking outside contaminants to enter Zone 1 that can ultimately compromise their food products.

Food recalls have become eerily common, putting a strain on public health and businesses. To stop what seems to be rising to crisis level, all companies involved in the food supply chain need to take a proactive stance toward prevention. This means deploying advanced technologies that continuously prevent harmful pathogens from taking root anywhere in their facilities. Simple yet thoughtful solutions, such as antimicrobial LED lighting, ensure food companies are one step closer to keeping all of us and their businesses safe.

Dairy

Q3 Hazard Beat: Milk & Dairy Products

By Food Safety Tech Staff
No Comments
Dairy

The following infographic is a snapshot of the hazard trends in milk and dairy from Q3 2019. The information has been pulled from the HorizonScan quarterly report, which summarizes recent global adulteration trends using data gathered from more than 120 reliable sources worldwide. For the past several weeks, Food Safety Tech has provided readers with hazard trends from various food categories included in this report. Next week will conclude this series.

Mailk dairy hazards, HorizonScan
2019 Data from HorizonScan by FeraScience, Ltd.

View last week’s hazards in fruits and vegetables.

Megan Nichols
FST Soapbox

How Will AR and VR Improve Safety in the Food Industry?

By Megan Ray Nichols
No Comments
Megan Nichols

The food and beverage sector is a huge presence in the U.S. economy. As of 2017, the industry employed 1.46 million people across 27,000 different establishments. Total food and beverage sales stand at around $1.4 trillion and add $164 billion in value to the economy as a whole.1 This presents significant opportunities and risks alike. Companies that trade in food products are held to some of the highest regulatory standards. With globalization ongoing and a higher demand than ever for variety and niche products, companies find they need to expand the mobility of their services. They must also broaden their product choices without missing a beat when it comes to quality.

Augmented reality (AR) and virtual reality (VR) have emerged as unlikely allies in that quest. These technologies are already having a positive impact on food and worker safety in the industry.

Improves New Employee Training

Onboarding and training new employees is a costly and time-consuming endeavor in any industry. Moreover, failure by companies to impart the necessary skills, and failure by employees to retain them, can have ghastly consequences. Errors on assembly lines may result in faulty products, recalls, worker and customer injuries, and worse.

The stakes in the food and beverage sector are just as high as they are in other labor- and detail-oriented industries. VR provides an entirely new kind of training experience for employees, whether they’re working on mastering their pizza cutting technique or brewing the perfect cappuccino. Other times, “getting it right” is about much more than aesthetic appeal and immediate customer satisfaction.

Animal slaughtering and processing facilities represent some of the more extreme examples of potentially dangerous workplaces in the larger food and beverage industry. Between 2011 and 2015, this U.S. sector experienced 73 fatal workplace injuries. Excepting poultry processing, 2015 saw 9,800 recordable incidents in animal processing, or 7.2 cases for every 100 full-time employees.

Some adopters of VR-based employee training claim that virtual reality yields up to an 80% retention rate one year after an employee has been trained. This compares extremely favorably to the estimated 20% retention rate of traditional training techniques.

Training via VR headset can help companies get new hires up to speed faster in a safe, detailed and immersive environment. Food processing and service are high-turnover employment sectors. The right training technology can help workers feel better prepared and more engaged with their work, potentially reducing employee churn.

Helps Eliminate Errors in Food Processing

Augmented reality is already demonstrating great promise in manufacturing, maintenance and other sectors. For instance, an AR headset can give an assembly line worker in an automotive plant detailed, step-by-step breakdowns of their task in their peripheral vision through a digital overlay.

The same goes for food and beverage manufacturing. AR headsets can superimpose a list of inspection or processing tasks for workers to follow as they prepare food items in a manufacturing or distribution facility.

In 2018, there was an estimated 382 recalls involving food products. Augmented reality alone won’t bring that number down to zero. However, it does help reduce instances of line workers and inspectors missing critical steps in processing or packaging that might result in contamination or spoilage.

Eases the Learning Curve in Food Preparation

There are lots of food products in the culinary world that are downright dangerous if they’re not prepared properly and by following specific steps. Elderberries, various species of fish, multiple root vegetables, and even cashews and kidney beans can all induce illness and even death if the right steps aren’t taken to make them fit for consumption.

In early 2019, inspectors descended on a Michelin-starred and highly respected restaurant in Valencia, Spain. The problem? A total of 30 patrons reported falling ill after eating at El País, one of whom lost her life. Everyone reported symptoms similar to food poisoning.

The common element in each case appeared to be morel mushrooms. These are considered a luxury food item, but failure to cook them properly can result in gastric problems and worse. Augmented reality could greatly reduce the likelihood of incidents like this in the future by providing ongoing guidance and reminders to new and veteran chefs alike, without taking the bulk of their attention away from work.

Brings New Efficiencies to Warehousing and Pick-and-Pack

Consumers around the globe are getting used to ordering even highly perishable foodstuffs over the internet—and there’s no putting that genie back in the bottle. Amazon’s takeover of Whole Foods is an indicator of what’s to come: Hundreds of freezer-equipped and climate-controlled warehouses located within a stone’s throw from a majority of the American population.

Ensuring smooth operations in perishable food and beverage supply chains is a major and ongoing struggle. It’s not just a practical headache for companies—it’s something of a moral imperative, too. The World Health Organization finds that around 600 million individuals worldwide fall ill each year due to foodborne illnesses.

Augmented reality won’t completely solve this problem, but it may greatly reduce a major source of potential spoilage and contamination: Inefficiencies in picking and packing operations. Order pickers equipped with AR headsets can:

  • Receive visual prompts to quickly find their way to designated stow locations in refrigerated warehouses after receiving refrigerated freight.
  • Locate pick locations more efficiently while retrieving single items or when they already have a partial order of perishable goods picked.

In both cases, the visual cues provided by AR help employees navigate warehousing locations much more quickly and efficiently. This substantially lowers the likelihood that food products are stuck in limbo in unrefrigerated areas, potentially coming into contact with noncompliant temperatures or pathogens. The FDA recognizes mispackaged and mislabeled food products as a major public health risk.

For food and beverage companies, AR should be a welcome development and a worthy investment. FSMA recognized that 48 million Americans get sick each year from compromised foods. The act required these entities to be much more proactive in drawing up prevention plans for known sources of contamination and to be more deliberate in standardizing their processes for safety’s sake.

AR and VR Boost Food, Worker and Customer Safety

Augmented and virtual reality may seem like an unusual ally in an industry where most consumers are primarily focused on the aesthetic and sensory aspects of the experience. However, there’s a whole world that lives and dies according to the speed and attention to detail of employees and decision-makers alike. Augmented realities, and entirely new ones, point the way forward.

Reference

  1. Committee for Economic Development of The Conference Board. (March 2017). “Economic Contribution of the Food and Beverage Industry. Retrieved from https://www.ced.org/pdf/Economic_Contribution_of_the_Food_and_Beverage_Industry.pdf.